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Abstract

Principal component analysis (PCA), a well-establishetineue for data analy-
sis and processing, provides a convenient form of dimeasitgrreduction that is
effective for cleaning small Gaussian noises presentedardata. However, the
applicability of standard principal component analysisdal scenarios is limited
by its sensitivity to large errors. In this paper, we tackle thallenge problem of
recovering data corrupted with errors of high magnitude éyetbping a novel
robust transfer principal component analysis method. Cethod is based on the
assumption that useful information for the recovery of awoted data matrix can
be gained from an uncorrupted related data matrix. Speltyfieee formulate the
data recovery problem as a joint robust principal compoaaatysis problem on
the two data matrices, with common principal componentseshacross matrices
and individual principal components specific to each datairad he formulated
optimization problem is a minimization problem over a conebjective function
but with non-convex rank constraints. We develop an effigieaximal projected
gradient descent algorithm to solve the proposed optitoizgtroblem with con-
vergence guarantees. Our empirical results over imageisiegdasks show the
proposed method can effectively recover images with ranidoge errors, and sig-
nificantly outperform both standard PCA and robust PCA wéihkrconstraints.

1 Introduction

Dimensionality reduction, as an important form of unsujsad learning, has been widely explored
for analyzing complex data such as images, video sequelrgédpcuments, etc. It has been used to
discover important latent information about observed deatrices for visualization, feature recov-
ery, embedding and data cleaning. The fundamental assumatots in dimensionality reduction
is that the intrinsic structure of high dimensional obs@oradata lies on a low dimensional linear
subspace. Principal component analysis (PCA) [7] is a idassl one of most commonly used di-
mensionality reduction method. It seeks the best low-rgkaximation of the given data matrix
under a well understood least-squares reconstruction aossprojects data onto uncorrelated low
dimensional subspace. Moreover, it admits an efficientgutace for computing optimal solutions
via the singular value decomposition. These propertiesenf®BA a well suited reduction method
when the observed data is mildly corrupted with small Gaussibise [12]. But standard PCA is
very sensitive to the high magnitude errors of the obsenatd.dEven a small fraction of large
errors can cause severe degradation in PCA's estimate @ith@nk structure.

Real-life data, however, is often corrupted with large exi@r even missing observations. To tackle
dimensionality reduction with arbitrarily large errorsdaoutliers, a number of approaches that ro-
bustify PCA have been developed in the literature, inclgdirnnorm regularized robust PCA [14],
influence function techniques [5, 13], and alternatipghorm minimization [8]. Nevertheless, the



capacity of these approaches on recovering the low-ranktste of a corrupted data matrix can
still be degraded with the increasing of the fraction of tugé errors.

In this paper, we propose a novel robust transfer principadgonent analysis method to recover the
low rank representation of heavily corrupted data by leyieigrelated uncorrupted auxiliary data.
Seeking knowledge transfer from a related auxiliary datac®for the target learning problem has
been popularly studied in supervised learning. It is alsowknthat modeling related data sources
together provides rich information for discovering thestsared subspace representations [4]. We
extend such a transfer learning scheme into the PCA franketeoperform joint robust principal
component analysis over a corrupted target data matrix aethged auxiliary source data matrix
by enforcing the two robust PCA operations on the two dataioget to share a subset of com-
mon principal components, while maintaining their uniqaeiations through individual principal
components specific for each data matrix. This robust tearRCA framework combines aspects
of both robust PCA and transfer learning methodologies. ¥geet the critical low rank structure
shared between the two data matrices can be effectivelgfeard from the uncorrupted auxiliary
data to recover the low dimensional subspace represemtatithe heavily corrupted target data
in a robust manner. We formulate this robust transfer PCA jén& minimization problem over

a convex combination of least squares losses with non-gomatrix rank constraints. Though a
simple relaxation of the matrix rank constraints into conmeaclear norm constraints can lead to a
convex optimization problem, it is very difficult to contriile rank of the low-rank representation
matrix we aim to recover through the nuclear norm. We thugldgva proximal projected gradient
descent optimization algorithm to solve the proposed dpttion problem with rank constraints,
which permits a convenient closed-form solution for eaabxjmnal step based on singular value
decomposition and converges to a stationary point. Ourrérpets over image denoising tasks
show the proposed method can effectively recover imagesigd with random large errors, and
significantly outperform both standard PCA and robust PCthwank constraints.

Notations: In this paper, we usg, to denote am x n identify matrix, use0,, ,, to denote am x m
matrix with all 0 values, usg- || » to denote the matrix Frobenius norm, and {jsé.. to denote the
nuclear norm (trace norm).

2 Preliminaries

Assume we are given an observed data makixc R™*? consisting ofn observations ofi-
dimensional feature vectors, which was generated by congigome entries of a latent low-rank
matrix M/ € R™*? with an error matrixz € R"*? such thatX = M + E. We aim to to recover
the low-rank matrix/ by projecting the high dimensional observatioxignto a low dimensional
manifold representation matriz € R"** over the low dimensional subspaBec R**9, such that
M =ZB,BBT = I, fork < d.

21 PCA

Given the above setup, standard PCA assumes the error nfatbntains small i.i.d. Gaussian
noises, and seeks optimal low dimensional encoding matiaxd basis matrix3 to reconstructX’
by X = ZB + E. Under a least squares reconstruction loss, PCA is equividethe following
self-supervised regression problem

min || X — ZB||% st BB' =1I. 1)

That is, standard PCA seeks the best randstimate of the latent low-rank matri¥ = ZB by
solving

min X — M|% st rank(M) < k. 2

Although the optimization problem in (1) or (2) is not convaaxd does not appear to be easy, it can
be efficiently solved by performing a singular value decosifpan (SVD) overX, and permits the
following closed-form solution

B*=V,, Z*=XB*, M* = Z*B"*, ()
whereV}, is comprised of the tog right singular vectors oX . With the convenient solution, stan-

dard PCA has been widely used for modern data analysis amdssas an efficient and effective
dimensionality reduction procedure when the eitas small and i.i.d. Gaussian [7].



2.2 Robust PCA

The validity of standard PCA however breaks down when caedigrrors in the observed data
matrix are large. Note that even a single grossly corruptegyeén the observation matri¥’ can
render the recoveredi/* matrix to be shifted away from the true low-rank matfix. To recover
the intrinsic low-rank matrix\/ from the observation matriX corrupted with sparse large errors
E, a polynomial-time robust PCA method has been developetdi {vhich induces the following
optimization problem

RI}HEl rank(M) + 7| Elo st X =M+ E. 4)

By relaxing the non-convex rank function and tfienorm into their convex envelopes of nuclear
norm and/;-norm respectively, a convex relaxation of the robust PCAlmayielded

min [|M|, + M E[; st X =M+ E. )
M.E

With an appropriate choice ofparameter, one can exactly recover e’ matrices that generated
the observationX by solving this convex program.

To produce a scalable optimization for robust PCA, a moreeoient relaxed formulation has been
considered in [14]

. o _ 2
iy M. + AME|: + 5 M+ E - X||% (6)

where the original equality constraint is replaced with @orestruction loss penalty term. This for-
mulation apparently seeks the lowest ralikthat can best reconstruct the observation makfix
subjecting to sparse errofs

Robust PCA though can effectively recover the low-rank mafiven very sparse large errors in the
observed data, its performance can be degraded when thevatise data is heavily corrupted with
dense large errors. In this work, we propose to tackle trablpm by exploiting information from
related uncorrupted auxiliary data.

3 Robust Transfer PCA

Exploring labeled information in a related auxiliary data to assist the learning problem on a target
data set has been widely studied in supervised learninggosmwithin the context of transfer learn-
ing, domain adaptation and multi-task learning [10]. Maeit has also been shown that modeling
related data sources together can provide useful infoomditir discovering their shared subspace
representations in an unsupervised manner [4]. The ptenbighind these knowledge transfer learn-
ing approaches is that related data sets can complemenoteston identifying the intrinsic latent
structure shared between them.

Following this transfer learning scheme, we present a rtofbansfer PCA method for recovering
low-rank matrix from a heavily corrupted observation matAssume we are given a target data
matrix X, € R™*¢ corrupted with errors of large magnitude, and a relatedcsodata matrix
X, € R"*4, The robust transfer PCA aims to achieve the following rofmist matrix factorization

Xs :NsBc+ZsBs+Esv (7)
Xt = NiB.+ ZtB: + E, (8)

whereB,. € RF-*%is the orthogonal basis matrix shared between the two daties B, ¢ R*s*?
and B, € RF¥*4 are the orthogonal basis matrices specific to each dataxmaspectively,
N, € Rsxke N, € Rmxke 7 e R**ks 7, ¢ R™*k gre the corresponding low dimensional re-
construction coefficient matrice, € R"*? andE, € R™ << represent the additive errors in each
data matrix. LetZ, = [N,; NV;]. Given constant matrice$; = [I,,_, Op, n,] aNdA; = [Op, n., In,],
we can re-expresy¥,; and N, in term of the unified matri¥ . such thatV, = A,Z. andN, = A, Z..
The learning problem of robust transfer PCA can then be ftatad as the following joint minimiza-



tion problem

] a
min —||AsZeB. + ZsBs + Es — X, 3+ ©)
Ze,Zs,Zt,Bc,Bs,Bt,Es,Ey 2

(%
1 AZBe+ 2B + Be = Xilly + Bl Eilly + Bel Bl
S.t. BCBZ :Ikw BSB;— = Ik57 BtB;r = Ikt

which minimizes the least squares reconstruction lossdmtindata matrices with; -norm regu-
larizers over the additive error matrices. The intuitiothiat by sharing the common column basis
vectors inB,, one can best capture the common intrinsic low-rank straaifithe data based on lim-
ited observations from both data sets, and by allowing datzeelding onto individual basis vectors
B,, By, the additional low-rank structure specific to each dataaete captured. Nevertheless, this
is a difficult non-convex optimization problem as both thgeghive function and the orthogonality
constraints are non-convex. To simplify this optimizatmoblem, we introduce replacements

M.,=Z.B., Mg = Z;B;, M, = Z; B (10)
and rewrite the optimization problem (9) equivalently itie formulation below
SNAM, + M, + By = X+ SHIAM. + M+ B — X} (1)

+ BsllEslls + Bell Bl
st rank(M.) < k., rank(M,) <ks, rank(M;) <k

min
Mec,Ms,M¢,Es,Ey

which has &;-norm regularized convex objective function, but is sutijgrto non-convex inequal-
ity rank constraints. A standard convexification of the rapbkstraints is to replace rank functions
with their convex envelopes, nuclear norms [3, 14, 1, 6, E8f.example, one can replace the rank
constraints in (11) with relaxed nuclear norm regularizeithie objective function

. Q. g
. 79||ASMC + My + Es — X% + 5 1AM + My + B, — X3 (12

+ Bsll Eslly + Bell Etlly + Acl| Mell« + Asl| Ml 4 Adf| M|«

Many efficient and scalable algorithms have been proposeslie such nuclear norm regular-
ized convex optimization problems, including proximaldjemt algorithm [6, 14], fixed point and

Bregman iterative method [9]. However, though the nucleainmis a convex envelope of the rank
function, it is not always a high-quality approximation bétrank function [11]. Moreover, it is very

difficult to select the appropriate trade-off paramesfers\; for the nuclear norm regularizers in (12)
to recover the low-rank matrix solutions in the originaliogkzation in (11). In principal component

analysis problems it is much more convenient to have exgiitrol on the rank of the low-rank so-
lution matrices. Therefore instead of solving the nuclearmbased convex optimization problem
(12), we develop a scalable and efficient proximal gradiégarghm to solve the rank constraint
based minimization problem (11) directly, which is showrtémverge to a stationary point.

After solving the optimization problem (11), the low-rarqamoximation of the corrupted matriX;
can be obtained a&; = A, M, + M;.

4 Proximal Projected Gradient Descent Algorithm

Proximal gradient methods have been popularly used fornsitained convex optimization prob-
lems with continuous but non-smooth regularizers [2]. Ia tork, we develop a proximal projected
gradient algorithm to solve the non-convex optimizationlgpem with matrix rank constraints in
(11). Let® = [M,; M; My; Es; E¢] be the optimization variable set of (11). We denote the ebjec
tive function of (11) ag(©) such that

F(©) = f(©)+9(©) (13)
£(©) = %HASMC Y M, 4+ B, — X%+ %HAtMC Y M+ B, — X% (14)
g<@) = BSHESHI + ﬁtHEtHI (15)



Algorithm 1 Proximal Projected Gradient Descent
Input: data matrices(,, X;, parameters, o, Bs, B¢, ke, ks, k.
Set n = 3max(as, o), k= 1.
Initialize MY, MY, MV B WY
While not convergedio
e Seto® = (MM MY M ER; B,
o UpdateM* ) = py (. ©), M = pyy (n,00), MFTY = py, (n,0W),

EMY = pp (n,0®), EFTY = pp (n,00).
eSetk=Fk+1.
End While

Here f(©) is a convex and continuously differentiable function whjl@®) is a convex but non-
smooth function. . For any > 0, we consider the following quadratic approximationfofo) at a

given pomt@ [ . MS, Mt, ES, Et]
Q4(©.8) = f(8) + (6 =6, Vf(®)) + 16 - 6]} + 9(©) (16)

where Vf(©) is the gradient of the functiorf(-) at point®. LetC = {© : rank(M.) < ke,
rank(Ms) < ks, rank(M;) < k;}. The minimization ovet),(©, ©) can be conducted as

p(n,é) = arg min Qn(@,é) = arg min {g(@)—i-gH@ @— fo HF} a7
ocC ocC

which admits the following closed-form solution througinguilar value decomposition and soft-
thresholding:

(1,0) = U, Sk, Vi, for USVT = SVD(M, — £V, £(6))
1.(0,0) = U, SV, for USVT = SVD(M, — 2V, £(6))
par, (1,0) = U, Sk, Vi, for USVT = SVD(M,; — 1V, £(6))
.(1,0) = (|E.| - % o sign(E,), with E, = B, — 1V, f(6)
(1,0) = (|Be| — £), o sign(Ey), with B, = B, — 1V, £(6)

whereUy, and V;, denote the togk singular vectors fronU and V' respectively, and;, denotes
the diagonal matrix with the corresponding tegingular values fok € {k., ks, k: } respectively;

the operator 8” denotes matrix Hadamard product, and the operatar = max(-,0); V. f(©),
Var f(©), Vs, £(©), V. £(©), andV g, £(©) denote parts of the gradient matiixf (©) corre-
sponding toM,., My, M, E,, E, respectively.

Our proximal projected gradient algorithm is an iterativeqedure. After first initializing the pa-
rameter matrices to zeros, in edetth iteration, it updates the model parameters by miningjzive
approximation functio)(©, ©(*)) at the given poin®*¥), using the closed-form update equations

above. The overall procedure is given in Algorithm 1. Beloe eiscuss the convergence property
of this algorithm.

Lemmal For ) = 3max(as, oy ), We haveF (0) < Q, (0, O) for every feasibl®, ©.
Proof: First it is easy to check that= 3 max(as, ay) is a Lipschitz constant &V f(©), such that

IV£(©) = Vf(O)|r <nl©—06]|r forany feasible pai©, ® (18)

Thusf(-) is a continuously differentiable function with Lipschitarttinuous gradient and Lipschitz
constant). Following [2, Lemma 2.1], we have

£(©) < £(©) + (6 - 6,VF(©)) + gne — 8|2 foranyfeasible pail©,®&  (19)



Based on (16) and (19), we can then derive

F(6) = £(6) +9(0) < f(6) + (6~ 6,Vf(8)) + 16 — 6]} + 9(6) = Q,(6.6) (20)

O
Based on this lemma, we can see the update steps of Algorigatisfy

FO") <, 0% 6®) <@, ©", 0M) = Fer) (21)
Therefore the sequence of poin®&"), ©(2), ... ©*, produced by Algorithm 1 have nonincreasing

function values(©@(M)) > F(©(2)) > ... > F(6*), and converge to a stationary point.

5 Experiments

We evaluate the proposed approach using image denoisikg tamstructed on the Yale Face
Database, which contains 165 grayscale images of 15 indildd There are 11 images per subject,
one per different facial expression or configuration.

Our goal is to investigate the performance of the proposgdoagh on recovering data corrupted
with large and dense errors. Thus we constructed noisy istagadding large errors. L&t denote

a target image matrix from one subject, which has valuesdmtvd and 255. We randomly select
a fraction of its pixels to add large errors to reach value, 2&tere the fraction of noisy pixels is
controlled using a noise level parameterThe obtained noisy target image matrixXs. We then
use an uncorrupted image mati&¥ from the same or different subject as the source matrix to hel
the image denoising of, by recovering its low-rank approximation matck. In the experiments,
we compared the performance of the following methods on étmoising with large errors:

e R-T-PCA:This is the proposedobust transfer PCAmethod. For this method, we used
parametersy, = o, = 1, 8, = B¢ = 0.1, unless otherwise specified.

e R-S-PCA:This is arobust shared PCAnethod that applies a rank-constrained version of
the robust PCA in [14] on the concatenated maltiX’; X;] to recover a low-rank approx-
imation matrixX; with rank k. + k;.

e R-PCA:This is arobust PCAmethod that applies a rank-constrained version of the tobus
PCA in [14] on X, to recover a low-rank approximation mattk with rankk,. + k.

e S-PCA:This is ashared PCAnethod that applies PCA on concatenated maifig; X;] to
recover a low-rank approximation matek, with rankk, + k;.

e PCA: This method applies PCA on the noisy target mafXixto recover a low-rank ap-
proximation matrixX, with rank k. + k.

e R-2Step-PCAThis method exploits the auxiliary source matrix by firstfpemning robust
PCA over the concatenated matfiX?; X;] to produce a shared matrix, with rank k.,
and then performing robust PCA over the residue mdtkix— A; M) to produce a matrix

M, with rank k,. The final low-rank approximation of, is given by X, = A, M, + M;.

All the methods are evaluated using the root mean square @MSE) between the true target

image matrixX? and the low-rank approximation matri; recovered from the noisy image matrix.
Unless specified otherwise, we used= 8, k, = 3, k; = 3 in all experiments.

5.1 Intra-Subject Experiments

We first conducted experiments by constructing 15 tranafistfor the 15 subjects. Specifically, for
each subject, we used the first image matrix as the targebcaat used each of the remaining 10
image matrices as the source matrix each time. For eachesmatrix, we repeated the experiments
5 times by randomly generating noisy target matrix usingpfeeedure described above. Thus in
total, for each experiment, we have results from 50 runs.aMeeage denoising results in terms of
root mean square error (RMSE) with noise lewek 5% are reported in Table 1. The standard devi-
ations for these results range betw@di01 and0.015. We also present one visualization result for
Task-1 in Figure 1. We can see that the proposed mefdePCAoutperforms all other methods



Table 1: The average denoising results in terms of RMSE aerlevels = 5%.

Tasks R-T-PCA  R-S-PCA R-PCA S-PCA PCA R-2Step-PCA
Task-1 0.143 0.185 0.218 0.330 0.365 0.212
Task-2 0.134 0.167 0.201 0.320 0.353 0.202
Task-3 0.136 0.153 0.226 0.386 0.430 0.215
Task-4 0.140 0.162 0.201 0.369 0.406 0.215
Task-5 0.142 0.166 0.241 0.382 0414 0.208
Task-6 0.156 0.195 0.196 0.290 0.310 0.202
Task-7 0.172 0.206 0.300 0.477 0.523 0.264
Task-8 0.203 0.222 0.223 0.348 0.386 0.243
Task-9 0.140 0.159 0.203 0.317 0.349 0.201
Task-10| 0.198 0.209 0.259 0.394 0.439 0.255
Task-11| 0.191 0.211 0.283 0.389 0.423 0.274
Task-12| 0.151 0.189 0.194 0.337 0.366 0.213
Task-13| 0.193 0.218 0.277 0.436 0.474 0.257
Task-14| 0.176 0.201 0.240 0.366 0.392 0.224
Task-15| 0.159 0.170 0.266 0.413 0.464 0.245

Source Target ] Noise: 5%

R-2Step-PCA

Figure 1: Denoising results on Task-1.

across all the 15 tasks. The comparison between the two g@fupethods{R-T-PCA R-S-PCA
S-PCA and{R-PCA PCA}, shows that a related source matrix is indeed useful for idemgpthe
target matrix. The superior performanceR{T-PCAover R-2Step-PCAlemonstrates the effective-
ness of our joint optimization framework over its stepwisteraative. The superior performance
of R-T-PCAover R-S-PCAand S-PCAdemonstrates the efficacy of our transfer PCA framework
in exploiting the auxiliary source matrix over methods tsiatply concatenate the auxiliary source
matrix and target matrix.

5.2 Cross-Subject Experiments

Next, we conducted transfer experiments using source xreatd target matrix from different sub-
jects. We randomly constructed 5 transfer tasks, Taski&dk-8-2, Task-9-4, Task-12-8 and Task-
14-11, where the first number in the task name denotes theessubject index and second number
denotes the target subject index. For example, to consiasit-6-1, we used the first image matrix
from subject-6 as the source matrix and used the first imagexifilmm subject-1 as the target ma-
trix. For each task, we conducted experiments with two diffié noise levels, 5% and 10%. We re-
peated each experiment 10 times using randomly generaigyltacget matrix. The average results
in terms of RMSE are reported in Table 2 with standard demiatiess than.015. We can see that
with the increase of noise level, the performance of all méstdegrades. But at each noise level, the
comparison results are similar to what we observed in ptsvéxperiments: The proposed method
outperforms all other methods. These results also sudugst¥en a remotely related source image
can be useful. All these experiments demonstrate the effifathe proposed method in exploiting
uncorrupted auxiliary data matrix for denoising target@ges.corrupted with large errors.



Table 2: The average denoising results in terms of RMSE.

Tasks RT-PCA RS-PCA RPCA SPCA PCA R-2Step-PCA
Takel 0% | 0147 0177 0224 0337 0370 0.218
5=10% | 0.203 0246 0326 0490 0526 0.291
Tag 0% | 0132 0150 0234 0313 0354 0.200
5=10% | 0.154 0211 0323 0457 0.500 0.276
Tackoa 0=5% | 0148 0170 0229 0373 0410 0.212
5=10% | 0.204 0240 0344 0546 0585 0.282
Tackdog 0% | 0207 0231 0245 0373 0397 0.249
5=10% | 0.244 0272 0359 0518 0548 0.317
5=5% | 0.172 0215 0274 0403 0424 0.268
Task-14-11 7006 | 0319 0368 0431 0592 0612 0.372
0.19 05 Y
i % R-S—-PCA
018 e ren
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Figure 2: Parameter analysis on Task-6-1 withs: 5%.

5.3 Parameter Analysis

The optimization problem (11) for the proposBdT-PCAmethod has a number of parameters to
be set.ay, ay, Bs, By, ke, ks and k,. To investigate the influence of these parameters over the pe
formance of the proposed method, we conducted two expetimesing the first cross-subject
task, Task-6-1, with noise levet =5%. Given that the source and target matrices are similar
in size, in these experiments we set=«a; =1, Bs,=06; and ks =k;. In the first experiment, we
set (ke, ks, k) =(8,3,3) and study the performance &-T-PCAwith different §;=08;=4 val-
ues, fors € {0.01,0.025,0.05,0.1,0.25,0.5,1}. The average RMSE results over 10 runs are pre-
sented in the left sub-figure of Figure 2. We can see BWdtPCAIis quite robust tos within

the range of values{0.05,0.1,0.25,0.5,1}. In the second experiment, we fixg8l =5, =0.1
and compare®R-T-PCAwith other methods across a few different settingg/af, ks, k;), with

(ke, ks, ke) €4(6,3,3),(8,3,3),(8,5,5),(10, 3,3),(10,5,5) }. The average comparison results in
terms of RMSE are presented in the right sub-figure of Figuh&/@ can see that though the per-
formance of all methods varies across different settiRg$;PCAIs less sensitive to the parameter
changes comparing to the other methods and it produced shedseilt across different settings.

6 Conclusion

In this paper, we developed a novel robust transfer primcipaponent analysis method to recover
the low-rank representation of corrupted data by leveagiated uncorrupted auxiliary data. This
robust transfer PCA framework combines aspects of bothstdbGA and transfer learning method-
ologies. We formulated this method as a joint minimizatioobtem over a convex combination of
least squares losses with non-convex matrix rank constraand developed a proximal projected
gradient descent algorithm to solve the proposed optimizgiroblem, which permits a convenient
closed-form solution for each proximal step based on sargudlue decomposition and converges to
a stationary point. Our experiments over image denoisiskstdemonstrated the proposed method
can effectively exploit auxiliary uncorrupted image togeer images corrupted with random large
errors and significantly outperform a number of comparisethwods.
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