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In this paper we investigate the problem of estimating the cluster tree for a densityf supported on
or near a smoothd-dimensional manifoldM isometrically embedded inRD. We analyze a modi-
fied version of ak-nearest neighbor based algorithm recently proposed by Chaudhuri and Dasgupta
(2010). The main results of this paper show that under mild assumptions onf andM , we obtain
rates of convergence that depend ond only but not on the ambient dimensionD. Finally, we sketch
a construction of a sample complexity lower bound instance for a natural class ofmanifold oblivious
clustering algorithms.

1 Introduction

In this paper, we study the problem of estimating the clustertree of a density when the density
is supported on or near a manifold. LetX := {X1, . . . , Xn} be a sample drawn i.i.d. from a
distributionP with densityf . The connected componentsCf (λ) of the upper level set{x : f(x) ≥
λ} are calleddensity clusters.The collectionC = {Cf (λ) : λ ≥ 0} of all such clusters is called the
cluster treeand estimating this cluster tree is referred to asdensity clustering.

The density clustering paradigm is attractive for various reasons. One of the main difficulties of
clustering is that often the true goals of clustering are notclear and this makes clusters, and clustering
as a task seem poorly defined. Density clustering however is estimating a well defined population
quantity, making its goal, consistent recovery of thepopulationdensity clusters, clear. Typically
only mild assumptions are made on the densityf and this allows extremely general shapes and
numbers of clusters at each level. Finally, thecluster treeis an inherently hierarchical object and
thus density clustering algorithms typically do not require specification of the “right” level, rather
they capture a summary of the density across all levels.

The search for a simple, statistically consistent estimator of the cluster tree has a long history.
Hartigan (1981) showed that the popular single-linkage algorithm is not consistent for a sample
from R

D, with D > 1. Recently, Chaudhuri and Dasgupta (2010) analyzed an algorithm which is
both simple and consistent. The algorithm finds the connected components of a sequence of care-
fully constructed neighborhood graphs. They showed that, as long as the parameters of the algorithm
are chosen appropriately, the resulting collection of connected components correctly estimates the
cluster tree with high probability.

In this paper, we are concerned with the problem of estimating the cluster tree when the density
f is supported on or near a low dimensional manifold. The motivation for this work stems from
the problem of devising and analyzing clustering algorithms with provable performance that can be
used in high dimensional applications. When data live in highdimensions, clustering (as well as
other statistical tasks) generally become prohibitively difficult due to the curse of dimensionality,
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which demands a very large sample size. In many high dimensional applications however data is
not spread uniformly but rather concentrates around a low dimensional set. This so-called manifold
hypothesis motivates the study of data generated on or near low dimensional manifolds and the study
of procedures that can adapt effectively to the intrinsic dimensionality of this data.

Here is a brief summary of the main contributions of our paper: (1) We show that the simple al-
gorithm studied in the paper Chaudhuri and Dasgupta (2010) is consistent and has fast rates of
convergence for data on or near a low dimensional manifoldM . The algorithm does not require
the user to first estimateM (which is a difficult problem). In other words, the algorithmadapts to
the (unknown) manifold. (2) We show that the sample complexity for identifying salient clusters is
independent of the ambient dimension. (3) We sketch a construction of a sample complexity lower
bound instance for a natural class of clustering algorithmsthat we study in this paper. (4) We intro-
duce a framework for studying consistency of clustering when the distribution is not supported on
a manifold but rather, is concentrated near a manifold. The generative model in this case is that the
data are first sampled from a distribution on a manifold and then noise is added. The original data
are latent (unobserved). We show that for certain noise models we can still efficiently recover the
cluster tree on thelatentsamples.

1.1 Related Work

The idea of using probability density functions for clustering dates back to Wishart Wishart (1969).
Hartigan (1981) expanded on this idea and formalized the notions of high-density clustering, of
the cluster tree and of consistency and fractional consistency of clustering algorithms. In partic-
ular, Hartigan (1981) showed that single linkage clustering is consistent whenD = 1 but is only
fractionally consistent whenD > 1. Stuetzle and R. (2010) and Stuetzle (2003) have also proposed
procedures for recovering the cluster tree. None of these procedures however, come with the theoret-
ical guarantees given by Chaudhuri and Dasgupta (2010), which demonstrated that a generalization
of Wishart’s algorithm allows one to estimate parts of the cluster tree for distributions with full-
dimensional support near-optimally under rather mild assumptions. This paper forms the starting
point for our work and is reviewed in more detail in the next section.

In the last two decades, much of the research effort involving the use of nonparametric density
estimators for clustering has focused on the more specialized problems of optimal estimation of the
support of the distribution or of a fixed level set. However, consistency of estimators of a fixed level
set does not imply cluster tree consistency, and extending the techniques and analyses mentioned
above to hold simultaneously over a variety of density levels is non-trivial. See for example the
papers Polonik (1995); Tsybakov (1997); Walther (1997); Cuevas and Fraiman (1997); Cuevas et al.
(2006); Rigollet and Vert (2009); Maier et al. (2009); Singhet al. (2009); Rinaldo and Wasserman
(2010); Rinaldo et al. (2012), and references therein. Estimating the cluster tree has more recently
been considered by Kpotufe and von Luxburg (2011) who also give a simple pruning procedure
for removing spurious clusters. Steinwart (2011) and Sriperumbudur and Steinwart (2012) propose
procedures for determining recursively the lowest split inthe cluster tree and give conditions for
asymptotic consistency with minimal assumptions on the density.

2 Background and Assumptions

Let P be a distribution supported on an unknownd-dimensional manifoldM . We assume that the
manifoldM is ad-dimensional Riemannian manifold without boundary embedded in a compact set
X ⊂ R

D with d < D. We further assume that the volume of the manifold is boundedfrom above by
a constant, i.e.,vold(M) ≤ C. The main regularity condition we impose onM is that its condition
number be not too large. Thecondition numberof M is 1/τ , whereτ is the largest number such
that the open normal bundle aboutM of radiusr is imbedded inRD for everyr < τ . The condition
number is discussed in more detail in the paper Niyogi et al. (2008).

The Euclidean norm is denoted by‖ · ‖ andvd denotes the volume of thed-dimensional unit ball in
R

d. B(x, r) denotes the full-dimensional ball of radiusr centered atx andBM (x, r) ..= B(x, r) ∩
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M . ForZ ⊂ R
d andσ > 0, defineZσ = Z +B(0, σ) andZM,σ = (Z +B(0, σ)) ∩M . Note that

Zσ is full dimensional, while ifZ ⊆ M thenZM,σ is d-dimensional.

Let f be the density ofP with respect to the uniform measure onM . Forλ ≥ 0, let Cf (λ) be the
collection of connected components of the level set{x ∈ X : f(x) ≥ λ} and define thecluster tree
of f to be the hierarchyC = {Cf (λ) : λ ≥ 0}. For a fixedλ, any member ofCf (λ) is a cluster.
For a clusterC its restriction to the sampleX is defined to beC[X] = C ∩ X. The restriction of
the cluster treeC to X is defined to beC[X] = {C ∩ X : C ∈ C}. Informally, this restriction is a
dendrogram-like hierarchical partition ofX.

To give finite sample results, following Chaudhuri and Dasgupta (2010), we define the notion of
salient clusters. Our definitions are slight modifications of those in Chaudhuri and Dasgupta (2010)
to take into account the manifold assumption.

Definition 1 ClustersA andA′ are (σ, ǫ) separated if there exists a nonemptyS ⊂ M such that:

1. Any path alongM fromA toA′ intersectsS.
2. supx∈SM,σ

f(x) < (1− ǫ) infx∈AM,σ∪A′

M,σ
f(x).

Chaudhuri and Dasgupta (2010) analyze a robust single linkage (RSL) algorithm (in Figure 1). An
RSL algorithm estimates the connected components at a levelλ in two stages. In the first stage,
the sample iscleanedby thresholding thek-nearest neighbor distance of the sample points at a
radiusr and then, in the second stage, the cleaned sample isconnectedat a connection radiusR.
The connected components of the resulting graph give an estimate of the restrictionCf (λ)[X]. In
Section 4 we prove a sample complexity lower bound for theclass of RSL algorithmswhich we now
define.

Definition 2 Theclass of RSL algorithmsrefers to any algorithm that is of the form described in
the algorithm in Figure 1 and relying on Euclidean balls, with any choice ofk, r andR.

We define two notions of consistency for an estimatorĈ of the cluster tree:

Definition 3 (Hartigan consistency) For any setsA, A′ ⊂ X , letAn (resp.,A′
n) denote the small-

est cluster of̂C containingA ∩X (resp,A′ ∩X). We sayĈ is consistent if, wheneverA andA′ are
different connected components of{x : f(x) ≥ λ} (for someλ > 0), the probability thatAn is
disconnected fromA′

n approaches1 asn → ∞.

Definition 4 ((σ, ǫ) consistency)For any setsA, A′ ⊂ X such thatA andA′ are (σ, ǫ) separated,
let An (resp.,A′

n) denote the smallest cluster of̂C containingA ∩ X (resp,A′ ∩ X). We sayĈ is
consistent if, wheneverA andA′ are different connected components of{x : f(x) ≥ λ} (for some
λ > 0), the probability thatAn is disconnected fromA′

n approaches1 asn → ∞.

The notion of(σ, ǫ) consistencyis similar that of Hartigan consistency except restricted to (σ, ǫ)
separated clustersA andA′.

Chaudhuri and Dasgupta (2010) prove a theorem, establishing finite sample bounds for a particular
RSL algorithm. In their result there is no manifold andf is a density with respect to the Lebesgue
measure onRD. Their result in essence says that if

n ≥ O

(
D

λǫ2vD(σ/2)D
log

D

λǫ2vD(σ/2)D

)

then an RSL algorithm with appropriately chosen parameterscan resolve any pair of(σ, ǫ) clusters
at level at leastλ. It is important to note that this theorem does not apply to the setting when
distributions are supported on a lower dimensional set for at least two reasons: (1) the densityf is
singular with respect to the Lebesgue measure onX and so the cluster tree is trivial, and (2) the
definitions of saliency with respect toX are typically not satisfied whenf has a lower dimensional
support.
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1. For eachXi, rk(Xi) := inf{r : B(Xi, r) containsk data points}.

2. Asr grows from 0 to∞:

(a) Construct a graphGr,R with nodes{Xi : rk(Xi) ≤ r} and edges(Xi, Xj) if
‖Xi −Xj‖ ≤ R.

(b) LetC(r) be the connected components ofGr,R.

3. DenoteĈ = {C(r) : r ∈ [0,∞)} and returnĈ.

Figure 1: Robust Single Linkage (RSL) Algorithm

3 Clustering on Manifolds

In this section we show that the RSL algorithm can be adapted to recover the cluster tree of a
distribution supported on a manifold of dimensiond < D with the rates depending only ond. In
place of the cluster salience parameterσ, our rates involve a new parameterρ

ρ := min

(
3σ

16
,
ǫτ

72d
,
τ

16

)
.

The precise reason for this definition ofρ will be clear from the proofs (particularly of Lemma 7)
but for now notice that in addition toσ it is dependent on the condition number1/τ and deteriorates
as the condition number increases. Finally, to succinctly present our results we useµ := log n +
d log(1/ρ).

Theorem 5 There are universal constantsC1 andC2 such that the following holds. For anyδ > 0,
0 < ǫ < 1/2, run the algorithm in Figure 1 on a sampleX drawn fromf , where the parameters are
set according to the equations

R = 4ρ and k = C1 log
2(1/δ)(µ/ǫ2).

Then with probability at least1−δ, Ĉ is (σ, ǫ) consistent. In particular, the clusters containingA[X]
andA′[X], whereA andA′ are(σ, ǫ) separated, are internally connected and mutually disconnected
in C(r) for r defined by

vdr
dλ =

1

1− ǫ/6

(
k

n
+

C2 log(1/δ)

n

√
kµ

)

providedλ ≥ 2
vdρd

k
n .

Before we prove this theorem a few remarks are in order:

1. To obtain an explicit sample complexity we plug in the value of k and solve forn from the in-
equality restrictingλ. The sample complexity of the RSL algorithm for recovering(σ, ǫ) clusters
at level at leastλ on a manifoldM with condition number at most1/τ is

n = O

(
d

λǫ2vdρd
log

d

λǫ2vdρd

)

whereρ = Cmin (σ, ǫτ/d, τ). Ignoring constants that depend ond the main difference between
this result and the result of Chaudhuri and Dasgupta (2010) is that our results only depend on
the manifold dimensiond and not the ambient dimensionD (typically D ≫ d). There is also a
dependence of our result on1/(ǫτ)d, for ǫτ ≪ σ. In Section 4 we sketch the construction of an
instance that suggests that this dependence is not an artifact of our analysis and that the sample
complexity of the class of RSL algorithms is at leastn ≥ 1/(ǫτ)Ω(d).

2. Another aspect is that our choice of the connection radiusR depends on the (typically) unknown
ρ, while for comparison, the connection radius in Chaudhuri and Dasgupta (2010) is chosen to be
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√
2r. Under the mild assumption thatλ ≤ nO(1) (which is satisfied for instance, if the density

on M is bounded from above), we show in Appendix A.8 that an identical theorem holds for
R = 4r. k is the only real tuning parameter of this algorithm whose choice depends onǫ and an
unknown leading constant.

3. It is easy to see that this theorem also establishes consistency for recovering the entire cluster
tree by selecting an appropriate schedule onσn, ǫn and kn that ensures thatall clusters are
distinguished forn large enough (see Chaudhuri and Dasgupta (2010) for a formalproof).

Our proofs structurally mirror those in Chaudhuri and Dasgupta (2010). We begin with a few tech-
nical results in 3.1. In Section 3.2 we establish(σ, ǫ) consistency by showing that the clusters are
mutually disjoint and internally connected. The main technical challenge is that the curvature of the
manifold, modulated by its condition number1/τ , limits our ability to resolve the density level sets
from a finite sample, by limiting the maximum cleaning and connection radii the algorithm can use.
In what follows, we carefully analyze this effect and show that somewhat surprisingly, despite this
curvature, essentially the same algorithm is able to adapt to the unknown manifold and produce a
consistent estimate of the entire cluster tree. Similar manifold adaptivity results have been shown in
classification Dasgupta and Freund (2008) and in non-parametric regression Kpotufe and Dasgupta
(2012); Bickel and Li (2006).

3.1 Technical results

In our proof, we use the uniform convergence of the empiricalmass of Euclidean balls to their true
mass. In the full dimensional setting of Chaudhuri and Dasgupta (2010), this follows from standard
VC inequalities. To the best of our knowledge however sharp (ambient dimension independent)
inequalities for manifolds are unknown. We get around this obstacle by using the insight that, in
order to analyze the RSL algorithms, uniform convergence for Euclidean balls around thesample
pointsand around afixed minimums-netN of M (for an appropriately chosens) suffice to analyze
the RSL algorithm.

Recall, ans-netN ⊆ M is such that every point ofM is at a distance at mosts from some point

in N . Let Bn,N :=
{
B(z, s) : z ∈ N ∪ X, s ≥ 0

}
be the collection of balls whose centers are

sample or net points. We now state our uniform convergence lemma. The proof is in Appendix A.3.

Lemma 6 (Uniform Convergence) Assumek ≥ µ. Then there exists a constantC0 such that the
following holds. For everyδ > 0, with probability> 1− δ, for all B ∈ Bn,N , we have:

P (B) ≥ Cδµ

n
=⇒ Pn(B) > 0,

P (B) ≥ k

n
+

Cδ

n

√
kµ =⇒ Pn(B) ≥ k

n
,

P (B) ≤ k

n
− Cδ

n

√
kµ =⇒ Pn(B) <

k

n
,

whereCδ := 2C0 log(2/δ), andµ := 1 + log n + log |N | = Cd + log n + d log(1/s). Here
Pn(B) = |X∩B|/n denotes the empirical probability measure ofB, andC is a universal constant.

Next we provide a tight estimate of the volume of a small ball intersected withM . This bounds
the distortion of the apparent density due to the curvature of the manifold and is central to many of
our arguments. Intuitively, the claim states that the volume is approximately that of ad-dimensional
Euclidean ball, provided that its radius is small enough compared toτ . The lower bound is based
on Lemma 5.3 of Niyogi et al. (2008) while the upper bound is based on a modification of the main
result of Chazal (2013).

Lemma 7 (Ball volumes) Assumer < τ/2. DefineS := B(x, r) ∩M for a pointx ∈ M . Then
(
1− r2

4τ2

)d/2

vdr
d ≤ vold(S) ≤ vd

(
τ

τ − 2r1

)d

rd1 ,
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wherer1 = τ − τ
√

1− 2r/τ . In particular, if r ≤ ǫτ/72d for 0 ≤ ǫ < 1, then

vdr
d(1− ǫ/6) ≤ vold(S) ≤ vdr

d(1 + ǫ/6).

3.2 Separation and Connectedness

Lemma 8 (Separation) Assume that we pickk, r andR to satisfy the conditions:

r ≤ ρ, R = 4ρ,

vdr
d(1− ǫ/6)λ ≥ k

n
+

Cδ

n

√
kµ, vdr

d(1 + ǫ/6)λ(1− ǫ) ≤ k

n
− Cδ

n

√
kµ.

Then with probability1 − δ, we have: (1) All points inAσ−r andA′
σ−r are kept, and all points in

Sσ−r are removed. (2) The two point setsA ∩X andA′ ∩X are disconnected inGr,R.

Proof. The proof is analogous to the separation proof of Chaudhuri and Dasgupta (2010) with sev-
eral modifications. Most importantly, we need to ensure thatdespite the curvature of the manifold
we can still resolve the density well enough to guarantee that we can identify and eliminate points
in the region of separation.

Throughout the proof, we will assume that the good event in Lemma 6 (uniform convergence for
Bn,N ) occurs. Sincer ≤ ǫτ/72d, by Lemma 7vol(BM (x, r)) is betweenvdrd(1 − ǫ/6) and
vdr

d(1+ǫ/6), for anyx ∈ M . So ifXi ∈ A∪A′, thenBM (Xi, r) has mass at leastvdrd(1−ǫ/6)·λ.
Since this is≥ k

n + Cδ

n

√
kµ by assumption, this ball contains at leastk sample points, and hence

Xi is kept. On the other hand, ifXi ∈ Sσ−r, then the setBM (Xi, r) contains mass at most
vdr

d(1+ ǫ/6) ·λ(1− ǫ). This is≤ k
n − Cδ

n

√
kµ. Thus by Lemma 6BM (Xi, r) contains fewer than

k sample points, and henceXi is removed.

To prove the graph is disconnected, we first need a bound on thegeodesic distance between two
points that are at mostR apart in Euclidean distance. Such an estimate follows from Proposition
6.3 in Niyogi et al. (2008) who show that if‖p − q‖ = R ≤ τ/2, then the geodesic distance

dM (p, q) ≤ τ − τ
√

1− 2R
τ . In particular, ifR ≤ τ/4, thendM (p, q) < R

(
1 + 4R

τ

)
≤ 2R. Now,

notice that if the graph is connected there must be an edge that connects two points that are at a
geodesic distance of at least2(σ − r). Any path between a point inA and a point inA′ alongM
must pass throughSσ−r and must have a geodesic length of at least2(σ − r). This is impossible if
the connection radius satisfies2R < 2(σ − r), which follows by the assumptions onr andR. �

All the conditions in Lemma 8 can be simultaneously satisfiedby settingk := 16C2
δ (µ/ǫ

2), and

vdr
d(1− ǫ/6) · λ =

k

n
+

Cδ

n

√
kµ. (1)

The condition onr is satisfied sinceλ ≥ 2
vdρd

k
n and the condition onR is satisfied by its definition.

Lemma 9 (Connectedness)Assume that the parametersk, r andR satisfy the separation condi-
tions (in Lemma 8). Then, with probability at least1− δ, A[X] is connected inGr,R.

Proof. Let us show that any two points inA ∩X are connected inGr,R. Considery, y′ ∈ A ∩X.
SinceA is connected, there is a pathP betweeny, y′ lying entirely insideA, i.e., a continuous map
P : [0, 1] → A such thatP (0) = y andP (1) = y′. We can find a sequence of pointsy0, . . . , yt ∈ P
such thaty0 = y, yt = y′, and the geodesic distance onM (and hence the Euclidean distance)
betweenyi−1 andyi is at mostη, for an arbitrarily small constantη.

LetN be minimalR/4-net ofM . There existzi ∈ N such that‖yi− zi‖ ≤ R/4. Sinceyi ∈ A, we
havezi ∈ AM,R/4, and hence the ballBM (zi, R/4) lies completely insideAM,R/2 ⊆ AM,σ−r. In
particular, the density inside the ball is at leastλ everywhere, and hence the mass inside it is at least

vd(R/4)d(1− ǫ/6)λ ≥ Cδµ

n
.
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Observe thatR ≥ 4r and so this condition is satisfied as a consequence of satisfying Equation 1.
Thus Lemma 6 guarantees that the ballBM (zi, R/4) contains at least one sample point, sayxi.
(Without loss of generality, we may assumex0 = y andxt = y′.) Since the ball lies completely in
AM,σ−r, the sample pointxi is not removed in the cleaning step (Lemma 8).

Finally, we boundd(xi−1, xi) by considering the sequence of points(xi−1, zi−1, yi−1, yi, zi, xi).
The pair(yi−1, yi) are at mosts apart and the other successive pairs at mostR/4 apart, hence
d(xi−1, xi) ≤ 4(R/4) + η = R+ η. The claim follows by lettingη → 0. �

4 A lower bound instance for the class of RSL algorithms

Recall that the sample complexity in Theorem 5 scales asn = O
(

d
λǫ2vdρd log d

λǫ2vdρd

)
where

ρ = Cmin (σ, ǫτ/d, τ). For full dimensional densities, Chaudhuri and Dasgupta (2010) showed

the information theoretic lower boundn = Ω
(

1
λǫ2vDσD log 1

λǫ2vDσD

)
. Their construction can be

straightforwardly modified to ad-dimensional instance on a smooth manifold. Ignoring constants
that depend ond, these upper and lower bounds can still differ by a factor of1/(ǫτ)d, for ǫτ ≪ σ.
In this section we provide an informal sketch of a hard instance for the class of RSL algorithms (see
Definition 2) that suggests a sample complexity lower bound of n ≥ 1/(ǫτ)Ω(d).

We first describe our lower bound instance. The manifoldM consists of two disjoint components,C
andC ′ (whose sole function is to ensuref integrates to 1). The componentC in turn contains three
parts, which we call ‘top’, ‘middle’, and ‘bottom’ respectively. The middle part, denotedM2, is the
portion of the standardd-dimensional unit sphereSd(0, 1) between the planesx1 = +

√
1− 4τ2

andx1 = −
√
1− 4τ2. The top part, denotedM1, is the upper hemisphere of radius2τ centered

at (+
√
1− 4τ2, 0, 0, . . . , 0). The bottom part, denotedM3, is a symmetric hemisphere centered at

(−
√
1− 4τ2, 0, 0, . . . , 0). ThusC is obtained by gluing a portion of the unit sphere with two (small)

hemispherical caps.C as described does not have a condition number at most1/τ because of the
“corners” at the intersection ofM2 andM1 ∪M3. This can be fixed without affecting the essence
of the construction by smoothing this intersection by rolling a ball of radiusτ around it (a similar
construction is made rigorous in Theorem 6 of Genovese et al.(2012)). LetP be the distribution
on M whose density overC is λ if |x1| > 1/2, andλ(1 − ǫ) if |x1| ≤ 1/2, whereλ is chosen
small enough such thatλ vold(C) ≤ 1. The density overC ′ is chosen such that the total mass of the
manifold is1. NowM1 andM3 are(σ, ǫ) separated at levelλ for σ = Ω(1). The separator setS is
the equator ofM2 in the planex1 = 0.

We now provide some intuition for why RSL algorithms will requiren ≥ 1/(ǫτ)Ω(d) to succeed on
this instance. We focus our discussion on RSL algorithms with k > 2, i.e. on algorithms that do in
fact use acleaningstep, ignoring the single linkage algorithm which is known to be inconsistent for
full dimensional densities. Intuitively, because of the curvature of the described instance, the mass
of a sufficiently large Euclidean ball in the separator set islarger than the mass of a corresponding
ball in the true clusters. This means that any algorithm thatuses large balls cannot reliably clean the
sample and this restricts the size of the balls that can be used. Now if points in the regions of high
density are to survive then there must bek sample points in thesmallball around any point in the
true clusters and this gives us a lower bound on the necessarysample size.

The RSL algorithms work by counting the number of sample points inside the ballsB(x, r) centered
at the sample pointsx, for some radiusr. In order for the algorithm to reliably resolve(σ, ǫ) clusters,
it should distinguish points in the separator setS ⊂ M2 from those in the levelλ clustersM1∪M3. A
necessary condition for this is that the mass of a ballB(x, r) for x ∈ Sσ−r should be strictly smaller
than the mass insideB(y, r) for y ∈ M1 ∪ M3. In Appendix A.4, we show that this condition
restricts the radiusr to be at mostO(τ

√
ǫ/d). Now, consider any sample pointx0 in M1 ∪ M3

(such anx exists with high probability). Sincex0 should not be removed during the cleaning step,
the ballB(x0, r) must contain some other sample point (indeed, it must contain at leastk − 1
more sample points). By a union bound, this happens with probability at most(n − 1)vdr

dλ ≤
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O(d−d/2nτdǫd/2λ). If we want the algorithm to succeed with probability at least1/2 (say) then

n ≥ Ω
(

dd/2

τdλǫd/2

)
.

5 Cluster tree recovery in the presence of noise

So far we have considered the problem of recovering the cluster tree given samples from a density
supportedon a lower dimensional manifold. In this section we extend these results to the more
general situation when we havenoisy samples concentratednear a lower dimensional manifold.
Indeed it can be argued that the manifold + noise model is a natural and general model for high-
dimensional data. In the noisy setting, it is clear that we can infer the cluster tree of thenoisy
density in a straightforward way. A stronger requirement would be consistency with respect to
the underlyinglatent sample. Following the literature on manifold estimation (Balakrishnan et al.
(2012); Genovese et al. (2012)) we consider two main noise models. For both of them, we specify a
distributionQ for the noisy sample.

1. Clutter Noise: We observe dataY1, . . . , Yn from the mixtureQ := (1 − π)U + πP where
0 < π ≤ 1 andU is a uniform distribution onX . Denote the samples drawn fromP in this mixture
X = {X1, . . . , Xm}. The points drawn fromU are called background clutter. In this case, we can
show:

Theorem 10 There are universal constantsC1 andC2 such that the following holds. For anyδ > 0,
0 < ǫ < 1/2, run the algorithm in Figure 1 on a sample{Y1, . . . , Yn}, with parameters

R := 4ρ k := C1 log
2(1/δ)(µ/ǫ2).

Then with probability at least1 − δ, Ĉ is (σ, ǫ) consistent. In particular, the clusters containing
A[X] andA′[X] are internally connected and mutually disconnected inC(r) for r defined by

πvdr
dλ =

1

1− ǫ/6

(
k

n
+

C2 log(1/δ)

n

√
kµ

)

providedλ ≥ max

{
2

vdρd
k
n ,

2v
d/D
D (1−π)d/D

vdǫd/Dπ

(
k
n

)1−d/D
}

whereρ is now slightly modified (in con-

stants), i.e.,ρ := min
(
σ
7 ,

ǫτ
72d ,

τ
24

)
.

2. Additive Noise: The data are of the formYi = Xi+ηi whereX1, . . . , Xn ∼ P ,andη1, . . . , ηn are
a sample fromanybounded noise distributionΦ, with ηi ∈ B(0, θ). Note thatQ is the convolution
of P andΦ, Q = P ⋆ Φ.

Theorem 11 There are universal constantsC1 andC2 such that the following holds. For anyδ > 0,
0 < ǫ < 1/2, run the algorithm in Figure 1 on the sample{Y1, . . . , Yn} with parameters

R := 5ρ k := C1 log
2(1/δ)(µ/ǫ2).

Then with probability at least1− δ, Ĉ is (σ, ǫ) consistent forθ ≤ ρǫ/24d. In particular, the clusters
containing{Yi : Xi ∈ A} and{Yi : Xi ∈ A′} are internally connected and mutually disconnected
in C(r) for r defined by

vdr
d(1− ǫ/12)(1− ǫ/6)λ =

k

n
+

Cδ

n

√
kµ

if λ ≥ 2
vdρd

k
n andθ ≤ ρǫ/24d, whereρ := min

(
σ
7 ,

τ
24 ,

ǫτ
144d

)
.

The proofs for both Theorems 10 and 11 appear in Appendix A.5.Notice that in each case we receive
samples from afull D-dimensional distribution but are still able to achieve rates independent ofD
because these distributions are concentrated around the lower dimensionalM . For the clutter noise
case we produce a tree that is consistent for samples drawn fromP (which areexactlyonM ), while
in the additive noise case we produce a tree on the observedYis which is(σ, ǫ) consistent for the
latent Xis (for θ small enough). It is worth noting that in the case of clutter noise we can still
consistently recover theentirecluster tree. Intuitively, this is because thek-NN distances for points
onM are much smaller than for clutter points that are far away fromM . As a result the clutter noise
only affects a vanishingly low level set of the cluster tree.
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