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Abstract

Learning dynamic models from observed data has been a central issue in many
scientific studies or engineering tasks. The usual setting is that data are collected
sequentially from trajectories of some dynamical system operation. In quite a few
modern scientific modeling tasks, however, it turns out thatreliable sequential
data are rather difficult to gather, whereas out-of-order snapshots are much eas-
ier to obtain. Examples include the modeling of galaxies, chronic diseases such
Alzheimer’s, or certain biological processes.
Existing methods for learning dynamic model from non-sequence data are mostly
based on Expectation-Maximization, which involves non-convex optimization and
is thus hard to analyze. Inspired by recent advances in spectral learning methods,
we propose to study this problem from a different perspective: moment matching
and spectral decomposition. Under that framework, we identify reasonable as-
sumptions on the generative process of non-sequence data, and propose learning
algorithms based on the tensor decomposition method [2] toprovablyrecover first-
order Markov models and hidden Markov models. To the best of our knowledge,
this is the first formal guarantee on learning from non-sequence data. Preliminary
simulation results confirm our theoretical findings.

1 Introduction

Learning dynamic models from observed data has been a central issue in many fields of study, scien-
tific or engineering tasks. The usual setting is that data arecollected sequentially from trajectories of
some dynamical system operation, and the goal is to recover parameters of the underlying dynamic
model. Although many research and engineering efforts havebeen devoted to that setting, it turns
out that in quite a few modern scientific modeling problems, another situation is more frequently en-
countered: observed data are out-of-order (or partially-ordered) snapshots rather than full sequential
samples of the system operation. As pointed out in [7, 8], this situation may appear in the modeling
of celestial objects such as galaxies or chronic diseases such as Alzheimer’s, because observations
are usually taken from different trajectories (galaxies orpatients) at unknown, arbitrary times. Or it
may also appear in the study of biological processes, such ascell metabolism under external stimuli,
where most measurement techniques are destructive, makingit very difficult to repetitively collect
observations from the same individual living organisms as they change over time. However, it is
much easier to take single snapshots of multiple organisms undergoing the same biological process
in a fully asynchronous fashion, hence the lack of timing information. Rabbat et al. [9] noted that in
certain network inference problems, the only available data are sets of nodesco-occurringin random
walks on the network without the order in which they were visited, and the goal is to reconstruct
the network structure from such co-occurrence data. This problem is essentially about learning a
first-order Markov chain from data lacking sequence information.

1



As one can imagine, dynamic model learning in a non-sequential setting is much more difficult
than in the sequential setting and has not been thoroughly studied. One issue is that the notion
of non-sequence data is vague because there can be many different generative processes resulting
in non-sequence data. Without any restrictions, one can easily find a case where no meaningful
dynamic model can be learnt. It is therefore important to figure out what assumptions on the data
and the model would lead to successful learning. However, existing methods for non-sequential
settings, e.g., [9, 11, 6, 8], do not shed much light on this issue because they are mostly based
on Expectation-Maximization (EM), which require non-convex optimization. Regardless of the
assumptions we make, as long as the resulting optimization problem remains non-convex, formal
analysis of learning guarantees is still formidable.

We thus propose to take a different approach, based on another long-standing estimation principle:
the method of moments(MoM). The basic idea of MoM is to find model parameters such that the
resulting moments match or resemble the empirical moments.For some estimation problems, this
approach is able to give unique and consistent estimates while the maximum-likelihood method gets
entangled in multiple and potentially undesirable local maxima. Taking advantage of this property,
an emerging area of research in machine learning has recently developed MoM-based learning al-
gorithmswith formal guaranteesfor some widely used latent variable models, such as Gaussian
mixture models[5], Hidden Markov models [3], Latent Dirichlet Allocation [1, 4], etc. Although
many learning algorithms for these models exist, some having been very successful in practice,
barely any formal learning guarantee was given until the MoM-based methods were proposed. Such
breakthroughs seem surprising, but it turns out that they are mostly based on one crucial property:
for quite a few latent variable models, the model parameterscan be uniquely determined fromspec-
tral decompositionsof certain low-order moments of observable quantities.

In this work we demonstrate that under the MoM and spectral learning framework, there are reason-
able assumptions on the generative process of non-sequencedata, under whichthe tensor decompo-
sition method[2], a recent advancement in spectral learning, can provably recover the parameters
of first-order Markov modelsandhidden Markov models. To the best of our knowledge, ours is the
first work that provides formal guarantees for learning fromnon-sequence data. Interestingly, these
assumptions bear much similarity to the usual idea behindtopic modeling: with the bag-of-words
representation which isinvariant to word orderings, the task of inferring topics is almost impossi-
ble givenone single document(no matter how long it is!), but becomes easier as more documents
touching upon various topics become available. For learning dynamic models, what we need in the
non-sequence data aremultiple setsof observations, where each set contains independent samples
generated fromits own initial distribution, and the many different initial distributions together cover
the entire (hidden) state space. In some of the aforementioned scientific applications, such as bi-
ological studies, this type of assumptions might be realized by running multiple experiments with
different initial configurations or amounts of stimuli.

The main body of the paper consists of four sections. Section2 briefly reviews the essentials of
the tensor decomposition framework [2]; Section 3 details our assumptions on non-sequence data,
tensor-decomposition based learning algorithms, and theoretical guarantees; Section 4 reports some
simulation results confirming our theoretical findings, followed by conclusions in Section 5. Proofs
of theoretical results are given in the appendices in the supplementary material.

2 Tensor Decomposition

We mainly follow the exposition in [2], starting with some preliminaries and notations. A realp-th
order tensorA is a member of the tensor product space

⊗p

i=1 Rmi of p Euclidean spaces. For a vec-
tor x ∈ Rm, we denote byx⊗p := x⊗x⊗· · ·⊗x ∈ ⊗p

i=1 Rm its p-th tensor power. A convenient
way to representA ∈ ⊗p

i=1 Rm is through ap-way array of real numbers[Ai1i2···ip
]1≤i1,i2,...,ip≤m,

whereAi1i2···ip
denotes the(i1, i2, . . . , ip)-th coordinate ofA with respect to a canonical basis.

With this representation, we can viewA as a multi-linear map that, given a set ofp matrices
{Xi ∈ Rm×mi}p

i=1, produces anotherp-th order tensorA(X1,X2, · · · ,Xp) ∈ ⊗p

i=1 Rmi with
the followingp-way array representation:

A(X1,X2, · · · ,Xp)i1i2···ip
:=

∑

1≤j1,j2,...,jp≤m

Aj1j2···jp
(X1)j1i1(V2)j2i2 · · · (Xp)jpip

. (1)
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Figure 1: Running example of Markov chain with three states

In this work we consider tensors that are up to the third-order (p ≤ 3) and, for most of the time,
alsosymmetric, meaning that theirp-way array representations are invariant under permutations of
array indices. More specifically, we focus on second and third-order symmetric tensors in or slightly
perturbed from the following form:

M2 :=

k∑

i=1

ωiµi ⊗ µi, M3 :=

k∑

i=1

ωiµi ⊗ µi ⊗ µi, (2)

satisfying the following non-degeneracy conditions:

Condition 1. ωi ≥ 0 ∀ 1 ≤ i ≤ k, {µi ∈ Rm}k
i=1 are linearly independent, andk ≤ m.

As described in later sections, the core of our learning taskinvolves estimating{ωi}k
i=1 and{µi}k

i=1
from perturbed or noisy versions ofM2 andM3. We solve this estimation problem with the tensor
decomposition method recently proposed by Anandkumar et al. [2]. The algorithm and its theoreti-
cal guarantee are summarized in Appendix A. The key component of this method is a novel tensor
power iteration procedure for factorizing a symmetric orthogonal tensor, which is robust against
input perturbation.

3 Learning from Non-sequence Data

We first describe a generative process of non-sequence data for first-order Markov models and
demonstrate how to apply tensor decomposition methods to perform consistent learning. Then
we extend these ideas to hidden Markov models and provide theoretical guarantees on the sam-
ple complexity of the proposed learning algorithm. For notational conveniences we define the
following vector-matrix cross product⊗d∈{1,2,3} : (v ⊗1 M)ijk := vi(M)jk, (v ⊗2 M)ijk =
vj(M)ik, (v ⊗3 M)ijk = vk(M)ij . For a matrixM we denote byMi its i-th column.

3.1 First-order Markov Models

Let P ∈ [0, 1]m×m be the transition probability matrix of a discrete, first-order, ergodic Markov
chain withm states and a unique stationary distributionπ. Let P be of full rank and1⊤P = 1

⊤.
To give a high-level idea of what makes it possible to learnP from non-sequence data, we use the
simple Markov chain with three states shown in Figure 1 as ourrunning example, demonstrating
step by step how to extend from a very restrictive generativesetting of the data to a reasonably
general setting, along with the assumptions made to allow consistent parameter estimation. In the
usual setting where we have sequences of observations, say{x(1),x(2), . . .} with parenthesized
superscripts denoting time, it is straightforward to consistently estimateP . We simply calculate the
empirical frequency of consecutive pairs of states:

P̂ij :=

∑
t (x(t+1) = i,x(t) = j)∑

t (x(t) = j)
.

Alternatively, suppose for each statej, we have ani.i.d. sampleof its immediate next stateDj :=

{x(1)
1 ,x

(1)
2 , . . . | x

(0) = j}, where subscripts are data indices. Consistent estimationin this case
is also easy: the empirical distribution ofDj consistently estimatesPj , thej-th column ofP . For
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example, the Markov chain in Figure 1 may produce the following three samples, whose empirical
distributions estimate the three columns ofP respectively:

D1 = {2, 1, 2, 2, 2, 2, 2, 2, 2, 2} ⇒ P̂1 = [0.1 0.9 0.0]⊤,

D2 = {3, 3, 2, 3, 2, 3, 3, 2, 3, 3} ⇒ P̂2 = [0.0 0.3 0.7]⊤,

D3 = {1, 1, 3, 1, 3, 3, 1, 3, 3, 1} ⇒ P̂3 = [0.5 0.0 0.5]⊤.

A nice property of these estimates is that, unlike in the sequential setting, they do not depend on
any particular ordering of the observations in each set. Nevertheless, such data are not quite non-
sequenced because all observations are made at exactly the next time step. We thus consider the
following generalization: for each statej, we haveDj := {x(t1)

1 ,x
(t2)
2 , . . . | x

(0) = j}, i.e.,
independent samples of states drawn atunknownfuture times{t1, t2, . . .}. For example, our data in
this setting might be

D1 = {2, 1, 2, 3, 2, 3, 3, 2, 2, 3},
D2 = {3, 3, 2, 3, 2, 1, 3, 2, 3, 1},
D3 = {1, 1, 3, 1, 2, 3, 2, 3, 3, 2}.

(3)

Obviously it is hard to extract information aboutP from such data. However, if we assume that
the unknown times{ti} are i.i.d. random variables following some distribution independent of the
initial statej, it can then be easily shown thatDj ’s empirical distribution consistently estimatesTj ,
thej-th column of the theexpected transition probability matrixT := Et[P

t]:

D1 = {2, 1, 2, 3, 2, 3, 3, 2, 2, 3} ⇒ T̂1 = [0.1 0.5 0.4]⊤,

D2 = {3, 3, 2, 3, 2, 1, 3, 2, 3, 1} ⇒ T̂2 = [0.2 0.3 0.5]⊤,

D3 = {1, 1, 3, 1, 2, 3, 2, 3, 3, 2} ⇒ T̂3 = [0.3 0.3 0.4]⊤.

In general there exist manyP ’s that result in the sameT . Therefore, as detailed later, we make
a specific distributional assumption on{ti} to enable unique recovery of the transition matrixP
from T (Assumption A.1). Next we consider a further generalization, where the unknowns are not
only the time stamps of the observations, but also the initial statej. In other words, we only know
each set was generated from the same initial state, but do notknow the actual initial state. In this
case, the empirical distributions of the sets consistentlyestimate the columns ofT in someunknown
permutationΠ:

DΠ(3) = {1, 1, 3, 1, 2, 3, 2, 3, 3, 2} ⇒ T̂Π(3) = [0.3 0.3 0.4]⊤.

DΠ(2) = {3, 3, 2, 3, 2, 1, 3, 2, 3, 1} ⇒ T̂Π(2) = [0.2 0.3 0.5]⊤,

DΠ(1) = {2, 1, 2, 3, 2, 3, 3, 2, 2, 3} ⇒ T̂Π(1) = [0.1 0.5 0.4]⊤.

In order to be able to identifyΠ, we will again resort to randomness and assume the unknown initial
states are random variables following a certain distribution (Assumption A.2) so that the data carry
information aboutΠ. Finally, we generalize from a single unknown initial stateto an unknown
initial state distribution, where each set of observationsD := {x(t1)

1 ,x
(t2)
2 , . . . | π

(0)} consists of
independent samples of states drawn at random times from some unknown initial state distribution
π

(0). For example, the data may look like:

D
π

(0)
1

= {1, 3, 3, 1, 2, 3, 2, 3, 3, 2},
D

π
(0)
2

= {3, 1, 2, 3, 2, 1, 3, 2, 3, 1},
D

π
(0)
3

= {2, 1, 2, 3, 3, 3, 3, 1, 2, 3},
...

With this final generalization, most would agree that the generated data are non-sequenced and that
the generative process is flexible enough to model the real-world situations described in Section
1. However, simple estimation with empirical distributions no longer works because each set may
now contain observations from multiple initial states. This is where we take advantage of the tensor
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decomposition framework outlined in Section 2, which requires proper assumptions on the initial
state distributionπ(0) (Assumption A.3).

Now we are ready to give the definition of our entire generative process. Assume we haveN sets
of non-sequence data each containingn observations, and each set of observations{xi}n

i=1 were
independently generated by the following:

• Draw an initial distribution
π

(0) ∼ Dirichlet(α), (Assumption A.3)
E[π(0)] = α/(

∑m

i=1 αi) = π, πi 6= πj ∀ i 6= j. (Assumption A.2)

• For i = 1, . . . , n,

– Draw a discrete timeti ∼ Geometric(r), ti ∈ {1, 2, 3, . . .}. (Assumption A.1)
– Draw an initial statesi ∼ Multinomial(π0), si ∈ {0, 1}m.
– Draw an observationxi ∼ Multinomial(P tisi), xi ∈ {0, 1}m.

The above generative process has several properties. First, all the data points in the same set share
the same initial state distribution but can have different initial states; the initial state distribution
varies across different sets and yet centers at the stationary distribution of the Markov chain. As
mentioned in Section 1, this may be achieved in biological studies by running multiple experiments
with different input stimuli, so the data collected in the same experiment can be assumed to have the
same initial state distribution. Second, each data point isdrawn from an independent trajectory of
the Markov chain, a similar situation in the modeling of galaxies or Alzheimer’s, and random time
steps could be used to compensate for individual variationsin speed: a small/largeti corresponds
to a slowly/fast evolving individual object. Finally, the geometric distribution can be interpreted as
an overall measure of the magnitude of speed variation: a large success probabilityr would result
in many smallti’, meaning that most objects evolve at similar speeds, whilea smallr would lead to
ti’s taking a wide range of values, indicating a large speed variation.

To use the tensor decomposition method in Appendix A, we needthe tensor structure (2) in certain
low-order moments of observed quantities. The following theorem identifies such quantities:

Theorem 1. Define the expected transition probability matrixT := Et[P
t] = rP (I − (1− r)P )−1

and letα0 :=
∑

i αi, C2 := E[x1x
⊤
2 ] andC3 := E[x1 ⊗ x2 ⊗ x3]. Then the following holds:

E[x1] = π, C2 = 1
α0+1Tdiag(π)T⊤ + α0

α0+1ππ
⊤, (4)

C3 = 2
(α0+2)(α0+1)

∑
i πiT

⊗3
i + α0

α0+2

∑3
d=1 π ⊗d C2 − 2α2

0

(α0+2)(α0+1)π
⊗3, (5)

M2 := (α0 + 1)C2 − α0ππ
⊤ = Tdiag(π)T⊤, (6)

M3 := (α0+2)(α0+1)
2 C3 − (α0+1)α0

2

∑3
d=1 π ⊗d C2 + α2

0π
⊗3 =

∑
i πiT

⊗3
i . (7)

The proof is in Appendix B.1, which relies on the special structure in the moments of the Dirichlet
distribution (Assumption A.3). It is clear thatM2 andM3 have the desired tensor structure. As-
sumingα0 is known, we can form estimateŝM2 andM̂3 by computing empirical moments from
the data. Note that thexi’s are exchangeable, so we can use all pairs and triples of data points to
compute the estimates. Interestingly, these low-order moments have a very similar structure to those
in Latent Dirichlet Allocation [1]. Indeed, according to our generative process, we can view a set
of non-sequence data points as a document generated by an LDAmodel with the expected transi-
tion matrix T as the topic matrix, the stationary distributionπ as the topic proportions, and most
importantly, the states asboth the words and the topics. The last property is what distinguishes our
generative process from a general LDA model: because both the words and the topics correspond to
the states, the topic matrix is no longer invariant to columnpermutations. Since the tensor decompo-
sition method may return̂T under any column permutation, we need to recover the correctmatching
between its rows and columns. Note that theπ̂ returned by the tensor decomposition method under-
goes the same permutation asT̂ ’s columns. Because allπi’s have different values by Assumption
A.2, we may recover the correct matching by sorting both the returnedπ̂ and the mean̄π of all data.

A final issue is estimatingP and r from T̂ . This is in general difficult even when the exactT
is available because multiple choices ofP andr may result in the sameT . However, if the true
transition matrixP has at least one zero entry, then unique recovery is possible:
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Theorem 2. Let P ∗, r∗, T ∗ and π
∗ denote the true values of the transition probability matrix,

the success probability, the expected transition matrix, and the stationary distribution, respectively.
Assume thatP ∗ is ergodic and of full rank, andP ∗

ij = 0 for somei andj. LetS := {λ/(λ − 1) |
λ is a real negative eigenvalue ofT ∗} ∪ {0}. Then the following holds:

• 0 ≤ max(S) < r∗ ≤ 1.

• For all r ∈ (0, 1] \ S, P (r) := (rI + (1 − r)T ∗)−1T ∗ is well-defined and

1
⊤P (r) = 1

⊤, P (r)π∗ = π
∗, P ∗ = P (r∗),

P (r)ij ≥ 0 ∀ i, j ⇐⇒ r ≥ r∗.

That is,P (r) is a stochastic matrix if and only ifr ≥ r∗.

The proof is in Appendix C. This theorem indicates that we candeterminer∗ from T ∗ by doing
bi-section on(0, 1]. But this approach fails when we replaceT ∗ by an estimatêT because even
P̂ (r∗) might contain negative values. A more practical estimationprocedure is the following: for
each value ofr in a decreasing sequence starting from 1, projectP̂ (r) := (rI + (1− r)T̂ )−1T̂ onto
the space of stochastic matrices and record the projection distance. Then search in the sequence of
projection distances for the first sudden increase1 starting from 1, and take the corresponding value
of r and projected̂P (r) as our estimates.

Assuming the truer andα0 are known, with the empirical moments being consistent estimators for
the true moments and the tensor decomposition method guaranteed to return accurate estimates un-
der small input perturbation, we can conclude that the estimates described above will converge (with
high probability) to the true quantities as the sample sizeN increases. We give sample complexity
bound on estimation error in the next section for hidden Markov models.

3.2 Hidden Markov Models

Let P and π now be defined over the hidden discrete state space of sizek and have the same
properties as the first-order Markov model. The generative process here is almost identical to (and
therefore share the same interpretation with) the one in Section 3.1, except for an extra mapping
from the discrete hidden state to a continuous observation space:

• Draw a state indicator vectorhi ∼ Multinomial(P tisi),hi ∈ {0, 1}k.

• Draw an observation:xi = Uhi + ǫi, whereU ∈ Rm×k denotes a rank-k matrix of
mean observation vectors for thek hidden states, and the random noise vectorsǫi’s are i.i.d
satisfyingE[ǫi] = 0 and Var[ǫi] = σ2I.

Note that a spherical covariance2 is required for the tensor decomposition method to be applicable.
The low-order moments that lead to the desired tensor structure are given in the following:

Theorem 3. Define the expected hidden state transition matrixT := Et[P
t] = rP (I−(1−r)P )−1

and letα0 :=
∑

i αi, V1 := E[x1], V2 := E[x1x
⊤
1 ], V3 := E[x⊗3

1 ], C2 := E[x1x
⊤
2 ] and C3 :=

E[x1 ⊗ x2 ⊗ x3]. Then the following holds:

V1 = Uπ, V2 = Udiag(π)U⊤ + σ2I, V3 =
∑

i πiU
⊗3
i +

∑3
d=1 V1 ⊗d (σ2I),

M2 := V2 − σ2I = Udiag(π)U⊤, M3 := V3 −
∑3

d=1 V1 ⊗d (σ2I) =
∑

i πiU
⊗3
i ,

C2 = 1
α0+1UTdiag(π)(UT )⊤ + α0

α0+1V1V
⊤
1 ,

C3 = 2
(α0+2)(α0+1)

∑
i πi(UT )⊗3

i + α0

α0+2

∑3
d=1 V1 ⊗d C2 − 2α2

0

(α0+2)(α0+1)V
⊗3
1

M ′
2 := (α0 + 1)C2 − α0V1V

⊤
1 = UTdiag(π)(UT )⊤,

M ′
3 := (α0+2)(α0+1)

2 C3 − (α0+1)α0

2

∑3
d=1 V1 ⊗d C2 + α2

0V
⊗3
1 =

∑
i πi(UT )⊗3

i .

1Intuitively the jump should be easier to locate asP gets sparser, but we do not have a formal result.
2We may allow different covariancesσ2

j I for different hidden states. See Section 3.2 of [2] for details.
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Algorithm 1 Tensor decomposition method for learning HMM from non-sequence data
input N sets of non-sequence data points, the success probabilityr, the Dirichlet parameterα0, the

number of hidden statesk, and numbers of iterationsL andN.
output Estimateŝπ, P̃ andŨ possibly under permutation of state labels.

1: Compute empirical averageŝV1, V̂2, V̂3, Ĉ2, Ĉ3, andσ̂2 := λmin(V̂2 − V̂1V̂1

⊤
).

2: ComputeM̂2, M̂3, M̂ ′
2, M̂

′
3

3: Run Algorithm A.1 (Appendix A) onM̂2 andM̂3 with the number of hidden statesk to obtain
a symmetric tensor̂T ∈ Rk×k×k and a whitening transformation̂W ∈ Rm×k.

4: Run Algorithm A.2 (Appendix A)k times each with numbers of iterationsL andN, the input
tensor in the first run set tôT and in each subsequent run set to the deflated tensor returnedby
the previous run, resulting ink pairs of eigenvalue/eigenvector{(λ̂i, v̂i)}k

i=1.

5: Repeat Steps 4 and 5 on̂M ′
2 andM̂ ′

3 to obtainT̂ ′, Ŵ ′ and{(λ̂′
i, v̂′

i)}k
i=1.

6: Match{(λ̂i, v̂i)}k
i=1 with {(λ̂′

i, v̂
′
i)}k

i=1 by sorting{λ̂i}k
i=1 and{λ̂′

i}k
i=1.

7: Obtain estimates of HMM parameters:

ÛT := (Ŵ ′)†V̂ ′Λ̂′, Û := (Ŵ⊤)†V̂ Λ̂,

P̂ := (rÛ + (1 − r)ÛT )†ÛT , π̂ := [λ̂′
1

−2 · · · λ̂′
k

−2
]⊤,

whereV̂ := [v̂1 · · · v̂k], Λ̂ := diag([λ̂1 · · · λ̂k]⊤); V̂ ′ andΛ̂′ are defined in the same way.
8: (Optional) Project̂π onto the simplex and̂P onto the space of stochastic matrices.

The proof is in Appendix B.2. This theorem suggests that, unlike first-order Markov models, HMMs
requiretwo applications of the tensor decomposition methods, one onM2 andM3 for extracting
the mean observation vectorsU , and the other onM ′

2 andM ′
3 for extracting the matrix product

UT . Another issue is that the estimates forM2 andM3 require an estimate for the noise variance
σ2, which is not directly observable. Nevertheless, sinceM2 andM3 are in the form of low-order
moments of spherical Gaussian mixtures, we may use the existing result (Theorem 3.2, [2]) to obtain
an estimatêσ2 = λmin(V̂2 − V̂1V̂

⊤
1 ). The situation regarding permutations of the estimates is also

different here. First note thatP = (rU+(1−r)UT )†UT, which implies that permuting the columns
of U and the columns ofUT in the same manner has the effect of permuting both the rows and the
columns ofP , essentially re-labeling the hidden states. Hence we can only expect to recoverP up
to some simultaneous row and column permutation. By the assumption thatπi’s are all different, we
can sort the two estimateŝπ andπ̂′ to match the columns of̂U andÛT , and obtainP̂ if r is known.
Whenr is unknown, a similar heuristics to the one for first-order Markov models can be used to
estimater, based on the fact thatP = (rU + (1 − r)UT )†UT = (rI + (1 − r)T )−1T , suggesting
that Theorem 2 remains true when expressingP by U andUT .

Algorithm 1 gives the complete procedure for learning HMM from non-sequence data. Combining
the perturbation bounds of the tensor decomposition method(Appendix A), the whitening procedure
(Appendix D.1) and the matrix pseudoinverse [10], and concentration bounds on empirical moments
(Appendix D.3), we provide a sample complexity analysis:

Theorem 4. Suppose the numbers of iterationsN andL for Algorithm A.2 satisfy the conditions in
Theorem A.1 (Appendix A), and the number of hidden statesk, the success probabilityr, and the
Dirichlet parameterα0 are all given. For anyη ∈ (0, 1) andǫ > 0, if the number of setsN satisfies

N ≥ 12max(k2,m)m3ν3(α0 + 2)2(α0 + 1)2

η
·

max

(
225000

δ2
min

,
4600

min(σk(M ′
2), σk(M2))2

,
42000c2σ1(UT )2 max(σ1(UT ), σ1(U), 1)2

ǫ2σk(rU + (1 − r)UT )4 min(σk(UT ), σk(U), 1)4

)
,

wherec is some constant,ν := max(σ2 + maxi,j(|Uik|2), 1), δmin := mini,j |1/
√

πj − 1/
√

πj |,
andσi(·) denotes thei-th largest singular value, then thêP andÛ returned by Algorithm 1 satisfy

Prob(‖P − P̂‖ ≤ ǫ) ≥ 1 − η and Prob

(
‖U − Û‖ ≤ ǫσk(rU + (1 − r)UT )2

6σ1(UT )

)
≥ 1 − η,
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(a) Matrix estimation error (b) Projection distance

Figure 2: Simulation results

whereP andU may undergo label permutation.

The proof is in Appendix E. In this result, the sample sizeN exhibits a fairly high-order polynomial
dependency onm, k, ǫ−1 and scales with1/η linearly instead of logarithmically, as is common in
sample complexity results on spectral learning. This is because we do not impose any constraints
on the observation model and simply use the Markov inequality for bounding the deviation in the
empirical moments. If we make stronger assumptions such as boundedness or sub-Gaussianity, it
is possible to use stronger, exponential tail bounds to obtain better sample complexity. Also worth
noting is thatδ−2

min acts as a threshold. As shown in our proof, as long as the operator norm of
the tensor perturbation is sufficiently smaller thanδmin, which measures the gaps between different
πi’s, we can correctly match the two sets of estimated tensor eigenvalues. Lastly, the lower bound
of N , as one would expect, depends on conditions of the matrices being estimated as reflected in
the various ratios of singular values. An interesting quantity missing from the sample analysis is the
size of each setn. To simplify the analysis we essentially assumen = 3, but understanding how
n might affect the sample complexity may have a critical impact in practice: when collecting more
data, should we collect more sets or larger sets? What is the trade-off between them? This is an
interesting direction for future work.

4 Simulation

Our HMM hasm = 40 andk = 5 with Gaussian noiseσ2 = 2. The mean vectorsU were sampled
from independent univariate standard normal and then normalized to lie on the unit sphere. The
transition matrixP contains one zero entry. For the generative process, we setα0 = 1, r = 0.3, n =
1000, andN ∈ 1000{20, 21, . . . , 210}. The numbers of iterations for Algorithm A.2 wereN = 200
andL = 1000. Figure 2(a) plots the relative matrix estimation error (inspectral norm) against the
sample sizeN for P , U , andUT obtained by Algorithm 1 given the truer. It is clear thatU is
the easiest to learn, followed byUT , andP is the most difficult, and that all three errors converge
to a very small value for sufficiently largeN . Note that in Theorem 4 the bounds forP andU are
different. With the model used here, the extra multiplicative factor in the bound forU is less than
0.007, suggesting thatU is indeed easier to estimate thanP . Figure 2(b) demonstrates the heuristics
for determiningr, showing projection distances (in logarithm) versusr. AsN increases, the take-off
point gets closer to the truer = 0.3. The large peak indicates a pole (the setS in Theorem 2).

5 Conclusions

We have demonstrated that under reasonable assumptions, tensor decomposition methods can prov-
ably learn first-order Markov models and hidden Markov models from non-sequence data. We
believe this is the first formal guarantee on learning dynamic models in a non-sequential setting.
There are several ways to extend our results. No matter what distribution generates the random time
steps, tensor decomposition methods can always learn the expected transition probability matrixT .
Depending on the application, it might be better to use some other distribution for the missing time.
The proposed algorithm can be modified to learn discrete HMMsunder a similar generative process.
Finally, applying the proposed methods to real data should be the most interesting future direction.
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