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Abstract

Learning dynamic models from observed data has been a té&ssng in many
scientific studies or engineering tasks. The usual setinigégt data are collected
sequentially from trajectories of some dynamical systeeraton. In quite a few
modern scientific modeling tasks, however, it turns out tletinble sequential
data are rather difficult to gather, whereas out-of-ordepshots are much eas-
ier to obtain. Examples include the modeling of galaxiespuit diseases such
Alzheimer’s, or certain biological processes.

Existing methods for learning dynamic model from non-segaedata are mostly
based on Expectation-Maximization, which involves honweax optimization and
is thus hard to analyze. Inspired by recent advances inrgpé=arning methods,
we propose to study this problem from a different perspectmoment matching
and spectral decomposition. Under that framework, we iflentasonable as-
sumptions on the generative process of non-sequence datarapose learning
algorithms based on the tensor decomposition method f@pteablyrecover first-
order Markov models and hidden Markov models. To the bestiokaowledge,
this is the first formal guarantee on learning from non-segaelata. Preliminary
simulation results confirm our theoretical findings.

1 Introduction

Learning dynamic models from observed data has been a tisstia in many fields of study, scien-
tific or engineering tasks. The usual setting is that dat@altected sequentially from trajectories of
some dynamical system operation, and the goal is to reca@rangeters of the underlying dynamic
model. Although many research and engineering efforts baes devoted to that setting, it turns
out that in quite a few modern scientific modeling problenmgther situation is more frequently en-
countered: observed data are out-of-order (or partialtleced) snapshots rather than full sequential
samples of the system operation. As pointed out in [7, 83, sftuation may appear in the modeling
of celestial objects such as galaxies or chronic diseasdgsasiAlzheimer’s, because observations
are usually taken from different trajectories (galaxiepatients) at unknown, arbitrary times. Or it
may also appear in the study of biological processes, suctllametabolism under external stimuli,
where most measurement techniques are destructive, miakiargy difficult to repetitively collect
observations from the same individual living organismshey tchange over time. However, it is
much easier to take single snapshots of multiple organisdengoing the same biological process
in a fully asynchronous fashion, hence the lack of timinginfation. Rabbat et al. [9] noted that in
certain network inference problems, the only availabladaé sets of node®-occurringin random
walks on the network without the order in which they were teidj and the goal is to reconstruct
the network structure from such co-occurrence data. Thoblpm is essentially about learning a
first-order Markov chain from data lacking sequence infdiora



As one can imagine, dynamic model learning in a non-secaiesgitting is much more difficult
than in the sequential setting and has not been thoroughtliest. One issue is that the notion
of non-sequence data is vague because there can be mamgrdiffienerative processes resulting
in non-sequence data. Without any restrictions, one caitydasl a case where no meaningful
dynamic model can be learnt. It is therefore important torBgout what assumptions on the data
and the model would lead to successful learning. Howevestiag methods for non-sequential
settings, e.g., [9, 11, 6, 8], do not shed much light on thésiésbecause they are mostly based
on Expectation-Maximization (EM), which require non-cervoptimization. Regardless of the
assumptions we make, as long as the resulting optimizatioblgm remains non-convex, formal
analysis of learning guarantees is still formidable.

We thus propose to take a different approach, based on arottgestanding estimation principle:
the method of momen{sioM). The basic idea of MoM is to find model parameters suct the
resulting moments match or resemble the empirical momdtissome estimation problems, this
approach is able to give unique and consistent estimatde thiei maximum-likelihood method gets
entangled in multiple and potentially undesirable locakimea. Taking advantage of this property,
an emerging area of research in machine learning has rgaakloped MoM-based learning al-
gorithmswith formal guaranteegor some widely used latent variable models, such as Gaussia
mixture models[5], Hidden Markov models [3], Latent DiriehAllocation [1, 4], etc. Although
many learning algorithms for these models exist, some lgabigen very successful in practice,
barely any formal learning guarantee was given until the Modded methods were proposed. Such
breakthroughs seem surprising, but it turns out that theynawstly based on one crucial property:
for quite a few latent variable models, the model parametansbe uniquely determined froppec-
tral decompositionsf certain low-order moments of observable quantities.

In this work we demonstrate that under the MoM and spectaathieg framework, there are reason-
able assumptions on the generative process of non-seqdata;aunder whiclthe tensor decompo-
sition method2], a recent advancement in spectral learning, can prgvadover the parameters
of first-order Markov modelandhidden Markov modelsTo the best of our knowledge, ours is the
first work that provides formal guarantees for learning froam-sequence data. Interestingly, these
assumptions bear much similarity to the usual idea betopat modeling with the bag-of-words
representation which isvariant to word orderingsthe task of inferring topics is almost impossi-
ble givenone single documeriho matter how long it is!), but becomes easier as more dontsne
touching upon various topics become available. For legrdynamic models, what we need in the
non-sequence data amaultiple setsof observations, where each set contains independent eampl
generated fronits own initial distribution and the many different initial distributions together eov
the entire (hidden) state space. In some of the aforemesttisnientific applications, such as bi-
ological studies, this type of assumptions might be redlizg running multiple experiments with
different initial configurations or amounts of stimuli.

The main body of the paper consists of four sections. Sel@ibriefly reviews the essentials of
the tensor decomposition framework [2]; Sectidn 3 detailsassumptions on non-sequence data,
tensor-decomposition based learning algorithms, and¢iieal guarantees; Section 4 reports some
simulation results confirming our theoretical findings)daled by conclusions in Section 5. Proofs
of theoretical results are given in the appendices in thelsapentary material.

2 Tensor Decomposition

We mainly follow the exposition in [2], starting with somegtiminaries and notations. A regpith
order tensord is a member of the tensor product spgeé_, R™ of p Euclidean spaces. For a vec-
torx € R™, we denote bx®” := x®x®---®x € @_, R™ its p-th tensor power. A convenient
way to representl € @*_, R™ is through g-way array of real numbersl;, i,...i, J1<i io,....ip <mo
where 4; ;,...;, denotes theiy, i, ..., i,)-th coordinate ofA with respect to a canonical basis.
With this representation, we can view as a multi-linear map that, given a set pfmatrices
{X; € Rm>m:i}P . produces another-th order tensotd(Xy, Xo, -+, X,) € @7_, R™ with
the followingp-way array representation:

A(Xy, Xoy o Xplivigiy = > Ajgogp (X1)jrin (Va)jaia - (Xp)ji,- (1)

1<j1,52;5-p<m
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Figure 1: Running example of Markov chain with three states

In this work we consider tensors that are up to the third-ofge< 3) and, for most of the time,
alsosymmetric meaning that theip-way array representations are invariant under permutsitids
array indices. More specifically, we focus on second and+tbider symmetric tensors in or slightly
perturbed from the following form:

k k
M = Zwi.“i@ﬂm My = sz‘lﬁi@ﬂi@ﬂm (2)
i=1

=1
satisfying the following non-degeneracy conditions:
Condition 1. w; >0V 1<i <k, {u; € R™}E_| are linearly independent, and < m.

As described in later sections, the core of our learning itasves estimatingw; }*_;, and{p,}*_;
from perturbed or noisy versions @ff; and M3. We solve this estimation problem with the tensor
decomposition method recently proposed by Anandkumar. §RIThe algorithm and its theoreti-
cal guarantee are summarized in Appendix A. The key comparfethis method is a novel tensor
power iteration procedure for factorizing a symmetric oghnal tensor, which is robust against
input perturbation.

3 Learning from Non-sequence Data

We first describe a generative process of non-sequence olafast-order Markov models and

demonstrate how to apply tensor decomposition methods rforpe consistent learning. Then

we extend these ideas to hidden Markov models and providedtieal guarantees on the sam-
ple complexity of the proposed learning algorithm. For tiotzal conveniences we define the
following vector-matrix cross produt®gcqi,2,33 @ (v @1 M)yp = vi(M)jr, (Vv @2 M )i =

;i (M) ik, (Vv ®3 M) = vi(M);;. For a matrix}/ we denote by\/; its i-th column.

3.1 First-order Markov Models

Let P € [0,1]™*™ be the transition probability matrix of a discrete, firstder, ergodic Markov
chain withm states and a unique stationary distributienlLet P be of full rank andl " P = 17.

To give a high-level idea of what makes it possible to leBrfrom non-sequence data, we use the
simple Markov chain with three states shown in Figure 1 asronning example, demonstrating
step by step how to extend from a very restrictive generaefting of the data to a reasonably
general setting, along with the assumptions made to allavgistent parameter estimation. In the
usual setting where we have sequences of observations{x$ayx(?), ...} with parenthesized
superscripts denoting time, it is straightforward to cetesitly estimaté®. We simply calculate the
empirical frequency of consecutive pairs of states:

5 x, (D =i x0 =)

Pi' = -
! > (x=7)
Alternatively, suppose for each statewe have arn.i.d. sampleof its immediate next stat®); :=
{xgl),xg”, ... | x® = 4}, where subscripts are data indices. Consistent estimatititis case

is also easy: the empirical distribution 6f; consistently estimateB;, the j-th column of P. For



example, the Markov chain in Figuré 1 may produce the foltmpthree samples, whose empirical
distributions estimate the three columnsfofespectively:

Dy = {2,1,2,2,2,2,2,2,2,2} = P, = [0.1 0.9 0.0]",
Dy = {3,3,2,3,2,3,3,2,3,3} = P, = [0.0 0.3 0.7]",
Dy = {1,1,3,1,3,3,1,3,3,1} = P; = [0.5 0.0 0.5]".

A nice property of these estimates is that, unlike in the satjal setting, they do not depend on
any particular ordering of the observations in each set.elbeless, such data are not quite non-
sequenced because all observations are made at exactlgxthéme step. We thus consider the
following generalization: for each state we haveD; := {x\") x{”) ... | x©@ = j}, ie.,
independent samples of states drawnrdtnownfuture times{t1, ¢, .. .}. For example, our data in
this setting might be

Dl = {231727372737372a2a3}7
Dy = {3,3,2,3,2,1,3,2,3,1}, 3)
Dy = {1,1,3,1,2,3,2,3,3,2).

Obviously it is hard to extract information abo# from such data. However, if we assume that
the unknown timeg¢;} are i.i.d. random variables following some distributiodépendent of the
initial statey, it can then be easily shown th&Y;’s empirical distribution consistently estimatés,

the j-th column of the thexpected transition probability matrik := E,[P*]:

Dy = {2,1,2,3,2,3,3,2,2,3} = T, = [0.1 0.5 0.4]",
Dy = {3,3,2,3,2,1,3,2,3,1} = T, = [0.2 0.3 0.5]T,
Dy = {1,1,3,1,2,3,2,3,3,2} = T = [0.3 0.3 0.4] .

In general there exist mank’s that result in the sam@&. Therefore, as detailed later, we make
a specific distributional assumption dmn;} to enable unique recovery of the transition matkx
from T (Assumption A.1). Next we consider a further generalizathere the unknowns are not
only the time stamps of the observations, but also the irstae;. In other words, we only know
each set was generated from the same initial state, but diknoot the actual initial state. In this
case, the empirical distributions of the sets consistagtimate the columns @f in someunknown
permutationT:

Dney = {1,1,3,1,2,3,2,3,3,2} = T/\(?,) = [0.3 0.3 0.4]".

Dn = {3,3,2,3,2,1,3,2,3,1} = Ty = [0.2 0.3 0.5]7,

_—

Dnay = {2,1,2,3,2,3,3,2,2,3} = Ty = [0.1 0.5 0.4]".
In order to be able to identifii, we will again resort to randomness and assume the unknatiad in
states are random variables following a certain distranuAssumption A.2) so that the data carry
information aboutll. Finally, we generalize from a single unknown initial stédean unknown
initial state distribution where each set of observatiofs:= {xgtl), ng2>, ... | @} consists of
independent samples of states drawn at random times frora soknown initial state distribution
(). For example, the data may look like:

Dﬂ_(o) = {1537371727372a3a372}a
1

Dﬂ_(o) = {371527372717?)’273)1}7
2

Do = {21,2,3,3,33,1,2,3},
3

With this final generalization, most would agree that theagated data are non-sequenced and that
the generative process is flexible enough to model the reddvsituations described in Section

[1. However, simple estimation with empirical distributtono longer works because each set may
now contain observations from multiple initial states. §isi where we take advantage of the tensor

4



decomposition framework outlined in Section 2, which regsiproper assumptions on the initial
state distributiont(®) (Assumption A.3).

Now we are ready to give the definition of our entire genegafivocess. Assume we hawé sets
of non-sequence data each containingbservations, and each set of observatifrs? ; were
independently generated by the following:

e Draw an initial distribution

7w ~ Dirichlet(), (Assumption A.3)
ErO =a/(X0 a;) =7, m #m;Vi#j. (Assumption A.2)

e Fori=1,...,n,
— Draw a discrete time; ~ Geometric(r), t; € {1,2,3,...}. (Assumption A.1)

— Draw an initial states; ~ Multinomial(m,), s; € {0,1}™.
— Draw an observatios; ~ Multinomial(P'is;), x; € {0,1}™.

The above generative process has several properties, #lirgte data points in the same set share
the same initial state distribution but can have differanitidl states; the initial state distribution
varies across different sets and yet centers at the stayiaistribution of the Markov chain. As
mentioned in Sectidn| 1, this may be achieved in biologiaadists by running multiple experiments
with different input stimuli, so the data collected in thergaexperiment can be assumed to have the
same initial state distribution. Second, each data poidtasvn from an independent trajectory of
the Markov chain, a similar situation in the modeling of gas or Alzheimer’s, and random time
steps could be used to compensate for individual variafiospeed: a small/large corresponds

to a slowly/fast evolving individual object. Finally, thegmetric distribution can be interpreted as
an overall measure of the magnitude of speed variation:ge lanccess probability would result

in many smalk;’, meaning that most objects evolve at similar speeds, véhdmallr would lead to
t;'s taking a wide range of values, indicating a large speettian.

To use the tensor decomposition method in Appehdix A, we tieetensor structure (2) in certain
low-order moments of observed quantities. The followingaitem identifies such quantities:

Theorem 1. Define the expected transition probability matfix= E;[P!] = rP(I — (1 —r)P)~!
and letoyg :== ), i, Cy = E[x;1x5 ] andC3 := E[x; ® x2 ® x3]. Then the following holds:

Exi] = m Cy = A5Tdiag(m)T" + ;2 7n (4)
3 e} 3 2a.2

O3 = Gy LTl a0tz Dam T4 Co — oy ()

M, = (Oéo + 1)02 — ()(()7'('71'T = leag(ﬂ')TT, (6)

My = (ao+2)2(ao+1) Cs — (040451)040 23:1 @y Cy + Ozgﬂ'®3 _ Zz WiTi®3- @)

The proof is in Appendix B./1, which relies on the special stiwe in the moments of the Dirichlet
distribution (Assumption A.3). It is clear thdt/; and M3 have the desired tensor structure. As-
sumingag is known, we can form estimatég, and M3 by computing empirical moments from
the data. Note that the;’'s are exchangeable, so we can use all pairs and triples afpotants to
compute the estimates. Interestingly, these low-order emdgsthave a very similar structure to those
in Latent Dirichlet Allocation|[1]. Indeed, according torogenerative process, we can view a set
of non-sequence data points as a document generated by anriddal with the expected transi-
tion matrix 7" as the topic matrix, the stationary distributianas the topic proportions, and most
importantly, the states dmth the words and the topic3he last property is what distinguishes our
generative process from a general LDA model: because betivtinds and the topics correspond to
the states, the topic matrix is no longer invariant to colyparmutations. Since the tensor decompo-
sition method may returi under any column permutation, we need to recover the camatthing
between its rows and columns. Note thatfheeturned by the tensor decomposition method under-
goes the same permutation8s columns. Because afl;’s have different values by Assumption
A.2, we may recover the correct matching by sorting both éternedr and the mearr of all data.

A final issue is estimating® andr from 7. This is in general difficult even when the exatt
is available because multiple choices®fandr may result in the sam@&. However, if the true
transition matrixP has at least one zero entry, then unique recovery is possible



Theorem 2. Let P*, r*, T* and w* denote the true values of the transition probability matrix
the success probability, the expected transition matmixi thhe stationary distribution, respectively.
Assume that>* is ergodic and of full rank, and’; = 0 for somei andj. LetS := {\/(A — 1) |

A is a real negative eigenvalue @t} U {0}. Then the following holds:
e 0 <max(S) <r* <1
e Forallr € (0,1]\ S, P(r) := (rI + (1 — r)T*)~1T* is well-defined and

1"P(r) = 17, P(r)x* = w*, P* = P(r"),
P(r); >0Vij <= r>r"

That is,P(r) is a stochastic matrix if and only if > r*.

The proof is in Appendix C. This theorem indicates that we daterminer* from 7™ by doing
bi-section on(0, 1]. But this approach fails when we repla@& by an estimatd’ because even
ﬁ(r*) might contain negative values. A more practical estimapootedure is the following: for
each value of in a decreasing sequence starting from 1, pra]%(at) =(rl+(1- r)f)—lf onto

the space of stochastic matrices and record the projectsdante. Then search in the sequence of
projection distances for the first sudden incréastarting from 1, and take the corresponding value
of r and projectedB(r) as our estimates.

Assuming the true andca, are known, with the empirical moments being consistentregtirs for
the true moments and the tensor decomposition method geerhto return accurate estimates un-
der small input perturbation, we can conclude that the egémdescribed above will converge (with
high probability) to the true quantities as the sample dizecreases. We give sample complexity
bound on estimation error in the next section for hidden Mankodels.

3.2 Hidden Markov Models

Let P andw now be defined over the hidden discrete state space ofkisemed have the same

properties as the first-order Markov model. The generatioegss here is almost identical to (and
therefore share the same interpretation with) the one iti®@€8.1, except for an extra mapping
from the discrete hidden state to a continuous observagianes

e Draw a state indicator vectdr; ~ Multinomial(Ps;), h; € {0,1}*.

e Draw an observationx; = Uh; + ¢;, whereU € R™** denotes a rank-matrix of
mean observation vectors for théhidden states, and the random noise vecigssare i.i.d
satisfyingE[e;] = 0 and Vafe;| = 1.

Note that a spherical covariatfcs required for the tensor decomposition method to be agblé
The low-order moments that lead to the desired tensor streieire given in the following:

Theorem 3. Define the expected hidden state transition makrix= E,[P!] = rP(I — (1—r)P)~!
and |et0é0 = Za Oéi7V1 = E[Xﬂ,VQ = E[X1X1TLV3 = E[X?g],CQ = ]E[xlx;] and Cg =
E[x; ® x2 ® x3]. Then the following holds:

Vi = Um, Vy = Udiag(m)U" + 0%, Vs = 3, mUE+33_ Vi @4 (21,
My, = Vo—o?I=Udiag(w)U", M;s = V3— 23:1 Vi @4 (021) =3, 7TiUi®3,
02 = aglJrl UTdIag(ﬂ-)(UT)T + af:Jorl VlVlTa
3 a 3 2a2 3
Cs = Tmrmern i MU + 5045 Yam Vi 84 C2 — oyt Vo
My = (ag+1)Cy—agViV," = UTdiag(m)(UT)",
My = Lot leodloo 578 V@4 Cy +adVE? = X, m(UT)P,

Yntuitively the jump should be easier to locateRgets sparser, but we do not have a formal result.
2\We may allow different covariancegz-l for different hidden states. See Section 3.2 of [2] for details.



Algorithm 1 Tensor decomposition method for learning HMM from non-sage data

input N sets of non-sequence data points, the success probability Dirichlet parametet,, the
number of hidden statés and numbers of iteratiorisandN.
output Estimategr, P andU possibly under permutation of state labels.

P

~T
1. Compute emplrlcal averagés, Va, V3, Cy, Cs, ando? = )\mm(Vg vy ).
2: ComputeM2, Mg, Mé, M’
3: Run Algorlthrri—]L (Appendix A) om\f; and M with the number of hidden statésto obtain

a symmetric tensaf € R¥**** and a whitening transformation’ € R
4: Run Algorithm A.2 (Appendix A)k times each with numbers of iteratiohsandN, the input

tensor in the first run set té6 and in each subsequent run set to the deflated tensor retioyned
the previous run, resultmg ik pa|rs of elgenvalue/elgenvect{)(r)\,, vL)}i-“:l.
5: Repeat Steps 4 and 5 (M2 andM3 to obtainZ”, W/ and{(\;, ’) Z 1

: Match{(X;, v;) Yo, with {(\, v))}i_, by sorting{\;}%_, and{X
7: Obtain estimates of HMM parameters

(@]

UT = (WHIVIA, U :=WT)VA,
EN ~ — ~ =2 A —2
P = (U+Q-nUDUT, 7= "X, 7,

whereV := [v --- V3], A := diag([X\; - - Ak] ); V7 andA’ are defined in the same way.
8: (Optional) Prolecﬁ onto the simplex and® onto the space of stochastic matrices.

The proof is in Appendix B.2. This theorem suggests thaikarfirst-order Markov models, HMMs
requiretwo applications of the tensor decomposition methods, ond/fgrand M3 for extracting
the mean observation vectots and the other o/} and M for extracting the matrix product
UT. Another issue is that the estimates fdp and M3 require an estimate for the noise variance
o2, which is not directly observable. Nevertheless, siféeand M5 are in the form of low-order
moments of spherical Gaussian mixtures, we may use therexisisult (Theorem 3.2, [2]) to obtain

an estimat&? = )\mm(Vz V1 V1 ). The situation regarding permutations of the estimatetss a
different here. First note th@ = (rU+(1—r)UT)UT, which implies that permuting the columns
of U and the columns dffT" in the same manner has the effect of permuting both the roa/$rem
columns of P, essentially re-labeling the hidden states. Hence we cneapect to recovel up
to some simultaneous row and column permutation. By thenggon thatr;’s are all different, we
can sort the two estimatésand=’ to match the columns df andUT’, and obtain? if 7 is known.
Whenr is unknown, a similar heuristics to the one for first-orderrkévy models can be used to
estimater, based on the fact th& = (rU + (1 — r)UT)'UT = (rI + (1 — r)T)~'T, suggesting
that Theorem 2 remains true when expressihigy U andUT'.

Algorithm|1| gives the complete procedure for learning HMMrfr non-sequence data. Combining
the perturbation bounds of the tensor decomposition metpdendix A), the whitening procedure
(Appendix D.1) and the matrix pseudoinverse [10], and cotveéion bounds on empirical moments
(Appendix D.3), we provide a sample complexity analysis:

Theorem 4. Suppose the numbers of iteratiodsand L for Algorithm/ A.2 satisfy the conditions in
Theorem A.l1 (AppendiX A), and the number of hidden statéise success probability, and the
Dirichlet parameter are all given. For any; € (0,1) ande > 0, if the number of setd satisfies

12max(k?, m)m3v3(ag + 2)2%(ap + 1)2
n
N 225000 4600 42000201 (UT)? max (o1 (UT), 01 (U), 1)?
62, "min(og (M), 01 (M2))?’ €20, (rU + (1 — r)UT)* min(o (UT), o1(U),1)* )’

min

N >

wherec is some constant; := max(o? + max; ; (|Uik|*), 1), min := min; ; |1/ /7 — 1/ /75,
ando;(-) denotes the-th largest singular value, then the and U returned by Algorithm 1 satisfy

eop(rU + (1 —r)UT)?
601 (UT) ) 21=m

Prob(|[P— P| <e)>1-n and Prob<||U -0 <

7
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Figure 2: Simulation results

whereP andU may undergo label permutation.

The proof is in Appendix E. In this result, the sample sieexhibits a fairly high-order polynomial
dependency om, k, e~ ! and scales with /5 linearly instead of logarithmically, as is common in
sample complexity results on spectral learning. This isabee we do not impose any constraints
on the observation model and simply use the Markov inequédit bounding the deviation in the
empirical moments. If we make stronger assumptions sucloasdedness or sub-Gaussianity, it
is possible to use stronger, exponential tail bounds toiolbatter sample complexity. Also worth
noting is thaté;?n acts as a threshold. As shown in our proof, as long as the tmpararm of
the tensor perturbation is sufficiently smaller thign,,, which measures the gaps between different
m;'S, we can correctly match the two sets of estimated tengmmealues. Lastly, the lower bound
of N, as one would expect, depends on conditions of the matrieieg lestimated as reflected in
the various ratios of singular values. An interesting gitpmissing from the sample analysis is the
size of each set. To simplify the analysis we essentially assume- 3, but understanding how

n might affect the sample complexity may have a critical imipagractice: when collecting more
data, should we collect more sets or larger sets? What is dlde-off between them? This is an
interesting direction for future work.

4  Simulation

Our HMM hasm = 40 andk = 5 with Gaussian noise? = 2. The mean vector§ were sampled
from independent univariate standard normal and then rigzetato lie on the unit sphere. The
transition matrixP contains one zero entry. For the generative process, weysetl,r = 0.3,n =
1000, andN € 1000{2°,2!,...,219}. The numbers of iterations for Algorithm A.2 weke= 200
andL = 1000. Figure 2(a) plots the relative matrix estimation error jectral norm) against the
sample sizeV for P, U, andUT obtained by Algorithm 1 given the true It is clear thatU is
the easiest to learn, followed l&yT", and P is the most difficult, and that all three errors converge
to a very small value for sufficiently larg¥. Note that in Theorem 4 the bounds fBrandU are
different. With the model used here, the extra multiplieatiactor in the bound fot/ is less than
0.007, suggesting that is indeed easier to estimate thBnFigure 2(b) demonstrates the heuristics
for determiningr, showing projection distances (in logarithm) versu#&s N increases, the take-off
point gets closer to the true= 0.3. The large peak indicates a pole (the Séh Theorem 2).

5 Conclusions

We have demonstrated that under reasonable assumptinsg; tlecomposition methods can prov-
ably learn first-order Markov models and hidden Markov medebm non-sequence data. We
believe this is the first formal guarantee on learning dyramodels in a non-sequential setting.
There are several ways to extend our results. No matter whigitadition generates the random time
steps, tensor decomposition methods can always learn feeted transition probability matrix.
Depending on the application, it might be better to use sotmeralistribution for the missing time.
The proposed algorithm can be modified to learn discrete HMMEer a similar generative process.
Finally, applying the proposed methods to real data shoeilthé most interesting future direction.
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