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In this paper we investigate the problem of estimating thistel tree for a density supported on
or near a smootk-dimensional manifold/ isometrically embedded iR”. We analyze a modi-
fied version of &-nearest neighbor based algorithm recently proposed budbhai and Dasgupta
(2010). The main results of this paper show that under mdimptions onf and M, we obtain
rates of convergence that dependdoonly but not on the ambient dimensid@h Finally, we sketch
a construction of a sample complexity lower bound instanca hatural class ahanifold oblivious
clustering algorithms.

1 Introduction

In this paper, we study the problem of estimating the clusts of a density when the density
is supported on or near a manifold. ¥t := {X;,...,X,} be a sample drawn i.i.d. from a
distribution P with density f. The connected componeriig () of the upper level sefx : f(z) >
A} are calleddensity clustersThe collectionrC = {C;(X) : A > 0} of all such clusters is called the
cluster treeand estimating this cluster tree is referred taassity clustering

The density clustering paradigm is attractive for variogigsons. One of the main difficulties of
clustering is that often the true goals of clustering arectesr and this makes clusters, and clustering
as a task seem poorly defined. Density clustering howevestimating a well defined population
guantity, making its goal, consistent recovery of gapulationdensity clusters, clear. Typically
only mild assumptions are made on the dengitgnd this allows extremely general shapes and
numbers of clusters at each level. Finally, tthester treeis an inherently hierarchical object and
thus density clustering algorithms typically do not requspecification of the “right” level, rather
they capture a summary of the density across all levels.

The search for a simple, statistically consistent estimafahe cluster tree has a long history.
Hartigan (1981) showed that the popular single-linkagerilgm is not consistent for a sample
from R, with D > 1. Recently] Chaudhuri and Dasgupta (2010) analyzed anitigowhich is
both simple and consistent. The algorithm finds the condexdenponents of a sequence of care-
fully constructed neighborhood graphs. They showed tisdgray as the parameters of the algorithm
are chosen appropriately, the resulting collection of emted components correctly estimates the
cluster tree with high probability.

In this paper, we are concerned with the problem of estirgatie cluster tree when the density
f is supported on or near a low dimensional manifold. The ratitwm for this work stems from
the problem of devising and analyzing clustering algorghmith provable performance that can be
used in high dimensional applications. When data live in tdighensions, clustering (as well as
other statistical tasks) generally become prohibitiveffiadilit due to the curse of dimensionality,



which demands a very large sample size. In many high dimeakapplications however data is
not spread uniformly but rather concentrates around a lowedsional set. This so-called manifold
hypothesis motivates the study of data generated on orowalimensional manifolds and the study
of procedures that can adapt effectively to the intrinsimetisionality of this data.

Here is a brief summary of the main contributions of our pag#&y We show that the simple al-
gorithm studied in the papér Chaudhuri and Dasgupta (2@ @pmsistent and has fast rates of
convergence for data on or near a low dimensional manitdld The algorithm does not require
the user to first estimat&/ (which is a difficult problem). In other words, the algorittadapts to
the (unknown) manifold. (2) We show that the sample compjeer identifying salient clusters is
independent of the ambient dimension. (3) We sketch a agi®in of a sample complexity lower
bound instance for a natural class of clustering algorittimswe study in this paper. (4) We intro-
duce a framework for studying consistency of clustering mitie distribution is not supported on
a manifold but rather, is concentrated near a manifold. Treegative model in this case is that the
data are first sampled from a distribution on a manifold arsh thoise is added. The original data
are latent (unobserved). We show that for certain noise leode can still efficiently recover the
cluster tree on thiatentsamples.

1.1 Related Work

The idea of using probability density functions for clugtgrdates back to Wishalrt Wishart (1969).
Hartigan (1981) expanded on this idea and formalized themstof high-density clustering, of
the cluster tree and of consistency and fractional comsigtef clustering algorithms. In partic-
ular,/Hartigan|(1981) showed that single linkage clusteitconsistent whe® = 1 but is only
fractionally consistent wheP > 1.[Stuetzle and R\ (2010) ahd Stuetzle (2003) have also pedpos
procedures for recovering the cluster tree. None of thesegpiures however, come with the theoret-
ical guarantees given by Chaudhuri and Dasgupta (2010ghaemonstrated that a generalization
of Wishart’s algorithm allows one to estimate parts of thestdr tree for distributions with full-
dimensional support near-optimally under rather mild egstions. This paper forms the starting
point for our work and is reviewed in more detail in the nexdtgm.

In the last two decades, much of the research effort invgltire use of nonparametric density
estimators for clustering has focused on the more speethfiroblems of optimal estimation of the
support of the distribution or of a fixed level set. Howevensistency of estimators of a fixed level
set does not imply cluster tree consistency, and extentliedeichniques and analyses mentioned
above to hold simultaneously over a variety of density evglnon-trivial. See for example the
papers Polonik (1995); Tsybakav (1997); Walther (1997)evas and Fraiman (1997); Cuevas et al.
(2006);[ Rigollet and Vert (2009); Maier etlal. (2000); Sirgghal. (2009)| Rinaldo and Wasserman
(2010); Rinaldo et all (2012), and references therein.nkzging the cluster tree has more recently
been considered by Kpotufe and von Luxburg (2011) who alge gisimple pruning procedure
for removing spurious clusters. Steinwart (2011) and Suipdudur and Steinwart (2012) propose
procedures for determining recursively the lowest splithe cluster tree and give conditions for
asymptotic consistency with minimal assumptions on thesitign

2 Background and Assumptions

Let P be a distribution supported on an unknowsdimensional manifold//. We assume that the
manifold M is ad-dimensional Riemannian manifold without boundary emleeldd a compact set
X C RP with d < D. We further assume that the volume of the manifold is bourfided above by
a constant, i.eyol; (M) < C. The main regularity condition we impose a1 is that its condition
number be not too large. Thendition numbeof M is 1/7, wherer is the largest number such
that the open normal bundle abaut of radiusr is imbedded ifR? for everyr < 7. The condition
number is discussed in more detail in the paper Niyogi eP808).

The Euclidean norm is denoted By || andv, denotes the volume of thedimensional unit ball in
R?. B(x,r) denotes the full-dimensional ball of radiugentered at and By, (xz,r) == B(z,r) N



M. ForZ c R?ando > 0, defineZ, = Z + B(0,0) andZy; » = (Z + B(0,0)) N M. Note that
Z is full dimensional, while ifZ C M thenZ,, , is d-dimensional.

Let f be the density o with respect to the uniform measure 8h. For A > 0, let C¢(\) be the
collection of connected components of the level{geE X : f(x) > A} and define theluster tree
of f to be the hierarch¢g = {C;(\) : A > 0}. For a fixed), any member ofC;()) is a cluster.
For a clustelC its restriction to the samplX is defined to be&”[X] = C' N X. The restriction of
the cluster tre€ to X is defined to b&[X] = {C N X : C € C}. Informally, this restriction is a
dendrogram-like hierarchical partition &f.

To give finite sample results, following Chaudhuri and Daggu2010), we define the notion of
salient clusters. Our definitions are slight modificatiohthose in_ Chaudhuri and Dasgupta (2010)
to take into account the manifold assumption.

Definition 1 ClustersA and A’ are (o, ¢) separated if there exists a nonempty_ M such that:

1. Any path alongV/ from A to A’ intersectsS.
2. SUpgeg,, . fl@)<(l—¢) infzeAM,guA’M,a f(z).

Chaudhuri and Dasgupta (2010) analyze a robust singledmk®&SL) algorithm (in Figurgl1). An
RSL algorithm estimates the connected components at a lewvetwo stages. In the first stage,
the sample i<leanedby thresholding thé:-nearest neighbor distance of the sample points at a
radiusr and then, in the second stage, the cleaned samplenisectedat a connection radiug.

The connected components of the resulting graph give amatgtiof the restrictiol© ¢ (A)[X]. In
Sectiori 4 we prove a sample complexity lower bound forclass of RSL algorithmahich we now
define.

Definition 2 Theclass of RSL algorithmsgefers to any algorithm that is of the form described in
the algorithm in Figuré 1L and relying on Euclidean balls, kitny choice ok, r and R.

We define two notions of consistency for an estimatof the cluster tree:

Definition 3 (Hart|gan consistency) For any setsd, A’ C X, let A,, (resp.,A’,) denote the small-

est cluster of containingA N X (resp,4’ N X). We sa;C is consistent if, whenevet and A’ are
different connected components{of : f(z) > A} (for someX > 0), the probability thatA4,, is
disconnected from/, approached asn — cc.

Definition 4 ((c, €) consistency) For any setsd, A’ C X such that4 and A’ are (o, ¢) separated,

let 4,, (resp.,A},) denote the smallest cIuster@fcontamlngA N X (resp,A’ N X). We say} is
consistent if, whenevet and A’ are different connected componentsof: f(z) > A} (for some
A > 0), the probability thatA,, is disconnected from!, approached asn — cc.

The notion of(a, €) consistencys similar that of Hartigan consistency except restriceddt, ¢)
separated clusters and A’.

Chaudhuri and Dasgupta (2010) prove a theorem, estalgiginite sample bounds for a particular
RSL algorithm. In their result there is no manifold afidgs a density with respect to the Lebesgue
measure ofR”. Their result in essence says that if

>0 D 1 D

n (6]

- Ae?vp(o/2)P & Ae?vp(o/2)P

then an RSL algorithm with appropriately chosen paramei@nsresolve any pair db, ) clusters
at level at least\. It is important to note that this theorem does not apply ® gbtting when
distributions are supported on a lower dimensional settfteast two reasons: (1) the densjtyis
singular with respect to the Lebesgue measuretoand so the cluster tree is trivial, and (2) the
definitions of saliency with respect t6 are typically not satisfied whefihas a lower dimensional
support.



1. For eachX;, ri(X;) := inf{r : B(X;,r) containsk data point$.
2. Asr grows from 0 toco:

(a) Construct a grapl,. g with nodes{X; : r,(X;) < r} and edgesX;, X;) if
X — X < R.
(b) LetC(r) be the connected components®f .

3. Denotel = {C(r) : r € [0,00)} and returrC.

Figure 1: Robust Single Linkage (RSL) Algorithm

3 Clustering on Manifolds

In this section we show that the RSL algorithm can be adapiegdover the cluster tree of a
distribution supported on a manifold of dimensién< D with the rates depending only e@h In
place of the cluster salience parameteour rates involve a new paramejer

in (30 T
P\ 16772416 )
The precise reason for this definition @fwill be clear from the proofs (particularly of Lemrb& 7)
but for now notice that in addition te it is dependent on the condition numldéer and deteriorates
as the condition number increases. Finally, to succinatsent our results we uge:= logn +
dlog(1/p).

Theorem 5 There are universal constants, andC» such that the following holds. For ary> 0,
0 < € < 1/2, run the algorithm in Figur€Il on a sampl drawn fromf, where the parameters are
set according to the equations

R=4p and k= Cylog®(1/8)(u/€?).

Then with probability at least— 4, C is (o, ¢) consistent. In particular, the clusters containingX|
and A’[X], whereA and A’ are (o, €) separated, are internally connected and mutually discotet
in C(r) for r defined by

n

1 k. Cylog(1/0)
dy 2 log /T,
Udr)\_le/6< + n k,u)

i 2 k
provided\ > vl

Before we prove this theorem a few remarks are in order:

1. To obtain an explicit sample complexity we plug in the eabf £ and solve fom from the in-
equality restricting\. The sample complexity of the RSL algorithm for recoveringe) clusters
at level at leash on a manifold)M with condition number at mogt/ is

d d
=0 1
" ()\ezvdpd 8 )\eQUdpd>

wherep = C'min (o, e7/d, 7). Ignoring constants that depend éthe main difference between
this result and the result of Chaudhuri and Dasgupta (2GL@)at our results only depend on
the manifold dimensiod and not the ambient dimensidn (typically D > d). There is also a
dependence of our result ari(e7)?, for er < o. In Sectiori#t we sketch the construction of an
instance that suggests that this dependence is not arcadifaur analysis and that the sample
complexity of the class of RSL algorithms is at least 1/(er)2(@),

2. Another aspect is that our choice of the connection raRlidepends on the (typically) unknown
p, while for comparison, the connection radius in Chaudhud Basgupte (2010) is chosen to be




V2r. Under the mild assumption that< n°( (which is satisfied for instance, if the density
on M is bounded from above), we show in Appenfix]A.8 that an idahtiheorem holds for
R = 4r. k is the only real tuning parameter of this algorithm whosd@hdepends onand an
unknown leading constant.

3. It is easy to see that this theorem also establishes tensysfor recovering the entire cluster
tree by selecting an appropriate scheduleogne,, and k,, that ensures thadll clusters are
distinguished for large enough (see Chaudhuri and Dasgupta (2010) for a fquroaf).

Our proofs structurally mirror those iin Chaudhuri and Dase2010). We begin with a few tech-
nical results in3]1. In Sectidn 3.2 we establ{she) consistency by showing that the clusters are
mutually disjoint and internally connected. The main téchhchallenge is that the curvature of the
manifold, modulated by its condition numbkfr, limits our ability to resolve the density level sets
from a finite sample, by limiting the maximum cleaning andmection radii the algorithm can use.
In what follows, we carefully analyze this effect and shoattiomewhat surprisingly, despite this
curvature, essentially the same algorithm is able to adafite unknown manifold and produce a
consistent estimate of the entire cluster tree. Similarifolhadaptivity results have been shown in
classification Dasgupta and Freund (2008) and in non-pdremnegression Kpotufe and Dasgupta
(2012); Bickel and L.il(2006).

3.1 Technical results

In our proof, we use the uniform convergence of the empircass of Euclidean balls to their true
mass. In the full dimensional settinglof Chaudhuri and Datg(R010), this follows from standard
VC inequalities. To the best of our knowledge however shamphent dimension independent)
inequalities for manifolds are unknown. We get around thistacle by using the insight that, in
order to analyze the RSL algorithms, uniform convergenceéfaclidean balls around theample
pointsand around dixed minimuns-net\ of M (for an appropriately choser) suffice to analyze
the RSL algorithm.

Recall, ans-net NV C M is such that every point o¥/ is at a distance at mostfrom some point
inN. Let B, n := {B(z, s) : ze NUX,s > 0} be the collection of balls whose centers are
sample or net points. We now state our uniform convergermenke The proof is in Append[xAlL3.

Lemma 6 (Uniform Convergence) Assumes > . Then there exists a constafiy such that the
following holds. For every > 0, with probability> 1 — ¢, for all B € B,, »r, we have:

P(B)> —/— = P,(B)>0

)

k k
PB)> 5+ S = Pup) 2t
n n n
k k
PBy <t %w//w — PB<l

whereCs := 2Cylog(2/6), andp := 1 + logn + log|NV| = Cd + logn + dlog(1/s). Here
P, (B) = |XnN B|/n denotes the empirical probability measureffandC is a universal constant.

Next we provide a tight estimate of the volume of a small batkkisected with\/. This bounds
the distortion of the apparent density due to the curvatfitbeomanifold and is central to many of
our arguments. Intuitively, the claim states that the vatsmapproximately that of édimensional
Euclidean ball, provided that its radius is small enough pared tor. The lower bound is based
on Lemma 5.3 of Nivogi et all (2008) while the upper bound isdubon a modification of the main
result of Chazal (2013).

Lemma 7 (Ball volumes) Assume- < 7/2. DefineS := B(z,r) N M for a pointz € M. Then

2\ 42 - d
(1 — 472> var® < volg(S) < vy (T — 27’1) r(li,
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wherery =17 —74/1 — 2r/7. In particular, ifr < er/72d for 0 < e < 1, then
var(1 — €/6) < volg(S) < vard(1+ €/6).

3.2 Separation and Connectedness

Lemma 8 (Separation) Assume that we pidk r and R to satisfy the conditions:
r < P R= 4P,

var (1—6/6)\>ﬁ+ 5\/ , var®(1+ €¢/6)A(1 — ¢) <§f \/

Then with probabilityl — ¢, we have: (1) All points i,_,. and A/ are kept, and all points in
S, are removed. (2) The two point sets) X and A’ N X are disconnected i, .

Proof. The proof is analogous to the separation proaf of Chaudmarizasgupta (2010) with sev-
eral modifications. Most importantly, we need to ensure dlespite the curvature of the manifold
we can still resolve the density well enough to guaranteewieacan identify and eliminate points
in the region of separation.

Throughout the proof, we will assume that the good event imial® (uniform convergence for
Bn,N) occurs. Sincer < er/72d, by Lemma¥vol(Bs(z, 7)) is betweenvdrd(l — ¢/6) and
vard(14-¢€/6), foranyx € M. SoifX; € AUA’, thenB,(X;,r) has mass at leagr?(1—¢/6)-\
Since this is> £ 4 & -5.\/k . by assumption, this ball contains at leassample points, and hence
X; is kept. on the other hand, KX; € S,_,, then the sefB,;(X;,r) contains mass at most
var®(1+¢€/6)- M1 —e¢). Thisis< £ — €/, Thus by Lemmal@B, (X;, r) contains fewer than
k sample points, and hencg is removed.

To prove the graph is disconnected, we first need a bound ogetbéesic distance between two
points that are at mogR apart in Euclidean distance. Such an estimate follows froop&sition
6.3 inlNiyogi et al. (2008) who show that ifp — ¢|] = R < 7/2, then the geodesic distance

dr(p,q) < 7 —74/1— 2 In particular, ifR < /4, thendy(p,q) < R (14 &) < 2R. Now,

notice that if the graph is connected there must be an edgedhaects two points that are at a
geodesic distance of at leaXtr — r). Any path between a point id and a point inA” along M
must pass through,, . and must have a geodesic length of at |@dst— r). This is impossible if
the connection radius satisfi2® < 2(¢ — r), which follows by the assumptions erand R. [J

All the conditions in LemmAl8 can be simultaneously satidfigdettingk := 16CZ(u/€?), and

vdrd(1—6/6)~)\:%+%\/m. 1)

The condition orr is satisfied since. > vfpdg and the condition o is satisfied by its definition.

Lemma 9 (Connectedness)Assume that the parametetsr and R satisfy the separation condi-
tions (in Lemmal8). Then, with probability at ledst- ¢, A[X] is connected ifi7, g.

Proof. Let us show that any two points i N X are connected i, . Considery,y’ € AN X.
SinceA is connected, there is a pathbetweeny, 3’ lying entirely insideA, i.e., a continuous map
P :[0,1] — A suchthatP(0) = y andP(1) = y'. We can find a sequence of poists ...,y € P
such thatyy = y, y;: = v/, and the geodesic distance &1 (and hence the Euclidean distance)
betweery; 1 andy; is at mosty, for an arbitrarily small constant

Let NV be minimalR/4-net of M. There exist; € A such that|y; — z;|| < R/4. Sincey; € A, we
havez; € Ay /4, @and hence the balBy, (z;, R/4) lies completely insided; /o € Arro—r. In
particular, the density inside the ball is at leastiverywhere, and hence the mass inside it is at least

va(R/A)H(1 — ¢/6)A > %



Observe thaf? > 4r and so this condition is satisfied as a consequence of sagsBquatior{ L.
Thus Lemmdl6 guarantees that the b8l (z;, R/4) contains at least one sample point, say
(Without loss of generality, we may assumg= y andz; = y’.) Since the ball lies completely in
Anro—r, the sample point; is not removed in the cleaning step (Lemha 8).

Finally, we boundd(x;_1, ;) by considering the sequence of poifis_1, z;—1, Yi—1, Yi, Zi, Zi)-

The pair(y;—1,y;) are at mosts apart and the other successive pairs at nfost apart, hence
d(xi—1,2;) < 4(R/4) + n = R+ n. The claim follows by letting;) — 0. O

4 A lower bound instance for the class of RSL algorithms

Recall that the sample complexity in Theoréin 5 scales as O (Aeggdpd log A62,‘lf(”)d> where
p = Cmin (o,e7/d, 7). For full dimensional densities, Chaudhuri and Dasgupf.(2 showed
the information theoretic lower bound = Q (/\EzleUD log /\e%lmD) . Their construction can be

straightforwardly modified to d-dimensional instance on a smooth manifold. Ignoring camtst
that depend od, these upper and lower bounds can still differ by a factor/gé7)?, for e < 0.

In this section we provide an informal sketch of a hard instdior the class of RSL algorithms (see
Definition[2) that suggests a sample complexity lower bound & 1/(er)?(®),

We first describe our lower bound instance. The manifdidonsists of two disjoint components,
andC’ (whose sole function is to ensufentegrates to 1). The componefitin turn contains three
parts, which we call ‘top’, ‘middle’, and ‘bottom’ respeetily. The middle part, denotel/s, is the
portion of the standard-dimensional unit spherg?(0,1) between the planes;, = ++/1 — 472
andz; = —V/1 —472. The top part, denoted/;, is the upper hemisphere of radixs centered
at(+v1—472,0,0,...,0). The bottom part, denotetls, is a symmetric hemisphere centered at
(=v1—1472,0,0,...,0). ThusC is obtained by gluing a portion of the unit sphere with two &in
hemispherical capsC as described does not have a condition number at infesbecause of the
“corners” at the intersection aff;, and M; U M3. This can be fixed without affecting the essence
of the construction by smoothing this intersection by ngla ball of radius- around it (a similar
construction is made rigorous in Theorem € of Genovese ¢2@12)). LetP be the distribution
on M whose density ovef' is A if |z1]| > 1/2, and\(1 — €) if |x1| < 1/2, where is chosen
small enough such thatvol,;(C) < 1. The density ove€” is chosen such that the total mass of the
manifold is1. Now M; and M3 are(o, €) separated at level for o = Q(1). The separator sét is

the equator of\/5 in the planer; = 0.

We now provide some intuition for why RSL algorithms will e n > 1/(er)?(?) to succeed on
this instance. We focus our discussion on RSL algorithmk kit- 2, i.e. on algorithms that do in
fact use acleaningstep, ignoring the single linkage algorithm which is knowtbe inconsistent for
full dimensional densities. Intuitively, because of thevature of the described instance, the mass
of a sufficiently large Euclidean ball in the separator sddiiger than the mass of a corresponding
ball in the true clusters. This means that any algorithmukas large balls cannot reliably clean the
sample and this restricts the size of the balls that can ke déew if points in the regions of high
density are to survive then there mustibeample points in themallball around any point in the
true clusters and this gives us a lower bound on the necesaaple size.

The RSL algorithms work by counting the number of sample tgairside the ball®3(z, r) centered

at the sample points, for some radius. In order for the algorithm to reliably resolvye, ¢) clusters,

it should distinguish points in the separatorSet M, from those in the level clustersh/; UM3. A
necessary condition for this is that the mass of a Bé#t, ) for z € S,_, should be strictly smaller
than the mass insid8(y,r) for y € M; U Ms. In Appendix[A.4, we show that this condition
restricts the radius to be at mosO(7+/¢/d). Now, consider any sample poimt in M; U M3
(such anz exists with high probability). Since, should not be removed during the cleaning step,
the ball B(xzg,r) must contain some other sample point (indeed, it must corghieastk — 1
more sample points). By a union bound, this happens withgitity at most(n — 1)vgri\ <



O(d=%2n7%/2)). If we want the algorithm to succeed with probability at lea& (say) then
n > (L/z) .

Td\ed/2

5 Cluster tree recovery in the presence of noise

So far we have considered the problem of recovering thearltige given samples from a density
supportedon a lower dimensional manifold. In this section we extend ¢hessults to the more
general situation when we havmisy samples concentratatkar a lower dimensional manifold.
Indeed it can be argued that the manifold + noise model is @aralaand general model for high-
dimensional data. In the noisy setting, it is clear that we icder the cluster tree of throisy
density in a straightforward way. A stronger requirementiddbe consistency with respect to
the underlyingatent sample. Following the literature on manifold estimatioral@krishnan et al.
(2012); Genovese etlal. (2012)) we consider two main noisgefsoFor both of them, we specify a
distribution( for the noisy sample.

1. Clutter Noise: We observe datd7, ...,Y, from the mixtureQ := (1 — =)U + =P where

0 < w < 1andU is a uniform distribution orit'. Denote the samples drawn frabin this mixture

X ={Xy,...,X,n}. The points drawn froni/ are called background clutter. In this case, we can
show:

Theorem 10 There are universal constantg andC- such that the following holds. For ady> 0,
0 < e < 1/2, run the algorithm in Figuréll on a samp{é&7, ..., Y, }, with parameters

R:=4p k:=Clog*(1/06)(u/e?).

Then with probability at least — 6, Cis (0,¢€) consistent. In particular, the clusters containing
A[X] and A'[X] are internally connected and mutually disconnecte@ in) for r defined by

1 k. Cylog(1/9)
d 2 108 /
varA 1—¢/6 (n n )

5 2 d/D 1— d/D
provided\ > max{ Qdﬁ, 2oy " (A-—m)Y (5
aps n n

vqed/ P

)1—d/D} wherep is now slightly modified (in con-

stants), i.e.p := min (2, <5, ).

2. Additive Noise The data are of the forivi; = X;+n; whereXy,..., X,, ~ P,andny,...,n, are
a sample fromanybounded noise distributio®, with n; € B(0, §). Note thatQ is the convolution
of Pand®,Q = P x .

Theorem 11 There are universal constantg andC- such that the following holds. For ady> 0,
0 < e < 1/2, run the algorithm in Figuréll on the samp{&7, ..., Y, } with parameters

R:=5p k:=Cylog*(1/0)(u/e?).

Then with probability at least — 8, C is (0, €) consistent fof < pe/24d. In particular, the clusters
containing{Y; : X; € A} and{Y; : X; € A’} are internally connected and mutually disconnected
in C(r) for r defined by

var? (1 — €/12)(1 — €/6) A f

and9 < pe/24d, wherep := min (% 7 )

if A > 7’24’144d

_1))

The proofs for both Theorerbs]10 dnd 11 appear in AppéndixMdfice that in each case we receive
samples from dull D-dimensional distribution but are still able to achieveesaindependent ab
because these distributions are concentrated aroundvilee thimensionall/. For the clutter noise
case we produce a tree that is consistent for samples drawnHr(which areexactlyon M), while

in the additive noise case we produce a tree on the obséfeedhich is(o, €) consistent for the
latent X;s (for 8 small enough). It is worth noting that in the case of clutterse we can still
consistently recover thentire cluster tree. Intuitively, this is because thdéN distances for points
on M are much smaller than for clutter points that are far awanfid. As a result the clutter noise
only affects a vanishingly low level set of the cluster tree.
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