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Abstract

Unstructured social group activity recognition in web videos is a challenging task
due to 1) the semantic gap between class labels and low-level visual features and 2)
the lack of labeled training data. To tackle this problem, we propose a “relevance
topic model” for jointly learning meaningful mid-level representations upon bag-
of-words (BoW) video representations and a classifier with sparse weights. In
our approach, sparse Bayesian learning is incorporated into an undirected topic
model (i.e., Replicated Softmax) to discover topics which are relevant to video
classes and suitable for prediction. Rectified linear units are utilized to increase the
expressive power of topics so as to explain better video data containing complex
contents and make variational inference tractable for the proposed model. An
efficient variational EM algorithm is presented for model parameter estimation
and inference. Experimental results on the Unstructured Social Activity Attribute
dataset show that our model achieves state of the art performance and outperforms
other supervised topic model in terms of classification accuracy, particularly in the
case of a very small number of labeled training videos.

1 Introduction

The explosive growth of web videos makes automatic video classification important for online video
search and indexing. Classifying short video clips which contain simple motions and actions has
been solved well in standard datasets (such as KTH [1]], UCF-Sports [2] and UCF50 [3]]). However,
detecting complex activities, specially social group activities [4]], in web videos is a more difficult
task because of unstructured activity context and complex multi-object interaction.

In this paper, we focus on the task of automatic classification of unstructured social group activities
(e.g., wedding dance, birthday party and graduation ceremony in Figure 1), where the low-level
features have innate limitations in semantic description of the underlying video data and only a
few labeled training videos are available. Thus, a common method is to learn human-defined (or
semi-human-defined) semantic concepts as mid-level representations to help video classification
[4]. However, those human defined concepts are hardly generalized to a larger or new dataset. To
discover more powerful representations for classification, we propose a novel supervised topic model
called “relevance topic model” to automatically extract latent “relevance” topics from bag-of-words
(BoW) video representations and simultaneously learn a classifier with sparse weights.

Our model is built on Replicated Softmax [5]], an undirected topic model which can be viewed as
a family of different-sized Restricted Boltzmann Machines that share parameters. Sparse Bayesian
learning [6] is incorporated to guide the topic model towards learning more predictive topics which
are associated with sparse classifier weights. We refer to those topics corresponding to non-zero
weights as “relevance” topics. Meanwhile, binary stochastic units in Replicated Softmax are re-
placed by rectified linear units [7l], which allows each unit to express more information for better
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Figure 1: Example videos of the “Wedding Dance”, “Birthday Party” and “Graduation Ceremony”’
classes taken from the USAA dataset [4].

explaining video data containing complex content and also makes variational inference tractable for
the proposed model. Furthermore, by using a simple quadratic bound on the log-sum-exp function
[8]], an efficient variational EM algorithm is developed for parameter estimation and inference. Our
model is able to be naturally extended to deal with multi-modal data without changing the learning
and inference procedures, which is beneficial for video classification tasks.

2 Related work

The problems of activity analysis and recognition have been widely studied. However, most of the
existing works [9,[10] were done on constrained videos with limited contents (e.g., clean background
and little camera motions). Complex activity recognition in web videos, such as social group activity,
is not much explored. Most relevant to our work is a recent work that learns video attributes to
analyze social group activity [4]]. In [4]], a semi-latent attribute space is introduced, which consists
of user-defined attributes, class-conditional and background latent attributes, and an extended Latent
Dirichlet Allocation (LDA) [[L1] is used to model those attributes as topics. Different from that, our
work discovers a set of discriminative latent topics without extra human annotations on videos.

From the view of graphical models, most similar to our model are the maximum entropy discrimina-
tion LDA (MedLDA) [12]] and the generative Classification Restricted Boltzmann Machines (gClass-
RBM) [13]], both of which have been successfully applied to document semantic analysis. MedLDA
integrates the max-margin learning and hierarchical directed topic models by optimizing a single
objective function with a set of expected margin constraints. MedLDA tries to estimate parame-
ters and find latent topics in a max-margin sense, which is different from our model relying on the
principle of automatic relevance determination [[14]. The gClassRBM used to model word count
data is actually a supervised Replicated Softmax. Different from the gClassRBM, instead of point
estimation of classifier parameters, our proposed model learns a sparse posterior distribution over
parameters within a Bayesian paradigm.

3 Models and algorithms

We start with the description of Replicated Softmax, and then by integrating it with sparse Bayesian
learning, propose the relevance topic model for videos. Finally, we develop an efficient variational
algorithm for inference and parameter estimation.

3.1 Replicated Softmax

The Replicated Softmax model is a two-layer undirected graphical model, which can be used to
model sparse word count data and extract latent semantic topics from document collections. Repli-
cated Softmax allows for very efficient inference and learning, and outperforms LDA in terms of
both the generalization performance and the retrieval accuracy on text datasets.

As shown in Figure 2 (left), this model is a generalization of the restricted Boltzmann machine
(RBM). The bottom layer represents a multinomial visible unit sampled K times (K is the total
number of words in a document) and the top layer represents binary stochastic hidden units.
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Figure 2: Left: Replicated Softmax model: an undirected graphical model. Right: Relevance topic
model: a mixed graphical model. The undirected part models the marginal distribution of video
BoW vectors v and the directed part models the conditional distribution of video classes y given
latent topics t” by using a hierarchical prior on weights 1.

Let a word count vector v € N” be the visible unit (N is the size of the vocabulary), and a binary
topic vector h € {0, 1} be the hidden units. Then the energy function of the state {v, h} is defined

as follows:
E(v,h;0) ZZWWU’ Z:avZ KZb hyj, (1)

i=1 j=1

where 8 = {W,a, b}, W;; is the weight connected with v; and hj, a; and b; are the bias terms
of visible and hidden units respectively. The joint distribution over the visible and hidden units is
defined by:

1
P(v,h;0) = Z(0) exp(—E(v,h;0)) ZZeXp (v,h;0)), (2)
where Z(6) is the partition function. Since exact maximum likelihood learning is intractable, the
contrastive divergence [[15] approximation is often used to estimate model parameters in practice.

3.2 Relevance topic model

The relevance topic model (RTM) is an integration of sparse Bayesian learning and Replicated Soft-
max, the main idea of which is to jointly learn discriminative topics as mid-level video representa-
tions and sparse discriminant function as a video classifier.

We represent the video dataset with class labels y € {1,...,C} as D = {(Vyn, Ym)}M_,, where
each video is represented as a BoW vector v € NV, Consider modeling video BoW vectors using

the Replicated Softmax. Let t” = [¢],...,¢%] denotes a F-dimensional topic vector of one video.
According to Equation 2, the marginal distribution over the BoW vector v is given by:

0) = —— —E(v,t";0 3

0 ;exp( (v.t7;6)), 3)

Since videos contain more complex and diverse contents than documents, binary topics are far from
ideal to explain video data. We replace binary hidden units in the original Replicated Softmax with
rectified linear units which are given by:

N

t; = maX(O, tj), P(tj|V; 0) = N(tj|ij + Z Wijvi, 1), 4)
i=1

where NV (-|p, 7) denotes a Gaussian distribution with mean  and variance 7. The rectified linear

units taking nonnegative real values can preserve information about relative importance of topics.

Meanwhile, the rectified Gaussian distribution is semi-conjugate to the Gaussian likelihood. This fa-

cilitates the development of variational algorithms for posterior inference and parameter estimation,

which we describe in Section 3.3.

Letn = {'r'|y}5:1 denote a set of class-specific weight vectors. We define the discriminant function
as a linear combination of topics: F(y,t",n) = ngtr. The conditional distribution of classes is



defined as follows: .
exp(F(y,t",n))

Pylt",m) = =& ; 3)
Zy':l exp(F(ylv tr’ 'ﬂ))
and the classifier is given by:
g = argmax E[F(y,t",n)|v]. (6)

yeC
The weights 1 are given a zero-mean Gaussian prior:

c F
P(nja) = H H P(ny;loy;) = H H N (150, O‘z;jl)’ @
y=1j=1

y=1j=1

where o = {()Ly}gz1 is a set of hyperparameter vectors, and each hyperparameter o, ; is assigned
independently to each weight 7,;. The hyperpriors over o are given by Gamma distributions:

C F
=[] [] Plows) = HHF “Hdeal e, ®)

y=1j5=1 y=1j=1

where I'(c) is the Gamma function. To obtain broad hyperpriors, we set ¢ and d to small values,
e.g., ¢ = d = 10~*. This hierarchical prior, which is a type of automatic relevance determination
prior [14], enables the posterior probability of the weights M| to be concentrated at zero and thus
effectively switch off the corresponding topics that are considered to be irrelevant to classification.

Finally, given the parameters #, RTM defines the joint distribution:

F c F
Prv.st” m.a0) = PPl ) (TL P i0) ) (TTTT Plslens Plesn)). ©
j=1 y=1j=1
Figure 2 (right) illustrates RTM as a mixed graphical model with undirected and directed edges.
The undirected part models the marginal distribution of video data and the directed part models the
conditional distribution of classes given latent topics. We can naturally extend RTM to Multimodal
RTM by using the undirected part to model the multimodal data v = {v™}L = Accordingly,

P(v;0) in Equation 9 is replaced with H1L=1 P(vmedt; gmodly n Section 3.3, we can see that it will
not change learning and inference rules.

3.3 Parameter estimation and inference

For RTM, we wish to find parameters § = {W, a, b} that maximize the log likelihood on D:

log P(D; 6) log/P {vm,ym,tfn}m N, 0 H)d{tm 1dnda (10)

and learn the posterior distribution P(n, a|D;0) = P(n, a, D;0)/P(D;6). Since exactly comput-
ing P(D; 6) is intractable, we employ variational methods to optimize a lower bound £ on the log
likelihood by introducing a variational distribution to approx1mate P({tm}M_ . m,a|D;0):

Q{tm}hi—1,M, @) (H Hq mJ) (). (1)

m=1j=1
Using Jensens inequality, we have:

log P(D; 6) > / Q{tm ¥ m @)

(T P23 6) P (@it M) P t1c]v,n:0) ) P(]et) Pl0)
Q({tm}%:h 11» (X.)

Note that P(y,,|t",,M) is not conjugate to the Gaussian prior, which makes it intractable to compute
the variational factors ¢(n) and ¢(¢,,;). Here we use a quadratic bound on the log-sum-exp (LSE)
function [8] to derive a further bound. We rewrite P(y,,|t},,n) as follows:

P(y’"l‘t:)l? n) = exp(y"LT:an - lse( :Hn))? (13)

log

d{t,} 2 dnde. (12)



where T2 = [(t7) N, ..., 7)™ Mc_1), ym = L(ym = c) is the one-of-C encoding of class
label 7,,, and Ise(x) = log(1 + 23,;11 exp(z,)) (we set N = O to ensure identifiability). In [8],
the LSE function is expanded as a second order Taylor series around a point @, and an upper bound
is found by replacing the Hessian matrix H(¢) with a fixed matrix A = [Ic+ — C%ch* 1%.]
such that A > H(@), where C* = C — 1, Io« is the identity matrix of size M x M and 1¢~ is a
M -vector of ones. Thus, similar to [[16], we have:

1
10g P (Y67, M) 2 T (Ym, M, @) = i Trm = 5 (Trm) TAT, N + 57, Tom — ks, (14)
sm = AQ,, — exp(@,, — 1se(®,,)), (15)

1
R; = i(PﬁA(Pm - (pg;, eXp((pm - ISC((Pm)) + lse((pm)7 (16)

where @, € RC” is a vector of variational parameters. Substituting .J (Ym, t1ys M, @,,,) into Equation
11, we can obtain a further lower bound:

M M
log P(D;6) > L(6,9) = Y _ log P(vyn; 6) + Eq { > TGt @,,)
m=1 m=1
M
+ > 10g P(tm|vim; 0) +log P(M|@) + log P(a) — Q({tm}h—y, M, @)|. (17)
m=1

Now we convert the problem of model training into maximizing the lower bound L£(6, @) with
respect to the variational posteriors ¢(1), g(e) and ¢(t) = {q(tm;)} as well as the parameters
6 and @ = {@,,}. We can give some insights into the objective function £(6,@): the first term
is exactly the marginal log likelihood of video data and the second term is a variational bound of
the conditional log likelihood of classes, thus maximizing £(6, @) is equivalent to finding a set of
model parameters and latent topics which could fit video data well and simultaneously make good
predictions for video classes.

Due to the conjugacy properties of the chosen distributions, we can directly calculate free-form
variational posteriors ¢(1), ¢(0) and parameters @:

a(n) = N(M[Eq, Vy), (18)
C F .
q(a) = H H Gamma(ay;|¢, dy;), (19)
y=1j=1
9 = (T7,) 4(6)En; (20)

where (-) o denotes an exception with respect to the distribution ¢ and

M -1 M
Vn = <Z <(T%)TATTm>q(t) + diag<ayj>q(a)) +En =Vn Z <(T77;1)T>q(t)(3’m +8m),
m=1 m=1
2n
. 1. 1,

For ¢(t), the calculation is not immediate because of the rectification. Inspired by [17], we have the
following free-form solution:

Wneg

Z

w 0S
‘I(tmj) = pZ N(tmj‘:upomgfms)u(tmj) +

N (tmjltineg: Opeg)t(—tmi), — (23)

where u(-) is the unit step function. See Appendix A for parameters of ().

Given 0, through repeating the updates of Equations 18-20 and 23 to maximize £(6, @), we can
obtain the variational posteriors ¢(n), ¢(a) and ¢(t). Then given ¢(n), ¢(a) and ¢(t), we estimate
6 by using stochastic gradient descent to maximize £(6, @), and the derivatives of £(6, @) with



respect to 6 are given by:

aL(0,9) 1 & N
oy, O data ) st T 3 mz::l Urni (<tmj>q(t) - ; Wijmi — ij), (24)
0L(0,9)
Tai = <Ui>data - <Ui>model’ (25)
dL(, . . K < al
a(bj (P) = <tj>data B <tj>m0del + M Z <<tm3>‘1(t) - Z Wijvmi B ij)’ (26)
m=1 =1

where the derivatives of 2%21 log P(v,y; 0) are the same as those in [3].
This leads to the following variational EM algorithm:

E-step: Calculate variational posteriors ¢(n), g(a) and ¢(t).
M-step: Estimate parameters § = {W, a, b} through maximizing £(6, @).

These two steps are repeated until £(6, @) converges. For the Multimodal RTM learning, we just
additionally calculate the gradients of #™°4 for each modality [ in the M-step while the updating
rules are not changed.

After the learning is completed, according to Equation 6 the prediction for new videos can be easily
obtained:

~ T T
Y= argelgax (n, >q(’n)<t b(tlvio)- @7

4 Experiments

We test our models on the Unstructured Social Activity Attribute (USAA) datasetE] for social group
activity recognition. Firstly, we present quantitative evaluations of RTM in the case of different
modalities and comparisons with other supervised topic models (namely MedLDA and gClass-
RBM). Secondly, we compare Multimodal RTM with some baselines in the case of plentiful and
sparse training data respectively. In all experiments, the contrastive divergence is used to efficiently
approximate the derivatives of the marginal log likelihood and the unsupervised training on Repli-
cated Softmax is used to initialize 6.

4.1 Dataset and video representation

The USAA dataset consists of 8 semantic classes of social activity videos collected from the Internet.
The eight classes are: birthday party, graduation party, music performance, non-music performance,
parade, wedding ceremony, wedding dance and wedding reception. The dataset contains a total
of 1466 videos and approximate 100 videos per-class for training and testing respectively. These
videos range from 20 seconds to 8 minutes averaging 3 minutes and contain very complex and
diverse contents, which brings significant challenges for content analysis.

Each video is represented using three modalities, i.e., static appearance, motion, and auditory.
Specifically, three visual and audio local keypoint features are extracted for each video: scale-
invariant feature transform (SIFT) [18], spatial-temporal interest points (STIP) [19] and mel-
frequency cepstral coefficients (MFCC) [20]. Then the three features are collected into a BoW
vector (5000 dimensions for SIFT and STIP, and 4000 dimensions for MFCC) using a soft-weighting
clustering algorithm, respectively.

4.2 Model comparisons

To evaluate the discriminative power of video topics learned by RTM, we present quantitative clas-
sification results compared with other supervised topic models (MedLDA and gClassRBM) in the
case of different modalities. We have tried our best to tune these compared models and report the
best results.

!Available at http: //www.eecs.qmul.ac.uk/-y£300/USAA/download/,


http://www.eecs.qmul.ac.uk/~yf300/USAA/download/

Table 1: Classification accuracy of different supervised topic models for single-modal features.

[ Featre [ STFT [ STIP [ MECC ]
Med gClass Med gClass Med gClass
Model pA | RBM | K™ | 1ps | ReM | ’™ | pa | RBM | RT™M

20 topics | 44.72 45.40 51.99 | 37.28 42.39 48.29 | 34.71 41.70 45.35
30 topics | 44.17 46.11 53.09 | 38.93 4225 49.11 | 38.55 43.62 46.67
40 topics | 43.07 47.08 55.83 | 40.85 42.39 50.62 | 41.15 45.00 48.15
50 topics | 42.80 46.81 5417 | 39.75 41.70 51.71 | 41.98 44.31 47.46
60 topics | 40.74 49.72 54.03 | 41.54 43.35 51.17 | 38.27 43.48 47.33

Accuracy
(%)

Table 2: Classification accuracy of different methods for multimodal features.

[ Method [ Multimodal RTM | RS+SVM | Direct | SVM-UD+LR | SLAS+LR |

60 topics 60.22 54.60
90 topics 62.69 56.10

100 Inst 120 topics | 63.79 57.34 66.0 65.0 65.0
150 topics | 64.06 59.26
Accuracy 180 topics 64.72 60.63
(%) 60 topics 38.68 23.73
90 topics 41.29 28.53

10 Inst 120 topics | 43.48 30.59 29.0 37.0 40.0

150 topics | 43.72 33.47
180 topics | 44.99 35.94

Table 1 shows the classification accuracy of different models for three single-modal features: SIFT,
STIP and MFCC. We can see that RTM achieves higher classification accuracy than MedLDA and
gClassRBM in all cases, which demonstrates that through leveraging sparse Bayesian learning to
incorporate class label information into topic modeling, RTM can find more discriminative topical
representations for complex video data.

4.3 Baseline comparisons

We compare Multimodal RTM with the baselines in [4]] which are the best results on the USAA
dataset:

Direct Direct SVM or KNN classification on raw video BoW vectors (14000 dimensions), where
SVM is used for experiments with more than 10 instances and KNN otherwise.

SVM-UD+LR SVM attribute classifiers learn 69 user-defined attributes, and then a logistic regres-
sion (LR) classifier is performed according to the attribute classifier outputs.

SLAS+LR Semi-latent attribute space is learned, and then a LR classifier is performed based on the
69 user-defined, 8 class-conditional and 8 latent topics.

Besides, we also perform a comparison with another baseline where different modal topics extracted
by Replicated Softmax are connected together as video representations, and then a multi-class SVM
classifier [21] is learned from the representations. This baseline is denoted by RS+SVM.

The results are illustrated in Table 2. Here the number of topics of each modality is assumed to be
the same. When the labeled training data is plentiful (100 instances per class), the classification per-
formance of Multimodal RTM is similar to the baselines in [4]. However, We argue that our model
learns a lower dimensional latent semantic space which provides efficient video representations and
is able to be better generalized to a larger or new dataset because extra human defined concepts are
not required in our model. When considering the classification scenario where only a very small
number of training data are available (10 instances per class), Multimodal RTM can achieve better
performance with an appropriate number (e.g., > 90) of topics because the sparsity of relevance top-
ics learned by RTM can effectively prevent overfitting to specific training instances. In addition, our
model outperforms RS+SVM in both cases, which demonstrates the advantage of jointly learning
topics and classifier weights through sparse Bayesian learning.

It is also interesting to examine the sparsity of relevance topics. Figure 3 illustrates the degree of
correlation between topics and two different classes. We can see that the learned relevance topics are
very sparse, which leads to good generalisation for new instances and robustness for small datasets.
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Figure 3: Relevance topics discovered by RTM for two different classes. Vertical axis indicates the
degree of positive and negative correlation.

5 Conclusion

This paper has proposed a supervised topic model, the relevance topic model (RTM), to jointly learn
discriminative latent topical representations and a sparse classifer for recognizing unstructured so-
cial group activity. In RTM, sparse Bayisian learning is integrated with an undirected topic model
to discover sparse relevance topics. Rectified linear units are employed to better fit complex video
data and facilitate the learning of the model. Efficient variational methods are developed for pa-
rameter estimation and inference. To further improve video classification performance, RTM is also
extended to deal with multimodal data. Experimental results demonstrate that RTM can find more
predictive video topics than other supervised topic models and achieve state of the art classification
performance, particularly in the scenario of lacking labeled training videos.

Appendix A. Parameters of free-form variational posterior q(%,,;)

The expressions of parameters in ¢(t,,;) (Equation 23) are listed as follows:

_ _ a
Wpos = N(alB,7 +1), 0p0s = (V7 +1)71, hipos = aﬁos(; +8), (28)
wne!] = N(O‘|Oa7)7 Uieg = 17 MHEg = /Ba (29)
1 ~ Mpos 1 ne
7 = 2wposerfc< Hp > + anegerfc<’ug>, (30)

\ /20%0S

where erfc(-) is the complementary error function and

~/ 20’727469

n,; (ym tSm = 2y "~j'Atfnj')
a= T , 31
;AN ama(®)
—1 N
_ T _ o _
'7_ <"1.jATl.j>q(n), ﬂ—;szvmz"_ij‘ (32)

We can see that ¢(t,,;) depends on expectations over 1 and {¢,,; } ;7»;, which is consistent with the
graphical model representation of RTM in Figure 2.

Acknowledgments

This work was supported by the National Basic Research Program of China (2012CB316300), Hun-
dred Talents Program of CAS, National Natural Science Foundation of China (61175003, 61135002,
61203252), and Tsinghua National Laboratory for Information Science and Technology Cross-
discipline Foundation.

References

[1] C. Schuldt, I. Laptev, and B. Caputo. Recognizing human actions: a local svm approach. In
ICPR, 2004.



[2] M. Rodriguez, J. Ahmed, and M. Shah. Action mach a spatio-temporal maximum average
correlation height filter for action recognition. In CVPR, 2008.

[3] Ucf50 action dataset. “http://vision.eecs.ucf.edu/data/ucf50.rar”.

[4] Y.W. Fu, T.M. Hospedales, T. Xiang, and S.G. Gong. Attribute learning for understanding
unstructured social activity. In ECCV, 2012.

[5] R. Salakhutdinov and G.E. Hinton. Replicated softmax: an undirected topic model. In NIPS,
2009.

[6] M.E. Tipping. Sparse bayesian learning and the relevance vector machine. JMLR, 2001.

[7] V. Nair and G.E. Hinton. Rectified linear units improve restricted boltzmann machines. In
ICML, 2010.

[8] D. Bohning. Multinomial logistic regression algorithm. AISM, 1992.

[9] P. Turaga, R. Chellappa, V.S. Subrahmanian, and O. Udrea. Machine recognition of human
activities: a survey. TCSVT, 2008.

[10] J. Varadarajan, R. Emonet, and J.-M. Odobez. A sequential topic model for mining recurrent
activities from long term video logs. IJCV, 2013.

[11] D. Blei, A.Y. Ng, and M.I. Jordan. Latent dirichlet allocation. JMLR, 2003.

[12] J. Zhu, A. Ahmed, and E.P. Xing. Medlda: Maximum margin supervised topic models. JMLR,
2012.

[13] H. Larochelle, M. Mandel, R. Pascanu, and Y. Bengio. Learning algorithms for the classifica-
tion restricted boltzmann machine. JMLR, 2012.

[14] R.M. Neal. Bayesian learning for neural networks. PhD thesis, University of Toronto, 1995.

[15] G.E. Hinton. Training products of experts by minimizing contrastive divergence. Neural
Computation, 2002.

[16] K.P. Murphy. Machine learning: a probabilistic perspective. MIT Press, 2012.

[17] M. Harva and A. Kaban. Variational learning for rectified factor analysis. Signal Processing,
2007.

[18] D.G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004.
[19] I. Laptev. On space-time interest points. IJCV, 2005.

[20] B. Logan. Mel frequency cepstral coefficients for music modeling. ISMIR, 2000.

[

21] I Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector learning for interde-
pendent and structured output spaces. In ICML, 2004.



