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Abstract

Distance-based approaches to outlier detection are popular in data mining, as they
do not require to model the underlying probability distribution, which is particu-
larly challenging for high-dimensional data. We present an empirical comparison
of various approaches to distance-based outlier detection across a large number
of datasets. We report the surprising observation that a simple, sampling-based
scheme outperforms state-of-the-art techniques in terms of both efficiency and ef-
fectiveness. To better understand this phenomenon, we provide a theoretical anal-
ysis why the sampling-based approach outperforms alternative methods based on
k-nearest neighbor search.

1 Introduction

An outlier, which is “an observation which deviates so much from other observations as to arouse
suspicions that it was generated by a different mechanism” (by Hawkins [10]), appears in many real-
life situations. Examples include intrusions in network traffic, credit card frauds, defective products
in industry, and misdiagnosed patients. To discriminate such outliers from normal observations,
machine learning and data mining have defined numerous outlier detection methods, for example,
traditional model-based approaches using statistical tests, convex full layers, or changes of vari-
ances and more recent distance-based approaches using k-nearest neighbors [18], clusters [23], or
densities [7] (for reviews, see [1, 13]).

We focus in this paper on the latter, the distance-based approaches, which define outliers as objects
located far away from the remaining objects. More specifically, given a metric space (M, d), each
object x ∈ M receives a real-valued outlierness score q(x) via a function q : M → R; q(x)
depends on the distances between x and the other objects in the dataset. Then the top-κ objects with
maximum outlierness scores are reported to be outliers. To date, this approach has been successfully
applied in various situations due to its flexibility, that is, it does not require to determine or to fit
an underlying probability distribution, which is often difficult, in particular in high-dimensional
settings. For example, LOF (Local Outlier Factor) [7] has become one of the most popular outlier
detection methods, which measures the outlierness of each object by the difference of local densities
between the object and its neighbors.

The main challenge, however, is its scalability since this approach potentially requires computation
of all pairwise distances between objects in a dataset. This quadratic time complexity leads to
runtime problems on massive datasets that emerge across application domains. To avoid this high
computational cost, a number of techniques have already been proposed, which can be roughly
divided into two strategies: indexing of objects such as tree-based structures [5] or projection-based
structures [9] and partial computation of the pairwise distances to compute scores only for the top-κ
outliers, first introduced by Bay and Schwabacher [4] and improved in [6, 16]. Unfortunately, both
strategies are nowadays not sufficient, as index structures are often not efficient enough for high-
dimensional data [20] and the number of outliers often increases in direct proportion to the size of
the dataset, which significantly deteriorates the efficiency of partial computation techniques.
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Here we show that a surprisingly simple and rapid sampling-based outlier detection method out-
performs state-of-the-art distance-based methods in terms of both efficiency and effectiveness by
conducting an extensive empirical analysis. The proposed method behaves as follows: It takes a
small set of samples from a given set of objects, followed by measuring the outlierness of each ob-
ject by the distance from the object to its nearest neighbor in the sample set. Intuitively, the sample
set is employed as a telltale set, that is, it serves as an indicator of outlierness, as outliers should
be significantly different from almost all objects by definition, including the objects in the sample
set. The time complexity is therefore linear in the number of objects, dimensions, and samples. In
addition, this method can be implemented in a one-pass manner with constant space complexity as
we only have to store the sample set, which is ideal for analyzing massive datasets.

This paper is organized as follows: In Section 2, we describe our experimental design for the em-
pirical comparison of different outlier detection strategies. In Section 3, we review a number of
state-of-the-art outlier detection methods which we used in our experiments, including our own
proposal. We present experimental results in Section 4 and theoretically analyze them in Section 5.

2 Experimental Design

We present an extensive empirical analysis of state-of-the-art approaches for distance-based outlier
detection and of our new approach, which are introduced in Section 3. They are evaluated in terms
of both scalability and effectiveness on synthetic and real-world datasets. All parameters are set
by referring the original literature or at popular values, which are also shown in Section 3. Note
that these parameters have to be chosen by heuristics in distance-based approaches, while they still
outperform other approaches such as statistical approaches [3].

Environment. We used Ubuntu version 12.04.3 with a single 2.6 GHz AMD Opteron CPU and 512
GB of memory. All C codes were compiled with gcc 4.6.3. All experiments were performed in the
R environment, version 3.0.1.

Evaluation criterion. To evaluate the effectiveness of each method, we used the area under the
precision-recall curve (AUPRC; equivalent to the average precision), which is a typical criterion to
measure the success of outlier detection methods [1]. It takes values from 0 to 1 and 1 is the best
score, and quantifies whether the algorithm is able to retrieve outliers correctly. These values were
calculated by the R ROCR package.

Datasets. We collected 14 real-world datasets from the UCI machine learning repository [2], with
a wide range of sizes and dimensions, whose properties are summarized in Table 1. Most of them
have been intensively used in the outlier detection literature. In particular, KDD1999 is one of
the most popular benchmark datasets in outlier detection, which was originally used for the KDD
Cup 1999. The task is to detect intrusions from network traffic data, and as in [22], objects whose
attribute logged in is positive were chosen as outliers. In every dataset, we first excluded all
categorical attributes and missing values since some methods cannot handle categorical attributes.
For all datasets except for KDD1999, we assume that objects from the smallest class are outliers, as
they are originally designed for classification rather than outlier detection. Three datasets Mfeat,
Isolet, and Optdigits were prepared exactly the same way as [17], where only two similar
classes were used as inliers. All datasets were normalized beforehand, that is, in each dimension,
the feature values were divided by their standard deviation [1, Chapter 12.10].

In addition, we generated two synthetic datasets (Gaussian) using exactly the same procedure
as [14, 17], of which one is high-dimensional (1000 dimensions) and the other is large (10,000,000
objects). For each dataset, inliers (non-outliers) were generated from a Gaussian mixture model with
five equally weighted processes, resulting in five clusters. The mean and the variance of each cluster
was randomly set from the Gaussian distribution N(0, 1), and 30 outliers were generated from a
uniform distribution in the range from the minimum to the maximum values of inliers.

3 Methods for Outlier Detection

In the following, we will introduce the state-of-the-art methods in distance-based outlier detection,
including our new sampling-based method. Every method is formalized as a scoring function q :
M → R on a metric space (M, d), which assigns a real-valued outlierness score to each object x
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in a given set of objects X . We denote by n the number of objects in X . If X is multivariate, the
number of dimensions is denoted by m. The number of samples (sample size) is denoted by s.

3.1 The kth-nearest neighbor distance

Knorr and Ng [11, 12] were the first to formalize a distance-based outlier detection scheme, in which
an object x ∈ X is said to be a DB(α, δ)-outlier if |{x′ ∈ X | d(x,x′) > δ}| ≥ αn, where α and
δ with α, δ ∈ R and 0 ≤ α ≤ 1 are parameters specified by the user. This means that at least a
fraction α of all objects have a distance from x that is larger than δ. This definition has mainly two
significant drawbacks: the difficulty of determining the distance threshold δ in practice and the lack
of a ranking of outliers. To overcome these drawbacks, Ramaswamy et al. [18] proposed to measure
the outlierness by the kth-nearest neighbor (kth-NN) distance. The score qkthNN(x) of an object x
is defined as

qkthNN(x) := dk(x;X ),

where dk(x;X ) is the distance between x and its kth-NN in X . Notice that if we set α = (n−k)/n,
the set of Knorr and Ng’s DB(α, δ)-outliers coincides with the set {x ∈ X | qkthNN(x) ≥ δ}. We
employ qkthNN(x) as a baseline for distance-based methods in our comparison.

Since the naı̈ve computation of scores qkthNN(x) for all x requires quadratic computational cost, a
number of studies investigated speed-up techniques [4, 6, 16]. We used Bhaduri’s algorithm (called
iORCA) [6] and implemented it in C since it is the latest technique in this branch of research.
It has a parameter k to specify the kth-NN and an additional parameter κ to retrieve the top-κ
objects with the largest outlierness scores. We set k = 5, which is a default setting used in the
literature [4, 6, 15, 16], and set κ to be twice the number of outliers for each dataset. Note that in
practice we usually do not know the exact number of outliers and have to set κ large enough.

3.2 Iterative sampling

Wu and Jermaine [21] proposed a sampling-based approach to efficiently approximate the kth-NN
distance score qkthNN. For each object x ∈ X , define

qkthSp(x) := dk(x;Sx(X )),

where Sx(X ) is a subset of X , which is randomly and iteratively sampled for each object x. In
addition, they introduced a random variable N = |O ∩ O′| with two sets of top-κ outliers O and
O′ with respect to qkthNN and qkthSp, and analyzed its expectation E(N) and the variance Var(N).
The time complexity is Θ(nms). We implemented this method in C and set k = 5 and the sample
size s = 20 unless stated otherwise.

3.3 One-time sampling (our proposal)

Here we present a new sampling-based method. We randomly and independently sample a subset
S(X ) ⊂ X only once and define

qSp(x) := min
x′∈S(X )

d(x,x′)

for each object x ∈ X . Although this definition is closely related to Wu and Jermaine’s method
qkthSp in the case of k = 1, our method performs sampling only once while their method performs
sampling for each object. We empirically show that this leads to significant differences in accuracy
in outlier detection (see Section 4). We also theoretically analyze this phenomenon to get a better
understanding of its cause (see Section 5). The time complexity is Θ(nms) and the space complexity
is Θ(ms) using the number of samples s, as this score can be obtained in a one-pass manner. We
implemented this method in C. We set s = 20 for the comparison with other methods.

3.4 Isolation forest

Liu et al. [15] proposed a random forest-like method, called isolation forest. It uses random recursive
partitions of objects, which are assumed to be m-dimensional vectors, and hence is also based on
the concept of proximity. From a given set X , we construct an iTree in the following manner. First
a sample set S(X ) ⊂ X is chosen. Then this sample set is partitioned into two non-empty subsets
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S(X )L and S(X )R such that S(X )L = {x ∈ S(X ) | xq < v } and S(X )R = S(X )\S(X )L, where
v and q are randomly chosen. This process is recursively applied to each subset until it becomes a
singleton, resulting in a proper binary tree such that the number of nodes is 2s− 1. The outlierness
of an object x is measured by the path length h(x) on the tree, and the score is normalized and
averaged on t iTrees. Finally, the outlierness score qtree(x) is defined as

qtree(x) := 2−h(x)/c(s),

where h(x) is the average of h(x) on t iTrees and c(s) is defined as c(s) := 2H(s−1)−2(s−1)/n,
where H denotes the harmonic number. The overall average and worst case time complexities are
O((s+n)t log s) and O((s+n)ts). We used the official R IsolationForest package1, whose
core process is implemented in C. We set t = 100 and s = 256, which is the same setting as in [15].

3.5 Local outlier factor (LOF)

While LOF [7] is often referred to as not distance-based but density-based, we still include this
method as it is also based on pairwise distances and is known to be a prominent outlier detection
method. Let Nk(x) be the set of k-nearest neighbors of x. The local reachability density of x
is defined as ρ(x) := |Nk(x)| (

∑
x′∈Nk(x) max{ dk(x′,X ), d(x,x′) })−1. Then the local outlier

factor (LOF) qLOF(x) is defined as the ratio of the local reachability density of x and the average
of the local reachability densities of its k-nearest neighbors, that is,

qLOF(x) :=
(
|Nk(x)|−1 ∑

x′∈Nk(x) ρ(x
′)
)
ρ(x)−1.

The time complexity is O(n2m), which is known to be the main disadvantage of this method. We
implemented this method in C and used the commonly used setting k = 10.

3.6 Angle-based outlier factor (ABOF)

Kriegel et al. [14] proposed to use angles instead of distances to measure outlierness. Let c(x,x′)
be the similarity between vectors x and x′, for example, the cosine similarity. Then c(y−x,y′−x)
should be correlated with the angle of two vectors y and y′ with respect to the the coordinate origin
x. The insight of Kriegel et al. is that if x is an outlier, the variance of angles between pairs of the
remaining objects becomes small. Formally, for an object x ∈ X define

qABOF(x) := Vary,y′∈X c(y − x,y′ − x).

Note that the smaller qABOF(x), the more likely is x to be an outlier, which is in contrast to the
other methods. This method was originally introduced to overcome the “curse of dimensionality”
in high-dimensional data. However, recently Zimek et al. [24] showed that distance-based methods
such as LOF also work if attributes carry relevant information for outliers. We include several high-
dimensional datasets in experiments and check whether distance-based methods work effectively.

Although this method is attractive as it is parameter-free, the computational cost is cubic in n. Thus
we use its near-linear approximation algorithm proposed by Pham and Pagh [17]. Their algorithm,
called FastVOA, estimates the first and the second moments of the variance Vary,y′∈X c(y−x,y′−
x) independently using two techniques: random projections and AMS sketches. The latter is a
randomized technique to estimate the second frequency moment of a data stream. The resulting time
complexity is O(tn(m+log n+c1c2)), where t is the number of hyperplanes for random projections
and c1, c2 are the number of repetitions for AMS sketches. We implemented this algorithm in C. We
set t = log n, c1 = 1600, and c2 = 10 as they are shown to be empirically sufficient in [17].

3.7 One-class SVM

The One-class SVM, introduced by Schölkopf et al. [19], classifies objects into inliers and outliers
by introducing a hyperplane between them. This classification can be turned into a ranking of
outlierness by considering the signed distance to the separating hyperplane. That is, the further
an object is located in the outlier half space, the more likely it is to be a true outlier. Let X =
{x1, . . . ,xn}. Formally, the score of a vector x with a feature map Φ is defined as

qSVM(x) := ρ− (w · Φ(x)), (1)
1http://sourceforge.net/projects/iforest/
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Table 1: Summary of datasets. Gaussian is syn-
thetic (marked by *) and the other datasets are
collected from the UCI repository (n = number
of objects, m = number of dimensions).

n # of outliers m

Ionosphere 351 126 34
Arrhythmia 452 207 274
Wdbc 569 212 30
Mfeat 600 200 649
Isolet 960 240 617
Pima 768 268 8
Gaussian* 1000 30 1000
Optdigits 1688 554 64
Spambase 4601 1813 57
Statlog 6435 626 36
Skin 245057 50859 3
Pamap2 373161 125953 51
Covtype 286048 2747 10
Kdd1999 4898431 703067 6
Record 5734488 20887 7
Gaussian* 10000000 30 20
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Figure 1: Average of area under the precision-
recall curves (AUPRCs) over all datasets with re-
spect to changes in number of samples s for qSp
(one-time sampling; our proposal) and qkthSp (it-
erative sampling by Wu and Jermaine [21]). Note
that the x-axis has logarithmic scale.

where the weight vector w and the offset ρ are optimized by the following quadratic program:

min
w∈F, ξ∈Rn, ρ∈R

1

2
∥w∥2 + 1

νn

n∑
i=1

ξi − ρ subject to (w · Φ(xi)) ≥ ρ− ξi, ξi ≥ 0

with a regularization parameter ν. The term w · Φ(x) in equation (1) can be replaced with∑n
i=1 αik(xi,x) using a kernel function k, where α = (α1, . . . , αn) is used in the dual problem.

We tried ten different values of ν from 0 to 1 and picked up the one maximizing the margin between
negative and positive scores. We used a Gaussian RBF kernel and set its parameter σ by the popular
heuristics [8]. The R kernlab package was used, whose core process is implemented in C.

4 Experimental Results

4.1 Sensitivity in sampling size and sampling scheme

We first analyze the parameter sensitivity of our method qSp with respect to changes in the sample
size s. In addition, for each sample size we compare our qSp (one-time sampling) to Wu and Jer-
maine’s qkthSp (iterative sampling). We set k = 1 in qkthSp, hence the only difference between them
was the sampling scheme. Each method was applied to each dataset listed in Table 1 and the average
of AUPRCs (area under the precision-recall curves) in 10 trials were obtained, and these were again
averaged over all datasets. These scores with varying sample sizes are plotted in Figure 1.

Our method shows robust performance over all sample sizes from 5 to 1000 and the average AUPRC
varies by less than 2%. Interestingly, the score is maximized at a rather small sample size (s = 20)
and monotonically (slightly) decreases with increasing sample size. Moreover, for every sample
size, the one-time sampling qSp significantly outperforms the iterative sampling qkthSp (Wilcoxon
signed-rank test, α = 0.05). We checked that this behavior is independent from dataset size.

4.2 Scalability and effectiveness

Next we evaluate the scalability and effectiveness of the approaches introduced in Section 3 by
systematically applying them to every dataset. Results of running time and AUPRCs are shown in
Table 2 and Table 3, respectively. As we can see, our method qSp is the fastest among all methods;
it can score more than five million objects within a few seconds. Although the time complexity of
Wu and Jermaine’s qkthSp is the same as qSp, our method is empirically much faster, especially in
large datasets. The different costs of two processes, sampling once and performing nearest neighbor
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Table 2: Running time (in seconds). Averages in 10 trials are shown in four probabilistic methods
qkthSp, qSp, qtree, and qABOF. “—” means that computation did not completed within 2 months.

qkthNN qkthSp qSp qtree qLOF qABOF qSVM

Ionosphere 2.00×10−2 9.60×10−3 8.00×10−4 6.25×10−1 2.40×10−2 4.72 6.80×10−2

Arrhythmia 2.56×10−1 2.72×10−2 1.52×10−2 2.72 2.04×10−1 6.19 3.88×10−1

Wdbc 7.20×10−2 1.60×10−2 2.00×10−3 7.32×10−1 6.80×10−2 7.86 9.20×10−2

Mfeat 1.04 6.00×10−2 4.80×10−2 8.69 1.02 8.26 1.90
Isolet 4.27 8.68×10−2 8.37×10−2 9.71 4.61 1.38×101 3.60
Pima 4.00×10−2 2.04×10−2 4.00×10−4 3.14×10−1 9.20×10−2 1.07×101 9.60×10−2

Gaussian 4.18 2.13×10−1 1.54×10−1 2.10×101 2.61×101 1.46×101 7.77
Optdigits 1.04 7.48×10−2 1.48×10−2 8.65×10−1 1.46 2.41×101 1.14
Spambase 9.51 7.26×10−1 3.68×10−2 1.02 1.14×101 7.75×101 8.77
Statlog 6.99 2.03×10−1 2.80×10−2 9.35×10−1 1.68×101 1.07×102 1.39×101

Skin 6.82×103 2.12×101 9.72×10−2 3.04 1.38×104 7.33×103 9.44×103

Pamap2 9.05×104 3.27×101 2.73 1.20×101 1.37×105 1.71×104 8.37×104

Covtype 6.87×102 2.16×101 2.83×10−1 6.15 3.67×104 1.13×104 1.69×104

Kdd1999 2.68×106 4.40×102 3.46 4.78×101 — 2.40×105 —
Record 3.62×106 9.58×102 4.11 8.84×101 — 1.07×106 —
Gaussian 3.37×103 1.73×103 2.13×101 3.26×102 — 1.47×106 —

Table 3: Area under the precision-recall curve (AUPRC). Averages±SEMs in 10 trials are shown
in four probabilistic methods. Best scores are denoted in Bold. Note that the root mean square
deviation (RMSD) rewards methods that are always close to the best result on each dataset.

qkthNN qkthSp qSp qtree qLOF qABOF qSVM

Ionosphere 0.931 0.762±0.007 0.899±0.032 0.871±0.002 0.864 0.740±0.022 0.794
Arrhythmia 0.701 0.674±0.008 0.711±0.005 0.681±0.004 0.673 0.697±0.005 0.707
Wdbc 0.607 0.226±0.001 0.667±0.036 0.595±0.018 0.428 0.490±0.014 0.556
Mfeat 0.217 0.293±0.002 0.245±0.031 0.270±0.009 0.369 0.211±0.003 0.257
Isolet 0.380 0.175±0.001 0.535±0.138 0.328±0.011 0.274 0.520±0.034 0.439
Pima 0.519 0.608±0.007 0.512±0.010 0.441±0.003 0.406 0.461±0.008 0.461
Gaussian 1.000 1.000±0.000 1.000±0.000 0.934±0.036 0.904 0.994±0.005 1.000
Optdigits 0.204 0.319±0.001 0.233±0.021 0.295±0.010 0.361 0.255±0.006 0.266
Spambase 0.395 0.418±0.001 0.422±0.011 0.419±0.011 0.354 0.398±0.002 0.399
Statlog 0.057 0.058±0.000 0.082±0.008 0.060±0.002 0.093 0.054±0.000 0.056
Skin 0.195 0.146±0.000 0.353±0.058 0.242±0.003 0.130 0.258±0.006 0.213
Pamap2 0.249 0.328±0.000 0.268±0.009 0.252±0.001 0.338 0.231±0.002 0.235
Covtype 0.016 0.058±0.001 0.075±0.034 0.017±0.001 0.010 0.087±0.005 0.095
Kdd1999 0.768 0.081±0.000 0.611±0.098 0.389±0.007 — 0.539±0.020 —
Record 0.002 0.411±0.000 0.933±0.013 0.976±0.004 — 0.658±0.106 —
Gaussian 1.000 0.999±0.000 1.000±0.000 0.890±0.022 — 0.893±0.003 —

Average 0.453 0.410 0.534 0.479 0.400 0.468 0.421
Avg.Rank 3.750 3.875 2.188 3.875 4.538 4.563 4.000
RMSD 0.259 0.274 0.068 0.133 0.152 0.140 0.094

search versus re-sampling per object and performing kth-NN search, causes this difference. The
baseline qkthNN shows acceptable runtimes for large data only if the number of outliers is small.

In terms of effectiveness, qSp shows the best performance on seven out of sixteen datasets including
the high-dimensional datasets, resulting in the best average AUPRC score, which is significantly
higher than every single method except for qLOF (Wilcoxon signed-rank test, α = 0.05). The
method qSp also shows the best performance in terms of the average rank and RMSDs (root mean
square deviations) to the best result on each dataset. Moreover, qSp is inferior to the baseline qkthNN

only on three datasets. It is interesting that qtree, which also uses one-time sampling like our method,
shows better performance than exhaustive methods on average. In contrast, qkthSp with iterative
sampling is worst in terms of RMSD among all methods.

Based on these observations we can conclude that (1) small sample sizes lead to the maximum
average precision for qSp; (2) one-time sampling leads to better results than iterative sampling; (3)
one-time sampling leads to better results than exhaustive methods and is also much faster.
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5 Theoretical Analysis

To understand why our new one-time sampling method qSp shows better performance than the other
methods, we present a theoretical analysis to get answers to the following four questions: (1) What
is the probability that qSp will correctly detect outliers? (2) Why do small sample sizes lead to better
results in qSp? (3) Why is qSp superior to qkthSp? (4) Why is qSp superior to qkthNN? Here we use
the notion of Knorr and Ng’s DB(α, δ)-outliers [11, 12] and denote the set of DB(α, δ)-outliers by
X (α; δ), that is, an object x ∈ X (α; δ) if |{x′ ∈ X | d(x,x′) > δ }| ≥ αn holds. We also define
X (α; δ) = X \ X (α; δ) and, for simplicity, we call an element in X (α; δ) an outlier and that in
X (α; δ) an inlier unless otherwise noted. Our method requires as input only the sample size s in
practice, whereas the parameters δ and α are used only in our theoretical analysis. In the following,
we always assume that s ≪ n, hence the sampling process is treated as with replacement.

Probabilistic analysis of qSp. First we introduce a partition of inliers into subsets (clusters) using
the threshold δ. A δ-partition Pδ of X (α; δ) is defined as a set of non-empty disjoint subsets of
X (α; δ) such that each element (cluster) C ∈ Pδ satisfies maxx,x′∈C d(x,x

′) < δ and
∪

C∈Pδ
C =

X (α; δ). Then if we focus on a cluster C ∈ Pδ , the probability of discriminating an outlier from
inliers contained in C can be bounded from below. Remember that s is the number of samples.

Theorem 1 For an outlier x ∈ X (α; δ) and a cluster C ∈ Pδ , we have

Pr
(
∀x′ ∈ C, qSp(x) > qSp(x

′)
)
≥ αs(1− βs) with β = (n− |C|)/n. (2)

Proof. We have the probability Pr(qSp(x) > δ) = αs from the definition of outliers. Moreover,
if at least one object is sampled from the cluster C, qSp(x′) < δ holds for all x′ ∈ C. Thus
Pr(∀x′ ∈ C, qSp(x′) < δ) = 1− βs. Inequality (2) therefore follows.

For instance, if we assume that 5% of our data are outliers and fix α to be 0.95, we have (maximum
δ, mean of β) = (10.51, 0.50), (44.25, 2.23×10−3), (10.93, 0.67), (37.10, 0.75), and (36.37, 0.80)
on our first five datasets from Table 1 to achieve this 5% rate of outliers. These β were obtained by
greedily searching each cluster in Pδ under α = 0.95 and the respective maximum δ.

Next we consider the task of correctly discriminating an outlier from all inliers. This can be achieved
if for each cluster C ∈ Pδ at least one object x ∈ C is chosen in the sampling process. Thus the
lower bound can be directly derived using the multinomial distribution as follows.

Theorem 2 Let Pδ = {C1, . . . , Cl} with l clusters and pi = |Ci| / n for each i ∈ {1, . . . , l}. For
every outlier x ∈ X (α; δ) and the sample size s ≥ l, we have

Pr
(
∀x′ ∈ X (α; δ), qSp(x) > qSp(x

′)
)
≥ αs

∑
∀i;si⪈0

f(s1, . . . , sl; s, p1, . . . , pl),

where f is the probability mass function of the multinomial distribution defined as

f(s1, . . . , sl; s, p1, . . . , pl) := (s!/
∏l

i=1 si!)
∏l

i=1 p
si
i with

∑l
i=1 si = s.

Furthermore, let I(α; δ) be a subset of X (α; δ) such that minx′∈I(α;δ) d(x,x
′) > δ for every

outlier x ∈ X (α; δ) and assume that Pδ is a δ-partition of I(α; δ) instead of all inliers X (α; δ). If
S(X ) ⊆ I(α; δ) and at least one object is sampled from each cluster C ∈ Pδ , qSp(x) > qSp(x

′)
holds for all pairs of an outlier x and an inlier x′.

Theorem 3 Let Pδ = {C1, . . . , Cl} be a δ-partition of I(α; δ) and γ = |I(α; δ)| / n, and assume
that pi = |Ci| / |I(α; δ)| for each i ∈ {1, . . . , l}. For every s ≥ l,

Pr
(
∀x ∈ X (α; δ), ∀x′ ∈ X (α; δ), qSp(x) > qSp(x

′)
)
≥ γs

∑
∀i;si⪈0

f(s1, . . . , sl; s, p1, . . . , pl).

From the fact that this theorem holds for any δ-partition, we automatically have the maximum lower
bound over all possible δ-partitions.

Corollary 1 Let φ(s) =
∑

∀i;si⪈0 f(s1, . . . , sl; s, p1, . . . , pl) given in Theorem 3. We have

Pr
(
∀x ∈ X (α; δ),∀x′ ∈ X (α; δ), qSp(x) > qSp(x

′)
)
≥ γs max

Pδ

φ(s). (3)
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Let B(γ; δ) be the right-hand side of Inequality (3) above. This bound is maximized for equally
sized clusters when l is fixed and it shows high probability for large γ. For example if γ = 0.99,
we have (l, optimal s,B(γ; δ)) = (2, 7, 0.918), (3, 12, 0.866), and (4, 17, 0.818). It is notable that
the bound B(γ; δ) is independent of the actual number of outliers and inliers, which is a desirable
property when analyzing large datasets. Although it is dependent on the number of clusters l, the
best (minimum) l which maximizes B(γ; δ) with the simplest clustering is implicitly chosen in qSp.

Theoretical support for small sample sizes. Let g(s) = αs(1 − βs), which is the right-hand side
of Inequality (2). From the differentiation dg/ds, we can see that this function is maximized at

s = logβ
(
logα/(logα+ log β)

)
,

with the natural assumption 0 < β < α < 1 and this optimal sample size s is small for large α
and small β, for example, s = 6 for (α, β) = (0.99, 0.5) and s = 24 for (α, β) = (0.999, 0.8).
Moreover, as we already saw above the bound B(γ; δ) is also maximized at such small sample
sizes for large γ. This could be the reason why qSp works well for small sample sizes, as these are
common values for α, β, and γ in outlier detection.

Comparison with qkthSp. Define Z(x,x′) := Pr(qkthSp(x) > qkthSp(x
′)) for the iterative sam-

pling method qkthSp. Since we repeat sampling for each object in qkthSp, probability Z(x,x′) for
each x′ ∈ X (α; δ) is independent with respect to a fixed x ∈ X (α; δ). We therefore have

Pr
(
∀x ∈ X (α; δ), ∀x′ ∈ X (α; δ), qkthSp(x) > qkthSp(x

′)
)
≤ min

x∈X (α;δ)

∏
x′∈X (α;δ)

Z(x,x′).

Although Z(x,x′) is typically close to 1 in outlier detection, the overall probability rapidly de-
creases if n is large. Thus the performance suffers on large datasets. In contrast, our one-time
sampling qSp does not have independence, resulting in our results (Theorem 1, 2, 3, and Corol-
lary 1) instead of this upper bound, which often lead to higher probability. This fact might be the
reason why qkthSp empirically performs significantly worse than qSp and shows the worst RMSD.

Comparison with qkthNN. Finally, let us consider the situation in which there exists the set of “true”
outliers O ⊂ X given by an oracle. Let Λ = {k ∈ N | qkthNN(x) > qkthNN(x

′) for all x ∈ O and
x′ ∈ X \ O}, the set of ks with which we can detect all outliers, and assume that Λ ̸= ∅. Then

Pr
(
∀x ∈ O, ∀x′ ∈ X \ O, qSp(x) > qSp(x

′)
)
≥ max

k∈Λ, δ∈∆(k)
B(γ; δ)

with ∆(k) = {δ ∈ R | X (α; δ) = O} if we set α = (n− k)/n. Notice that γ is determined from α
(i.e. k) and δ. Thus both k and δ are implicitly optimized in qSp. In contrast, in qkthNN the number
k is specified by the user. For example, if Λ is small, it is hardly possible to choose k ∈ Λ without
any prior knowledge, resulting in overlooking some outliers, while qSp always has the possibility
to detect them without knowing Λ if I(α; δ) is non-empty for some α. This difference in detection
ability could be a reason why qSp significantly outperforms qkthNN on average.

6 Conclusion

In this study, we have performed an extensive set of experiments to compare current distance-based
outlier detection methods. We have observed that a surprisingly simple sampling-based approach,
which we have newly proposed here, outperforms other state-of-the-art distance-based methods.
Since the approach reached its best performance with small sample sizes, it achieves dramatic speed-
ups compared to exhaustive methods and is faster than all state-of-the-art methods for distance-based
outlier detection. We have also presented a theoretical analysis to understand why such a simple
strategy works well and outperforms the popular approach based on kth-NN distances.

To summarize, our contribution is not only to overcome the scalability issue of the distance-based
approach to outlier detection using the sampling strategy but also, to the best of our knowledge,
to give the first thorough experimental comparison of a broad range of recently proposed distance-
based outlier detection methods. We are optimistic that these results will contribute to the further
improvement of outlier detection techniques.
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