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Abstract

Principal component analysis (PCA), a well-established technique for data analy-
sis and processing, provides a convenient form of dimensionality reduction that is
effective for cleaning small Gaussian noises presented in the data. However, the
applicability of standard principal component analysis inreal scenarios is limited
by its sensitivity to large errors. In this paper, we tackle the challenge problem of
recovering data corrupted with errors of high magnitude by developing a novel
robust transfer principal component analysis method. Our method is based on the
assumption that useful information for the recovery of a corrupted data matrix can
be gained from an uncorrupted related data matrix. Specifically, we formulate the
data recovery problem as a joint robust principal componentanalysis problem on
the two data matrices, with common principal components shared across matrices
and individual principal components specific to each data matrix. The formulated
optimization problem is a minimization problem over a convex objective function
but with non-convex rank constraints. We develop an efficient proximal projected
gradient descent algorithm to solve the proposed optimization problem with con-
vergence guarantees. Our empirical results over image denoising tasks show the
proposed method can effectively recover images with randomlarge errors, and sig-
nificantly outperform both standard PCA and robust PCA with rank constraints.

1 Introduction

Dimensionality reduction, as an important form of unsupervised learning, has been widely explored
for analyzing complex data such as images, video sequences,text documents, etc. It has been used to
discover important latent information about observed datamatrices for visualization, feature recov-
ery, embedding and data cleaning. The fundamental assumption roots in dimensionality reduction
is that the intrinsic structure of high dimensional observation data lies on a low dimensional linear
subspace. Principal component analysis (PCA) [7] is a classic and one of most commonly used di-
mensionality reduction method. It seeks the best low-rank approximation of the given data matrix
under a well understood least-squares reconstruction loss, and projects data onto uncorrelated low
dimensional subspace. Moreover, it admits an efficient procedure for computing optimal solutions
via the singular value decomposition. These properties make PCA a well suited reduction method
when the observed data is mildly corrupted with small Gaussian noise [12]. But standard PCA is
very sensitive to the high magnitude errors of the observed data. Even a small fraction of large
errors can cause severe degradation in PCA’s estimate of thelow rank structure.

Real-life data, however, is often corrupted with large errors or even missing observations. To tackle
dimensionality reduction with arbitrarily large errors and outliers, a number of approaches that ro-
bustify PCA have been developed in the literature, including ℓ1-norm regularized robust PCA [14],
influence function techniques [5, 13], and alternatingℓ1-norm minimization [8]. Nevertheless, the
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capacity of these approaches on recovering the low-rank structure of a corrupted data matrix can
still be degraded with the increasing of the fraction of the large errors.

In this paper, we propose a novel robust transfer principal component analysis method to recover the
low rank representation of heavily corrupted data by leveraging related uncorrupted auxiliary data.
Seeking knowledge transfer from a related auxiliary data source for the target learning problem has
been popularly studied in supervised learning. It is also known that modeling related data sources
together provides rich information for discovering theirsshared subspace representations [4]. We
extend such a transfer learning scheme into the PCA framework to perform joint robust principal
component analysis over a corrupted target data matrix and arelated auxiliary source data matrix
by enforcing the two robust PCA operations on the two data matrices to share a subset of com-
mon principal components, while maintaining their unique variations through individual principal
components specific for each data matrix. This robust transfer PCA framework combines aspects
of both robust PCA and transfer learning methodologies. We expect the critical low rank structure
shared between the two data matrices can be effectively transferred from the uncorrupted auxiliary
data to recover the low dimensional subspace representation of the heavily corrupted target data
in a robust manner. We formulate this robust transfer PCA as ajoint minimization problem over
a convex combination of least squares losses with non-convex matrix rank constraints. Though a
simple relaxation of the matrix rank constraints into convex nuclear norm constraints can lead to a
convex optimization problem, it is very difficult to controlthe rank of the low-rank representation
matrix we aim to recover through the nuclear norm. We thus develop a proximal projected gradient
descent optimization algorithm to solve the proposed optimization problem with rank constraints,
which permits a convenient closed-form solution for each proximal step based on singular value
decomposition and converges to a stationary point. Our experiments over image denoising tasks
show the proposed method can effectively recover images corrupted with random large errors, and
significantly outperform both standard PCA and robust PCA with rank constraints.

Notations: In this paper, we useIn to denote ann×n identify matrix, useOn,m to denote ann×m
matrix with all 0 values, use‖ · ‖F to denote the matrix Frobenius norm, and use‖ · ‖∗ to denote the
nuclear norm (trace norm).

2 Preliminaries

Assume we are given an observed data matrixX ∈ R
n×d consisting ofn observations ofd-

dimensional feature vectors, which was generated by corrupting some entries of a latent low-rank
matrixM ∈ R

n×d with an error matrixE ∈ R
n×d such thatX = M + E. We aim to to recover

the low-rank matrixM by projecting the high dimensional observationsX into a low dimensional
manifold representation matrixZ ∈ R

n×k over the low dimensional subspaceB ∈ R
k×d, such that

M = ZB, BB⊤ = Ik for k < d.

2.1 PCA

Given the above setup, standard PCA assumes the error matrixE contains small i.i.d. Gaussian
noises, and seeks optimal low dimensional encoding matrixZ and basis matrixB to reconstructX
by X = ZB + E. Under a least squares reconstruction loss, PCA is equivalent to the following
self-supervised regression problem

min
Z,B

‖X − ZB‖2F s.t. BB⊤ = Ik. (1)

That is, standard PCA seeks the best rank-k estimate of the latent low-rank matrixM = ZB by
solving

min
M

‖X −M‖2F s.t. rank(M) ≤ k. (2)

Although the optimization problem in (1) or (2) is not convexand does not appear to be easy, it can
be efficiently solved by performing a singular value decomposition (SVD) overX, and permits the
following closed-form solution

B∗ = V ⊤
k , Z∗ = XB∗, M∗ = Z∗B∗, (3)

whereVk is comprised of the topk right singular vectors ofX. With the convenient solution, stan-
dard PCA has been widely used for modern data analysis and serves as an efficient and effective
dimensionality reduction procedure when the errorE is small and i.i.d. Gaussian [7].
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2.2 Robust PCA

The validity of standard PCA however breaks down when corrupted errors in the observed data
matrix are large. Note that even a single grossly corrupted entry in the observation matrixX can
render the recoveredM∗ matrix to be shifted away from the true low-rank matrixM . To recover
the intrinsic low-rank matrixM from the observation matrixX corrupted with sparse large errors
E, a polynomial-time robust PCA method has been developed in [14], which induces the following
optimization problem

min
M,E

rank(M) + γ‖E‖0 s.t. X = M + E. (4)

By relaxing the non-convex rank function and theℓ0-norm into their convex envelopes of nuclear
norm andℓ1-norm respectively, a convex relaxation of the robust PCA can be yielded

min
M,E

‖M‖∗ + λ‖E‖1 s.t. X = M + E. (5)

With an appropriate choice ofλ parameter, one can exactly recover theM,E matrices that generated
the observationsX by solving this convex program.

To produce a scalable optimization for robust PCA, a more convenient relaxed formulation has been
considered in [14]

min
M,E

‖M‖∗ + λ‖E‖1 +
α

2
‖M + E −X‖2F (6)

where the original equality constraint is replaced with a reconstruction loss penalty term. This for-
mulation apparently seeks the lowest rankM that can best reconstruct the observation matrixX
subjecting to sparse errorsE.

Robust PCA though can effectively recover the low-rank matrix given very sparse large errors in the
observed data, its performance can be degraded when the observation data is heavily corrupted with
dense large errors. In this work, we propose to tackle this problem by exploiting information from
related uncorrupted auxiliary data.

3 Robust Transfer PCA

Exploring labeled information in a related auxiliary data set to assist the learning problem on a target
data set has been widely studied in supervised learning scenarios within the context of transfer learn-
ing, domain adaptation and multi-task learning [10]. Moreover, it has also been shown that modeling
related data sources together can provide useful information for discovering their shared subspace
representations in an unsupervised manner [4]. The principle behind these knowledge transfer learn-
ing approaches is that related data sets can complement eachother on identifying the intrinsic latent
structure shared between them.

Following this transfer learning scheme, we present a robust transfer PCA method for recovering
low-rank matrix from a heavily corrupted observation matrix. Assume we are given a target data
matrix Xt ∈ R

nt×d corrupted with errors of large magnitude, and a related source data matrix
Xs ∈ R

ns×d. The robust transfer PCA aims to achieve the following robust joint matrix factorization

Xs = NsBc + ZsBs + Es, (7)

Xt = NtBc + ZtBt + Et, (8)

whereBc ∈ R
kc×d is the orthogonal basis matrix shared between the two data matrices,Bs ∈ R

ks×d

and Bt ∈ R
kt×d are the orthogonal basis matrices specific to each data matrix respectively,

Ns ∈ R
ns×kc , Nt ∈ R

nt×kc ,Zs ∈ R
ns×ks , Zt ∈ R

nt×kt are the corresponding low dimensional re-
construction coefficient matrices,Es ∈ R

ns×d andEt ∈ R
nt×d represent the additive errors in each

data matrix. LetZc = [Ns;Nt]. Given constant matricesAs = [Ins
, Ons,nt

] andAt = [Ont,ns
, Int

],
we can re-expressNs andNt in term of the unified matrixZc such thatNs = AsZc andNt = AtZc.
The learning problem of robust transfer PCA can then be formulated as the following joint minimiza-
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tion problem

min
Zc,Zs,Zt,Bc,Bs,Bt,Es,Et

αs

2
‖AsZcBc + ZsBs + Es −Xs‖

2
F+ (9)

αt

2
‖AtZcBc + ZtBt + Et −Xt‖

2
F + βs‖Es‖1 + βt‖Et‖1

s.t. BcB
⊤
c = Ikc

, BsB
⊤
s = Iks

, BtB
⊤
t = Ikt

which minimizes the least squares reconstruction losses onboth data matrices withℓ1-norm regu-
larizers over the additive error matrices. The intuition isthat by sharing the common column basis
vectors inBc, one can best capture the common intrinsic low-rank structure of the data based on lim-
ited observations from both data sets, and by allowing data embedding onto individual basis vectors
Bs, Bt, the additional low-rank structure specific to each data setcan be captured. Nevertheless, this
is a difficult non-convex optimization problem as both the objective function and the orthogonality
constraints are non-convex. To simplify this optimizationproblem, we introduce replacements

Mc = ZcBc, Ms = ZsBs, Mt = ZtBt (10)

and rewrite the optimization problem (9) equivalently intothe formulation below

min
Mc,Ms,Mt,Es,Et

αs

2
‖AsMc +Ms + Es −Xs‖

2
F +

αt

2
‖AtMc +Mt + Et −Xt‖

2
F (11)

+ βs‖Es‖1 + βt‖Et‖1

s.t. rank(Mc) ≤ kc, rank(Ms) ≤ ks, rank(Mt) ≤ kt

which has aℓ1-norm regularized convex objective function, but is subjecting to non-convex inequal-
ity rank constraints. A standard convexification of the rankconstraints is to replace rank functions
with their convex envelopes, nuclear norms [3, 14, 1, 6, 15].For example, one can replace the rank
constraints in (11) with relaxed nuclear norm regularizersin the objective function

min
Mc,Ms,Mt,Es,Et

αs

2
‖AsMc +Ms + Es −Xs‖

2
F +

αt

2
‖AtMc +Mt + Et −Xt‖

2
F (12)

+ βs‖Es‖1 + βt‖Et‖1 + λc‖Mc‖∗ + λs‖Ms‖∗ + λt‖Mt‖∗

Many efficient and scalable algorithms have been proposed tosolve such nuclear norm regular-
ized convex optimization problems, including proximal gradient algorithm [6, 14], fixed point and
Bregman iterative method [9]. However, though the nuclear norm is a convex envelope of the rank
function, it is not always a high-quality approximation of the rank function [11]. Moreover, it is very
difficult to select the appropriate trade-off parametersλs, λt for the nuclear norm regularizers in (12)
to recover the low-rank matrix solutions in the original optimization in (11). In principal component
analysis problems it is much more convenient to have explicit control on the rank of the low-rank so-
lution matrices. Therefore instead of solving the nuclear norm based convex optimization problem
(12), we develop a scalable and efficient proximal gradient algorithm to solve the rank constraint
based minimization problem (11) directly, which is shown toconverge to a stationary point.

After solving the optimization problem (11), the low-rank approximation of the corrupted matrixXt

can be obtained aŝXt = AtMc +Mt.

4 Proximal Projected Gradient Descent Algorithm

Proximal gradient methods have been popularly used for unconstrained convex optimization prob-
lems with continuous but non-smooth regularizers [2]. In this work, we develop a proximal projected
gradient algorithm to solve the non-convex optimization problem with matrix rank constraints in
(11). LetΘ = [Mc;Ms;Mt;Es;Et] be the optimization variable set of (11). We denote the objec-
tive function of (11) asF (Θ) such that

F (Θ) = f(Θ) + g(Θ) (13)

f(Θ) =
αs

2
‖AsMc +Ms + Es −Xs‖

2
F +

αt

2
‖AtMc +Mt + Et −Xt‖

2
F (14)

g(Θ) = βs‖Es‖1 + βt‖Et‖1 (15)
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Algorithm 1 Proximal Projected Gradient Descent

Input: data matricesXs, Xt, parametersαs, αt, βs, βt, kc, ks, kt.
Set η = 3max(αs, αt), k = 1.
Initialize M

(1)
c ,M

(1)
s ,M

(1)
t , E

(1)
s , E

(1)
t

While not convergeddo
• SetΘ(k) = [M

(k)
c ;M

(k)
s ;M

(k)
t ;E

(k)
s ;E

(k)
t ].

• UpdateM (k+1)
c = pMc

(η,Θ(k)), M
(k+1)
s = pMs

(η,Θ(k)), M
(k+1)
t = pMt

(η,Θ(k)),
E

(k+1)
s = pEs

(η,Θ(k)), E
(k+1)
t = pEt

(η,Θ(k)).
• Setk = k + 1.

End While

Heref(Θ) is a convex and continuously differentiable function whileg(Θ) is a convex but non-
smooth function. For anyη > 0, we consider the following quadratic approximation ofF (Θ) at a
given pointΘ̃ = [M̃c; M̃s; M̃t; Ẽs; Ẽt]

Qη(Θ, Θ̃) = f(Θ̃) + 〈Θ− Θ̃,∇f(Θ̃)〉+
η

2
‖Θ− Θ̃‖2F + g(Θ) (16)

where∇f(Θ̃) is the gradient of the functionf(·) at point Θ̃. Let C = {Θ : rank(Mc) ≤ kc,

rank(Ms) ≤ ks, rank(Mt) ≤ kt}. The minimization overQη(Θ, Θ̃) can be conducted as

p(η, Θ̃) = argmin
Θ∈C

Qη(Θ, Θ̃) = argmin
Θ∈C

{
g(Θ) +

η

2

∥∥Θ− (Θ̃−
1

η
∇f(Θ̃))

∥∥2
F

}
(17)

which admits the following closed-form solution through singular value decomposition and soft-
thresholding:

pMc
(η, Θ̃) = Ukc

Σkc
V ⊤
kc
, for UΣV ⊤ = SVD(M̃c −

1
η
∇Mc

f(Θ̃))

pMs
(η, Θ̃) = Uks

Σks
V ⊤
ks
, for UΣV ⊤ = SVD(M̃s −

1
η
∇Ms

f(Θ̃))

pMt
(η, Θ̃) = Ukt

Σkt
V ⊤
kt
, for UΣV ⊤ = SVD(M̃t −

1
η
∇Mt

f(Θ̃))

pEs
(η, Θ̃) = (|Ês| −

βs

η
)+ ◦ sign(Ês), with Ês = Ẽs −

1
η
∇Es

f(Θ̃)

pEt
(η, Θ̃) = (|Êt| −

βt

η
)+ ◦ sign(Êt), with Êt = Ẽt −

1
η
∇Et

f(Θ̃)

whereUk andVk denote the topk singular vectors fromU andV respectively, andΣk denotes
the diagonal matrix with the corresponding topk singular values fork ∈ {kc, ks, kt} respectively;
the operator “◦” denotes matrix Hadamard product, and the operator(·)+ = max(·, 0); ∇Mc

f(Θ̃),
∇Ms

f(Θ̃), ∇Mt
f(Θ̃), ∇Es

f(Θ̃), and∇Et
f(Θ̃) denote parts of the gradient matrix∇f(Θ̃) corre-

sponding toMc, Ms, Mt, Es, Et respectively.

Our proximal projected gradient algorithm is an iterative procedure. After first initializing the pa-
rameter matrices to zeros, in eachk-th iteration, it updates the model parameters by minimizing the
approximation functionQ(Θ,Θ(k)) at the given pointΘ(k), using the closed-form update equations
above. The overall procedure is given in Algorithm 1. Below we discuss the convergence property
of this algorithm.

Lemma 1 For η = 3max(αs, αt), we haveF (Θ) ≤ Qη(Θ, Θ̃) for every feasibleΘ, Θ̃.

Proof: First it is easy to check thatη = 3max(αs, αt) is a Lipschitz constant of∇f(Θ), such that

‖∇f(Θ)−∇f(Θ̃)‖F ≤ η‖Θ− Θ̃‖F for any feasible pairΘ, Θ̃ (18)

Thusf(·) is a continuously differentiable function with Lipschitz continuous gradient and Lipschitz
constantη. Following [2, Lemma 2.1], we have

f(Θ) ≤ f(Θ̃) + 〈Θ− Θ̃,∇f(Θ̃)〉+
η

2
‖Θ− Θ̃‖2F for any feasible pairΘ, Θ̃ (19)
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Based on (16) and (19), we can then derive

F (Θ) = f(Θ) + g(Θ) ≤ f(Θ̃) + 〈Θ− Θ̃,∇f(Θ̃)〉+
η

2
‖Θ− Θ̃‖2F + g(Θ) = Qη(Θ, Θ̃) (20)

�

Based on this lemma, we can see the update steps of Algorithm 1satisfy

F (Θ(k+1)) ≤ Qη(Θ
(k+1),Θ(k)) ≤ Qη(Θ

(k),Θ(k)) = F (Θ(k)) (21)

Therefore the sequence of points,Θ(1),Θ(2), . . . ,Θ∗, produced by Algorithm 1 have nonincreasing
function valuesF (Θ(1)) ≥ F (Θ(2)) ≥ . . . ≥ F (Θ∗), and converge to a stationary point.

5 Experiments

We evaluate the proposed approach using image denoising tasks constructed on the Yale Face
Database, which contains 165 grayscale images of 15 individuals. There are 11 images per subject,
one per different facial expression or configuration.

Our goal is to investigate the performance of the proposed approach on recovering data corrupted
with large and dense errors. Thus we constructed noisy images by adding large errors. LetX0

t denote
a target image matrix from one subject, which has values between 0 and 255. We randomly select
a fraction of its pixels to add large errors to reach value 255, where the fraction of noisy pixels is
controlled using a noise level parameterσ. The obtained noisy target image matrix isXt. We then
use an uncorrupted image matrixX0

s from the same or different subject as the source matrix to help
the image denoising ofXt by recovering its low-rank approximation matrix̂Xt. In the experiments,
we compared the performance of the following methods on image denoising with large errors:

• R-T-PCA:This is the proposedrobust transfer PCAmethod. For this method, we used
parametersαs = αt = 1, βs = βt = 0.1, unless otherwise specified.

• R-S-PCA:This is arobust shared PCAmethod that applies a rank-constrained version of
the robust PCA in [14] on the concatenated matrix[X0

s ;Xt] to recover a low-rank approx-
imation matrixX̂t with rankkc + kt.

• R-PCA:This is arobust PCAmethod that applies a rank-constrained version of the robust
PCA in [14] onXt to recover a low-rank approximation matrix̂Xt with rankkc + kt.

• S-PCA:This is ashared PCAmethod that applies PCA on concatenated matrix[X0
s ;Xt] to

recover a low-rank approximation matrix̂Xt with rankkc + kt.

• PCA: This method applies PCA on the noisy target matrixXt to recover a low-rank ap-
proximation matrixX̂t with rankkc + kt.

• R-2Step-PCA:This method exploits the auxiliary source matrix by first performing robust
PCA over the concatenated matrix[X0

s ;Xt] to produce a shared matrixMc with rankkc,
and then performing robust PCA over the residue matrix(Xt−AtMc) to produce a matrix
Mt with rankkt. The final low-rank approximation ofXt is given byX̂t = AtMc +Mt.

All the methods are evaluated using the root mean square error (RMSE) between the true target
image matrixX0

t and the low-rank approximation matrix̂Xt recovered from the noisy image matrix.
Unless specified otherwise, we usedkc = 8, ks = 3, kt = 3 in all experiments.

5.1 Intra-Subject Experiments

We first conducted experiments by constructing 15 transfer tasks for the 15 subjects. Specifically, for
each subject, we used the first image matrix as the target matrix and used each of the remaining 10
image matrices as the source matrix each time. For each source matrix, we repeated the experiments
5 times by randomly generating noisy target matrix using theprocedure described above. Thus in
total, for each experiment, we have results from 50 runs. Theaverage denoising results in terms of
root mean square error (RMSE) with noise levelσ = 5% are reported in Table 1. The standard devi-
ations for these results range between0.001 and0.015. We also present one visualization result for
Task-1 in Figure 1. We can see that the proposed methodR-T-PCAoutperforms all other methods
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Table 1: The average denoising results in terms of RMSE at noise levelσ = 5%.

Tasks R-T-PCA R-S-PCA R-PCA S-PCA PCA R-2Step-PCA
Task-1 0.143 0.185 0.218 0.330 0.365 0.212
Task-2 0.134 0.167 0.201 0.320 0.353 0.202
Task-3 0.136 0.153 0.226 0.386 0.430 0.215
Task-4 0.140 0.162 0.201 0.369 0.406 0.215
Task-5 0.142 0.166 0.241 0.382 0.414 0.208
Task-6 0.156 0.195 0.196 0.290 0.310 0.202
Task-7 0.172 0.206 0.300 0.477 0.523 0.264
Task-8 0.203 0.222 0.223 0.348 0.386 0.243
Task-9 0.140 0.159 0.203 0.317 0.349 0.201
Task-10 0.198 0.209 0.259 0.394 0.439 0.255
Task-11 0.191 0.211 0.283 0.389 0.423 0.274
Task-12 0.151 0.189 0.194 0.337 0.366 0.213
Task-13 0.193 0.218 0.277 0.436 0.474 0.257
Task-14 0.176 0.201 0.240 0.366 0.392 0.224
Task-15 0.159 0.170 0.266 0.413 0.464 0.245
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Figure 1: Denoising results on Task-1.

across all the 15 tasks. The comparison between the two groups of methods,{R-T-PCA, R-S-PCA,
S-PCA} and{R-PCA, PCA}, shows that a related source matrix is indeed useful for denoising the
target matrix. The superior performance ofR-T-PCAoverR-2Step-PCAdemonstrates the effective-
ness of our joint optimization framework over its stepwise alternative. The superior performance
of R-T-PCAover R-S-PCAandS-PCAdemonstrates the efficacy of our transfer PCA framework
in exploiting the auxiliary source matrix over methods thatsimply concatenate the auxiliary source
matrix and target matrix.

5.2 Cross-Subject Experiments

Next, we conducted transfer experiments using source matrix and target matrix from different sub-
jects. We randomly constructed 5 transfer tasks, Task-6-1,Task-8-2, Task-9-4, Task-12-8 and Task-
14-11, where the first number in the task name denotes the source subject index and second number
denotes the target subject index. For example, to constructTask-6-1, we used the first image matrix
from subject-6 as the source matrix and used the first image matrix from subject-1 as the target ma-
trix. For each task, we conducted experiments with two different noise levels, 5% and 10%. We re-
peated each experiment 10 times using randomly generated noisy target matrix. The average results
in terms of RMSE are reported in Table 2 with standard deviations less than0.015. We can see that
with the increase of noise level, the performance of all methods degrades. But at each noise level, the
comparison results are similar to what we observed in previous experiments: The proposed method
outperforms all other methods. These results also suggest that even a remotely related source image
can be useful. All these experiments demonstrate the efficacy of the proposed method in exploiting
uncorrupted auxiliary data matrix for denoising target images corrupted with large errors.
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Table 2: The average denoising results in terms of RMSE.

Tasks R-T-PCA R-S-PCA R-PCA S-PCA PCA R-2Step-PCA

Task-6-1 σ=5% 0.147 0.177 0.224 0.337 0.370 0.218
σ=10% 0.203 0.246 0.326 0.490 0.526 0.291

Task-8-2 σ=5% 0.132 0.159 0.234 0.313 0.354 0.200
σ=10% 0.154 0.211 0.323 0.457 0.500 0.276

Task-9-4 σ=5% 0.148 0.170 0.229 0.373 0.410 0.212
σ=10% 0.204 0.240 0.344 0.546 0.585 0.282

Task-12-8 σ=5% 0.207 0.231 0.245 0.373 0.397 0.249
σ=10% 0.244 0.272 0.359 0.518 0.548 0.317

Task-14-11 σ=5% 0.172 0.215 0.274 0.403 0.424 0.268
σ=10% 0.319 0.368 0.431 0.592 0.612 0.372
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Figure 2: Parameter analysis on Task-6-1 withσ = 5%.

5.3 Parameter Analysis

The optimization problem (11) for the proposedR-T-PCAmethod has a number of parameters to
be set:αs, αt, βs, βt, kc, ks andkt. To investigate the influence of these parameters over the per-
formance of the proposed method, we conducted two experiments using the first cross-subject
task, Task-6-1, with noise levelσ =5%. Given that the source and target matrices are similar
in size, in these experiments we setαs =αt =1, βs =βt and ks =kt. In the first experiment, we
set (kc, ks, kt)= (8, 3, 3) and study the performance ofR-T-PCAwith different βs =βt=β val-
ues, forβ ∈{0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1}. The average RMSE results over 10 runs are pre-
sented in the left sub-figure of Figure 2. We can see thatR-T-PCA is quite robust toβ within
the range of values,{0.05, 0.1, 0.25, 0.5, 1}. In the second experiment, we fixedβs =βt =0.1
and comparedR-T-PCAwith other methods across a few different settings of(kc, ks, kt), with
(kc, ks, kt)∈{(6, 3, 3), (8, 3, 3), (8, 5, 5), (10, 3, 3), (10, 5, 5)}. The average comparison results in
terms of RMSE are presented in the right sub-figure of Figure 2. We can see that though the per-
formance of all methods varies across different settings,R-T-PCAis less sensitive to the parameter
changes comparing to the other methods and it produced the best result across different settings.

6 Conclusion

In this paper, we developed a novel robust transfer principal component analysis method to recover
the low-rank representation of corrupted data by leveraging related uncorrupted auxiliary data. This
robust transfer PCA framework combines aspects of both robust PCA and transfer learning method-
ologies. We formulated this method as a joint minimization problem over a convex combination of
least squares losses with non-convex matrix rank constraints, and developed a proximal projected
gradient descent algorithm to solve the proposed optimization problem, which permits a convenient
closed-form solution for each proximal step based on singular value decomposition and converges to
a stationary point. Our experiments over image denoising tasks demonstrated the proposed method
can effectively exploit auxiliary uncorrupted image to recover images corrupted with random large
errors and significantly outperform a number of comparison methods.
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