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Abstract

In modeling multivariate time series, it is important to allow time-varying smooth-
ness in the mean and covariance process. In particular, there may be certain time
intervals exhibiting rapid changes and others in which changes are slow. If such
locally adaptive smoothness is not accounted for, one can obtain misleading in-
ferences and predictions, with over-smoothing across erratic time intervals and
under-smoothing across times exhibiting slow variation. This can lead to mis-
calibration of predictive intervals, which can be substantially too narrow or wide
depending on the time. We propose a continuous multivariate stochastic process
for time series having locally varying smoothness in both the mean and covari-
ance matrix. This process is constructed utilizing latent dictionary functions in
time, which are given nested Gaussian process priors and linearly related to the
observed data through a sparse mapping. Using a differential equation representa-
tion, we bypass usual computational bottlenecks in obtaining MCMC and online
algorithms for approximate Bayesian inference. The performance is assessed in
simulations and illustrated in a financial application.

1 Introduction

1.1 Motivation and background

In analyzing multivariate time series data, collected in financial applications, monitoring of influenza
outbreaks and other fields, it is often of key importance to accurately characterize dynamic changes
over time in not only the mean of the different elements (e.g., assets, influenza levels at different
locations) but also the covariance. It is typical in many domains to cycle irregularly between pe-
riods of rapid and slow change; most statistical models are insufficiently flexible to capture such
locally varying smoothness in assuming a single bandwidth parameter. Inappropriately restricting
the smoothness to be constant can have a major impact on the quality of inferences and predictions,
with over-smoothing occurring during times of rapid change. This leads to an under-estimation of
uncertainty during such volatile times and an inability to accurately predict risk of extremal events.

There is a rich literature on modeling a p x 1 time-varying mean vector p;, covering multivariate
generalizations of autoregressive models (VAR, e.g. [1]), Kalman filtering [2], nonparametric mean
regression via Gaussian processes (GP) [3], polynomial spline [4], smoothing spline [5] and Ker-
nel smoothing methods [6]. Such approaches perform well for slowly-changing trajectories with



constant bandwidth parameters regulating implicitly or explicitly global smoothness; however, our
interest is allowing smoothness to vary locally in continuous time. Possible extensions for local
adaptivity include free knot splines (MARS) [7], which perform well in simulations but the dif-
ferent strategies proposed to select the number and the locations of knots (stepwise knot selection
[7], Bayesian knot selection [8] or via MCMC methods [9]) prove to be computationally intractable
for moderately large p. Other flexible approaches include wavelet shrinkage [10], local polynomial
fitting via variable bandwidth [11] and linear combination of kernels with variable bandwidths [12].

Once u; has been estimated, the focus shifts to the p x p time-varying covariance matrix ;. This is
particular of interest in applications where volatilities and co-volatilities evolve through non constant
paths. Multivariate generalizations of GARCH models (DVEC [13], BEKK [14], DCC-GARCH
[15]), exponential smoothing (EWMA, e.g. [1]) and approaches based on dimensionality reduction
through a latent factor formulation (PC-GARCH [16] and O-GARCH [17]-[18]) represent common
approaches in multivariate stochastic volatility modeling. Although widely used in practice, such
approaches suffer from tractability issues arising from richly parameterized formulations (DVEC
and BEKK), and lack of flexibility resulting from the adoption of single time-constant bandwidth
parameters (EWMA), time-constant factor loadings and uncorrelated latent factors (PC-GARCH,
O-GARCH) as well as the use of the same parameters regulating the evolution of the time varying
conditional correlations (DCC-GARCH). Such models fall far short of our goal of allowing ¥; to
be fully flexible with the dependence between X; and ;. A varying with not just the time-lag
A but also with time. In addition, these models do not handle missing data easily and tend to
require long series for accurate estimation [16]. Bayesian dynamic factor models for multivariate
stochastic volatility [19] lead to apparently improved performance in portfolio allocation by allowing
the dependence in the covariance matrices >; and ;A to vary as a function of both ¢ and A.
However, the result is an extremely richly parameterized and computationally challenging model,
with selection of the number of factors via cross validation. Our aim is instead on developing
continuous time stochastic processes for p(t) and 3(¢) with locally-varying smoothness.

Wilson and Ghahramani [20] join machine learning and econometrics efforts by proposing a model
for both mean and covariance regression in multivariate time series, improving previous work of
Bru [21] on Wishart Processes in terms of computational tractability and scalability, allowing more
complex structure of dependence between X(t) and ¥(¢ + A). Specifically, they propose a contin-
uous time Generalised Wishart Process (GWP), which defines a collection of positive semi-definite
random matrices Y:(¢) with Wishart marginals. Nonparametric mean regression for p(t) is also con-
sidered via GP priors; however, the trajectories of means and covariances inherit the smooth behav-
ior of the underlying Gaussian processes, limiting the flexibility of the approach in times exhibiting
sharp changes.

Fox and Dunson [22] propose an alternative Bayesian covariance regression (BCR) model, which
defines the covariance matrix of a vector of p variables at time ¢;, as a regularized quadratic function
of time-varying loadings in a latent factor model, characterizing the latter as a sparse combination
of a collection of unknown Gaussian process dictionary functions. More specifically given a set of
p x 1 vector of observations y; ~ Np(u(t;), X(¢;)) where i = 1, ..., T indexes time, they define

cov(yilt: = 1) = B(t) = OEM)E(H)TOT + %o, teT CRY, (1)

where © is a p x L matrix of coefficients, £(¢) is a time-varying L X K matrix with unknown
continuous dictionary functions entries &, : 7 — R, and finally X is a positive definite diagonal
matrix. Model (1)) can be induced by marginalizing out the latent factors 7; in

yi = O&(ti)n; + &, 2

with 7; ~ Nk (0, Ix) and ¢; ~ N, (0, X¢). A generalization includes a nonparametric mean regres-
sion by assuming 7; = ¥(t;) +v;, where v; ~ Nk (0, ) and ¢(¢) is a K x 1 matrix with unknown
continuous entries ¥y, : 7 — R that can be modeled in a related manner to the dictionary elements
in £(t). The induced mean of y; conditionally on ¢, = ¢, and marginalizing out v; is then

E(yi|t: = 1) = p(t) = ©()y (1) 3)
1.2 Our modeling contribution

We follow the lead of [22] in using a nonparametric latent factor model as in (2), but induce funda-
mentally different behavior by carefully modifying the priors II¢ and 11, for the dictionary elements



7 ={&(t),t € T}, and 7 = {(¢),t € T} respectively. We additionally develop a different and
much more computationally efficient approach to computation under this new model.

Fox and Dunson [22] consider the dictionary functions &, and vy, for each | = 1,...,L and
k = 1,..., K, as independent Gaussian Processes GP(0, ¢) with ¢ the squared exponential corre-
lation function having c(x,2') = exp(—k||z — 2'||3). This approach provides a continuous time
and flexible model that accommodates missing data and scales to moderately large p, but the pro-
posed priors for the dictionary functions assume a stationary dependence structure and hence induce
prior distributions IIs; and IT,, on X7 and p7 through (1) and (3) that tend to under-smooth during
periods of stability and over-smooth during periods of sharp changes. Moreover the well known
computational problems with usual GP regression are inherited, leading to difficulties in scaling to
long series and issues in mixing of MCMC algorithms for posterior computation.

In our work, we address these problems to develop a novel mean-covariance stochastic process with
locally-varying smoothness by replacing GP priors for & = {£(¢),t € T}, and ¢ = {¢(t),t €
T} with nested Gaussian process (nGP) priors [23], with the goal of maintaining simple computation
and allowing both covariances and means to vary flexibly over continuous time. The nGP provides
a highly flexible prior on the dictionary functions whose smoothness, explicitly modeled by their
derivatives via stochastic differential equations, is expected to be centered on a local instantaneous
mean function, which represents an higher-level Gaussian Process, that induces adaptivity to locally-
varying smoothing.

Restricting our attention on the elements of the prior II¢ (the same holds for IL;), the Markovian
property implied by the stochastic differential equations allows a simple state space formulation of
nGP in which the prior for £, along with its first order derivative &/, and the locally instantaneous
mean A;(t) = E[¢],.(t)| A1k (t)] follow the approximated state equation
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where [w; ¢, wi A )T ~ No(0, Vi k), with V; = d1ag(a§u51,aAlk6 )and 6; = t;y1 — t;. This
formulation allows continuous time and an irregular grid of observations over ¢ by relating the
latent states at ¢ + 1 to those at ¢ through the distance J; between t;11 and t¢;, with ¢; € T the
time observation related to the ith observation. Moreover, compared to [23] our approach extends
the analysis to the multivariate case and accommodates locally adaptive smoothing not only on
the mean but also on the time-varying variance and covariance functions. Finally, the state space
formulation allows the implementation of an online updating algorithm and facilitates the definition
of a simple Gibbs sampling which reduces the GP computational burden involving matrix inversions
from O(T?) to O(T), with T denoting the length of the time series.

1.3 Bayesian inference and online learning

For fixed truncation levels L* and K*, the algorithm for posterior computation alternates between
a simple and efficient simulation smoother step [24] to update the state space formulation of the
nGP, and standard Gibbs sampling steps for updating the parametrlc components of the model.
Specifically, considering the observations (y;,t;) fori = 1,.

A. Given © and {n;}L_,, a multivariate version of the MCMC algorithm proposed by Zhu and Dun-
son [23] draws posterior samples from each dictionary element’s function {& (t;)}2_,, its
first order derivative {¢], (¢;)}7_,, the corresponding instantaneous mean { Ay, (¢;)}~_,, the
variances in the state equations Ugm’ afm (for which inverse Gamma priors are assumed)

and the variances of the error terms in the observation equation Jj2- withj =1,...,p.

B. If the mean process needs not to be estimated, recalling the prior 7; ~ N+ (0, Ix+) and model
(@), the standard conjugate posterlor distribution from Wthh to sample the vector of latent
factors for each i given ©, {0 }j s {yitE | and {f( ) }E | is Gaussian.

Otherwise, 1f we want to 1ncorp0rate the mean regression, we unplement a block sampling
of {1(t;)}X; and {v;}]_, following a similar approach used for drawing samples from
the dictionary elements process.
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Figure 1: For locally varying smoothness simulation (top) and smooth simulation (bottom), plots of
truth (black) and posterior mean respectively of LBCR (solid red line) and BCR (solid green line) for
selected components of the variance (left), covariance (middle), mean (right). For both approaches
the dotted lines represent the 95% highest posterior density intervals.

C. Finally, conditioned on {yid {nit . {U _, and {&(¢;)}2_,, and recalling the shrinkage
prior for the elements of © defined in [22] we update O, each local shrinkage hyperparam-
eter ¢;; and the global shrinkage hyperparameters 7; via standard conjugate analysis.

The problem of online updating represents a key point in multivariate time series with high frequency
data. Referring to our formulation, we are interested in updating an approximated posterior distri—
bution for X(t744) and pu(trs) with h = 1, ..., H once a new vector of observations {y; }7% 4118
available, instead of rerunning posterior computatron for the whole time series.

Since as T increases the posterior for the time- statronary parameters rapidly becomes concentrated,
we fix these parameters at estimates (6, 2o, J&k, ailk &ik O'B ) and dynamically update the
dictionary functions alternating between steps A and B for the new set of observatrons To initialize
the algorithm at 7" 4+ 1 we propose to run the online updating for {yl}T ~ > with k small, and
choosing a diffuse but proper prior for the initial states at 7'—k. Such approach is suggested to reduce
the problem related to the larger conditional variances (see, e.g. [25]) of the latent states at the end
of the sample (i.e. at 7"), which may affect the initial distributions in 7"+ 1. The online algorithm is
also efficient in exploiting the advantages of the state space formulation for the dictionary functions,
requiring matrix inversion computations of order depending only on the length of the additional
sequence H and on the number of the last observations k used to initialize the algorithm.

2 Simulation studies

The aim of the following simulation studies is to compare the performance of our proposal (LBCR,
locally adaptive Bayesian covariance regression) with respect to BCR, and to the models for multi-
variate stochastic volatility most widely used in practice, specifically: EWMA, PC-GARCH, GO-
GARCH and DCC-GARCH. In order to assess whether and to what extent LBCR can accommodate,
in practice, even sharp changes in the time-varying covariances and means, and to evaluate the costs
associated to our flexible approach in settings where the mean and covariance functions do not re-
quire locally adaptive estimation tecniques, we will focus on two different sets of simulated data.

The first dataset consists in 5-dimensional observations y; for each ¢; € 7, = {1,2, ..., 100}, from
the latent factor model in (2) with () defined as in (IJ). To allow sharp changes of the covariances
and means in the generating mechanism, we consider a 2 x 2 (i.e. L = K = 2) matrix {£(#;)}1%9
of time-varying functions adapted from Donoho and Johnstone [26] with locally-varying smooth-
ness (more specifically we choose ‘bumps’ functions also to mimic possible behavior in practical
settings). The second set of simulated data is the same dataset of 10-dimensional observations y;



Table 1: Summaries of the standardized squared errors.

Locally varying smoothness Constant smoothness
mean  qo9  Ydoos  MaX mean  qo9  doogs  Max
covariance (t;) covariance %(¢;)
EWMA 1.37  2.28 5.49 85.86 0.030 0.081 0.133 1.119
PC-GARCH 1.75 2.49 6.48  229.50 0.018 0.048 0.076 0.652
GO-GARCH 2.40 3.66 10.32 173.41 0.043 0.104 0.202 1.192
DCC-GARCH 1.75 2.21 6.95  226.47 0.022 0.057 0.110 0.466
BCR 1.80 2.25 7.32  142.26 0.009 0.019 0.039 0.311
LBCR 090 199 452  36.95 0.009 0.022 0.044 0.474
mean /(t;) mean ((t;)
SMOOTH SPLINE 0.064 0.128 0.186 2.595 0.007 0.019 0.027 0.077
BCR 0.087 0.185 0.379 2.845 0.005 0.015 0.024 0.038
LBCR 0.062 0.123 0.224 2.529 0.005 0.017 0.026 0.050

investigated in Fox and Dunson [22], with smooth GP dictionary functions for each element of the
5x 4 (ie. L =5, K = 4) matrices {£(¢;)}1%9.

Posterior computation, both for LBCR and BCR, is performed by assuming diffuse but proper priors
and by using truncation levels L* = K* = 2 for the first dataset and L* = 5, K* = 4 for the second
(at higher levels settings we found that the shrinkage prior on © results in posterior samples of
the elements in the adding columns concentrated around 0). For the first dataset we run 50,000
Gibbs iterations with a burn-in of 20,000 and tinning every 5 samples, while for the second one we
followed Fox and Dunson [22] by considering 10,000 Gibbs iterations which proved to be enough to
reach convergence, and discarded the first 5,000 as burn-in. In the first set of simulated data, given
the substantial independence between samples after thinning the chain, we analyzed mixing by the
Gelman-Rubin procedure [27], based on potential scale reduction factors computed for each chain
by splitting the sampled quantities in 6 pieces of same length. The analysis shows more problematic
mixing for BCR with respect of LBCR. Specifically, in LBCR the 95% of the chains have a potential
reduction factor lower than 1.35, with a median equal to 1.11, while in BCR the 95th quantile is 1.44
and the median equals to 1.18. Less problematic is the mixing for the second set of simulated data,
with potential scale reduction factors having median equal to 1.05 for both approaches and 95th
quantiles equal to 1.15 and 1.31 for LBCR and BCR, respectively.

As regards the other approaches, EWMA has been implemented by choosing the smoothing pa-
rameter A that minimizes the mean squared error (MSE) between the estimated covariances and the
true values. PC-GARCH algorithm follows the steps provided by Burns [16] with GARCH(1,1)
assumed for the conditional volatilities of each single time series and the principal components.
GO-GARCH and DCC-GARCH recall the formulations provided by van der Weide [18] and Engle
[15] respectively, assuming a GARCH(1,1) for the conditional variances of the processes analyzed,
which proves to be a correct choice in many financial applications and also in our setting. Differently
from LBCR and BCR, the previous approaches do not model explicitly the mean process {1(¢;)} 1%
but work directly on the innovations {y; —fi(t;) } 129 . Therefore in these cases we first model the con-
ditional mean via smoothing spline and in a second step we estimate the models for the innovations.
The smoothing parameter for spline estimation has been set to 0.7, which was found to be appropri-
ate to reproduce the true dynamic of {z(#;)}1%9. Figurecompares, in both simulated samples, true
and posterior mean of (t) and 3(t) over the predictor space 7, together with the point-wise 95%
highest posterior density (hpd) intervals for LBCR and BCR. From the upper plots we can clearly
note that our approach is able to capture conditional heteroscedasticity as well as mean patterns,
also in correspondence of sharp changes in the time-varying true functions. The major differences
compared to the true values can be found at the beginning and at the end of the series and are likely
to be related to the structure of the simulation smoother which causes a widening of the credibility
bands at the very end of the series, for references see Durbin and Koopman [25]. However, even
in the most problematic cases, the true values are within the bands of the 95% hpd intervals. Much
more problematic is the behavior of the posterior distributions for BCR which badly over-smooth
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Figure 2: For 2 NSI posterior mean (black) and 95% hpd (dotted red) for the variances {2;; (¢;) }13.

both covariance and mean functions leading also to many 95% hpd intervals not containing the true
values. Bottom plots in Figure [T| show that the performance of our approach is very close to that
of BCR, when data are simulated from a model where the covariances and means evolve smoothly
across time and local adaptivity is not required. This happens even if the hyperparameters are set in
order to maintain separation between nGP and GP prior, suggesting large support for LBCR.

The comparison of the summaries of the squared errors between true values {u(t;)}}% and
{2(t;)}199 and estimated quantities {/i(t;)}1%9 and {3(¢;)}1%9 standardized with the range of the
true underlying processes 7, = max; j{p;(t;)} — min; ;{p;(¢;)} and rs = max; ; 1 {Z; ()} —
min, ; x{X; x(t;)} respectively, once again confirms the overall better performance of our approach
with respect to all the considered competitors. Table[I|shows that, when local adaptivity is required,
LBCR provides a superior performance having standardized residuals lower than those of the other
approaches. EWMA seems to provide quite accurate estimates, however it is important to underline
that we choose the optimal smoothing parameter A in order to minimize the MSE between estimated
and true parameters, which are clearly not known in practical applications. Different values of A
reduces significantly the performace of EWMA, which shows also lack of robustness. The close-
ness of LBCR and BCR in the constant smoothness dataset confirms the flexibility of LBCR and
highlights the better performance of the two approaches with respect to the other competitors also
when smooth processes are investigated.

3 Application to National Stock Market Indices (NSI)

National Stock Indices represent technical tools that allow, through the synthesis of numerous data
on the evolution of the various stocks, to detect underlying trends in the financial market, with
reference to a specific basis of currency and time. In this application we focus our attention on
the multivariate weekly time series of the main 33 (i.e. p = 33) National Stock Indices from
12/07/2004 to 25/06/2012 downloaded from|http://finance.yahoo.com.

We consider the heteroscedastic model for the log returns y; ~ Nss(u(t;), 5(¢;)) fori =1,...,415
and ¢; in the discrete set 7, = {1,2,...,415}, where u(t;) and ¥(t;) are given in (3) and (1)),
respectively. Posterior computation is performed by using the same settings of the first simulation
study and fixing K* = 4 and L* = 5 (which we found to be sufficiently large from the fact that the
posterior samples of the last few columns of © assumed values close to 0). Missing values in our
dataset do not represent a limitation since the Bayesian approach allows us to update our posterior
considering solely the observed data. We run 10,000 Gibbs iterations with a burn-in of 2,500.

Examination of trace plots for {3(¢;) }#13 and {u(t;)}$15 showed no evidence against convergence.

Posterior distributions for the variances in Figure |2| show that we are clearly able to capture the
rapid changes in the dynamics of volatilities that occur during the world financial crisis of 2008,
in early 2010 with the Greek debt crisis and in the summer of 2011 with the financial speculation
in government bonds of European countries together with the rejection of the U.S. budget and the
downgrading of the United States rating. Similar conclusions hold for the posterior distributions of
the trajectories of the means, with rapid changes detected in correspondence of the world financial
crisis in 2008.
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Figure 3: Black line: For USA NASDAQ median of correlations with the other 32 NSI based on
posterior mean of {3(¢;)}715. Red lines: 25%, 75% (dotted lines) and 50% (solid line) quantiles
of correlations between USA NASDAQ and European countries (without considering Greece and
Russia). Green lines: 25%, 75% (dotted lines) and 50% (solid line) quantiles of correlations between
USA NASDAQ and the countries of Southeast Asia (Asian Tigers and India).

From the correlations between NASDAQ and the other National Stock Indices (based on the pos-

terior mean {f](ti )}#L5 of the covariances function) in Figure [3] we can immediately notice the

presence of a clear geo-economic structure in world financial markets (more evident in LBCR than
in BCR), where the dependence between the U.S. and European countries is systematically higher
than that of South East Asian Nations (Economic Tigers), showing also different reactions to crises.
The flexibility of the proposed approach and the possibility of accommodating varying smoothness
in the trajectories over time, allow us to obtain a good characterization of the dynamic dependence
structure according with the major theories on financial crisis. Left plot in Figure [3|shows how the
change of regime in correlations occurs exactly in correspondence to the burst of the U.S. housing
bubble (A), in the second half of 2006. Moreover we can immediately notice that the correlations
among financial markets increase significantly during the crises, showing a clear international finan-
cial contagion effect in agreement with other theories on financial crises. As expected the persistence
of high levels of correlation is evident during the global financial crisis between late-2008 and end-
2009 (C), at the beginning of which our approach also captures a dramatic change in the correlations
between the U.S. and Economic Tigers, which lead to levels close to those of Europe. Further rapid
changes are identified in correspondence of Greek crisis (D), the worsening of European sovereign-
debt crisis and the rejection of the U.S. budget (F) and the recent crisis of credit institutions in Spain
together with the growing financial instability in Eurozone (G). Finally, even in the period of U.S.
financial reform launched by Barack Obama and EU efforts to save Greece (E), we can notice two
peaks representing respectively Irish debt crisis and Portugal debt crisis. BCR, as expected, tends
to over-smooth the dynamic dependence structure during the financial crisis, proving to be not able
to model the sharp change in the correlations between USA NASDAQ and Economic Tigers during
late-2008, and the two peaks in (E) at the beginning of 2011.

The possibility to quickly update the estimates and the predictions as soon as new data arrive, rep-
resents a crucial aspect to obtain quantitative informations about the future scenarios of the crisis
in financial markets. To answer this goal, we apply the proposed online updating algorithm to the
new set of weekly observations {y; }#2%,4 from 02/07/2012 to 13/08/2012 conditioning on pos-
terior estimates of the Gibbs sampler based on observations {y; }13 available up to 25/06,/2012.
We initialized the simulation smoother algorithm with the last 8 observations of the previous sam-
ple. Plots at the top of Figure [ show, for 3 selected National Stock Indices, the new observed log
returns {y;; }72%,4 together with the mean and the 2.5% and 97.5% quantiles of their marginal and
conditional distributions. We use standard formulas of the multivariate normal distribution based
on the posterior mean of the updated {3(t;)}72%,4 and {u(t;)}%% after 5,000 Gibbs iterations
with a burn in of 500.We can clearly notice the good performance of our proposed online updat-
ing algorithm in obtaining a characterization for the distribution of new observations. Also note
that the multivariate approach together with a flexible model for the mean and covariance, allow
for significant improvements when the conditional distribution of an index given the others is ana-
lyzed. To obtain further informations about the predictive performance of our LBCR, we can easily
use our online updating algorithm to obtain  step-ahead predictions for X(tp 5 7) and p(trip7)
with h = 1,..., H. In particular, referring to Durbin and Koopman [25], we can generate posterior




USA NASDAQ INDIA BSE30 FRANCE CAC40

0.10
!

0.10
!

0.05
!
0.05
!

0.05
1

0.00
!

0.00
!

0.00
1

0.05
L

0.05

T T T T T T T T T T T T T T T T T T
2012-07-02  2012-07-16  2012-07-30  2012-08-13 2012-07-02  2012-07-16  2012-07-30  2012-08-13 2012-07-02  2012-07-16  2012-07-30  2012-08-13

0.05
L
J !

- .
| - T
.- -

0.00 002 004 0.08
T
0.00 0.02 0.04 0.06
T
0.00 0.02 0.04 0.06
T

! - | T . | T T T - T - | | . - ;r
J ‘ = R —— T e == e = i - PR
[=O=T1I+ 7] I=g=e -2 ‘|25 7=
2] - el LT T 2 I

T T T T T T T T T T t T T T T T T T T
2012-07-02 2012-07-16 2012-07-30 2012-08-13 2012-07-02 2012-07-16 2012-07-30 2012-08-13 2012-07-02 2012-07-16 2012-07-30 2012-08-13

Figure 4: Top: For 3 selected NSI, plot of the observed log returns (black) together with the mean
and the 2.5% and 97.5% quantiles of the marginal distribution (red) and conditional distribution
given the other 32 NSI (green) y;;|y, ” with y; 7 = {y4,q # j}. based on the posterior mean of
{3(t:) %216 and {u(t;)}3%314 from the online updating procedure for the new observations from
02/07/2012 to 13/08/2012. Bottom: boxplots of the one step ahead prediction errors for the 33
NSI computed with 3 different methods.

samples from X (t7 ) and p(tpyp ) for b = 1, ..., H merely by treating {yi}iT;TIfrl as missing

values in the proposed online updating algorithm. Here, we consider the one step ahead prediction
(i.e. H = 1) problem for the new observations. More specifically, for each i from 415 to 421, we
update the mean and covariance functions conditioning on informations up to ¢; through the online
algorithm and then obtain the predicted posterior distribution for X(#;,1|;) and pu(t;11);) by adding
to the sample considered for the online updating a last column y;; of missing values. Plots at the
bottom of Figure |4] show the boxplots of the one step ahead prediction errors for the 33 NSI ob-
tained as the difference between the predicted value 7; ;1 1|; and, once available, the observed log
return y; ;41 with ¢ + 1 = 416, ..., 422 corresponding to weeks from 02/07/2012 to 13/08/2012.
In (a) we forecast the future log returns with the unconditional mean {7;,1}:24,5; = 0, which is
what is often done in practice under the general assumption of zero mean, stationary log returns. In
(b) we consider y; 1 1; = /l(tH_l‘i), the posterior mean of the one step ahead predictive distribution
of (t;11);), obtained from the previous proposed approach after 5,000 Gibbs iterations with a burn
in of 500. Finally in (c) we suppose that the log returns of all National Stock Indices except that of

country j (i.e. y;,;+1) become available at ¢; 1 and, considering y;41}; ~ Np(it(tit1}:) ﬁ)(tiﬂu))
with fi(t;41);) and i(tiﬂ‘i) posterior means of the one step ahead predictive distribution respec-
tively for p4(t;41);) and 3(t;1);), we forecast ¢ ;,1 with the conditional mean of y; ;11 given the
other log returns at time ¢;1. Prediction with unconditional mean (a) seems to lead to over-predicted
values while our approach (b) provides median-unbiased predictions. Moreover, the combination of
our approach and the use of conditional distributions of one return given the others (c) further im-
proves forecasts reducing also the variability of the predictive distribution. We additionally obtain
well calibrated predictive intervals unlike competing methods.

4 Discussion

In this paper, we have presented a generalization of Bayesian nonparametric covariance regression
to obtain a better characterization for mean and covariance temporal dynamics. Maintaining simple
conjugate posterior updates and tractable computations in moderately large p settings, our model
increases the flexibility of previous approaches as shown in the simulation studies. Beside these
key advantages, the state space formulation enables development of a fast online updating algorithm
useful for high frequency data. The application to the problem of capturing temporal and geo-
economic structure between financial markets shows the utility of our approach in the analysis of
multivariate financial time series.
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