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Abstract

A large number of algorithms in machine learning, from principal component
analysis (PCA), and its non-linear (kernel) extensions, to more recent spectral
embedding and support estimation methods, rely on estimating a linear subspace
from samples. In this paper we introduce a general formulation of this problem
and derive novel learning error estimates. Our results rely on natural assumptions
on the spectral properties of the covariance operator associated to the data distribu-
tion, and hold for a wide class of metrics between subspaces. As special cases, we
discuss sharp error estimates for the reconstruction properties of PCA and spectral
support estimation. Key to our analysis is an operator theoretic approach that has
broad applicability to spectral learning methods.

1 Introduction

The subspace learning problem is that of finding the smallest linear space supporting data drawn
from an unknown distribution. It is a classical problem in machine learning and statistics, with
several established algorithms addressing it, most notably PCA and kernel PCA [12, 18]. It is also
at the core of a number of spectral methods for data analysis, including spectral embedding meth-
ods, from classical multidimensional scaling (MDS) [7, 26], to more recent manifold embedding
methods [22, 16, 2], and spectral methods for support estimation [9]. Therefore knowledge of the
speed of convergence of the subspace learning problem, with respect to the sample size, and the
algorithms’ parameters, is of considerable practical importance.

Given a measure ρ from which independent samples are drawn, we aim to estimate the smallest
subspace Sρ that contains the support of ρ. In some cases, the support may lie on, or close to, a
subspace of lower dimension than the embedding space, and it may be of interest to learn such a
subspace Sρ in order to replace the original samples by their local encoding with respect to Sρ.

While traditional methods, such as PCA and MDS, perform such subspace estimation in the data’s
original space, other, more recent manifold learning methods, such as isomap [22], Hessian eigen-
maps [10], maximum-variance unfolding [24, 25, 21], locally-linear embedding [16, 17], and Lapla-
cian eigenmaps [2] (but also kernel PCA [18]), begin by embedding the data in a feature space, in
which subspace estimation is carried out. Indeed, as pointed out in [11, 4, 3], the algorithms in this
family have a common structure. They embed the data in a suitable Hilbert space H, and compute
a linear subspace that best approximates the embedded data. The local coordinates in this subspace
then become the new representation space. Similar spectral techniques may also be used to estimate
the support of the data itself, as discussed in [9].
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While the subspace estimates are derived from the available samples only, or their embedding, the
learning problem is concerned with the quality of the computed subspace as an estimate of Sρ (the
true span of the support of ρ). In particular, it may be of interest to understand the quality of these
estimates, as a function of the algorithm’s parameters (typically the dimensionality of the estimated
subspace).

We begin by defining the subspace learning problem (Sec. 2), in a sufficiently general way to encom-
pass a number of well-known problems as special cases (Sec. 4). Our main technical contribution is
a general learning rate for the subspace learning problem, which is then particularized to common
instances of this problem (Sec. 3). Our proofs use novel tools from linear operator theory to obtain
learning rates for the subspace learning problem which are significantly sharper than existing ones,
under typical assumptions, but also cover a wider range of performance metrics. A full sketch of the
main proofs is given in Section 7, including a brief description of some of the novel tools developed.
We conclude with experimental evidence, and discussion (Sec. 5 and 6).

2 Problem definition and notation

Given a measure ρ with support M in the unit ball of a separable Hilbert space H, we consider in
this work the problem of estimating, from n i.i.d. samples Xn = {xi}1≤i≤n, the smallest linear
subspace Sρ := span(M) that contains M .

The quality of an estimate Ŝ of Sρ, for a given metric (or error criterion) d, is characterized in terms
of probabilistic bounds of the form

P
[
d(Sρ, Ŝ) ≤ ε(δ, n, ρ)

]
≥ 1− δ, 0 < δ ≤ 1. (1)

for some function ε of the problem’s parameters. We derive in the sequel high probability bounds of
the above form.

In the remainder the metric projection operator onto a subspace S is denoted by PS , where P 2
S =

P ∗S = PS (every P is idempotent and self-adjoint). We denote by ‖ · ‖H the norm induced by the
dot product < ·, · >H inH, and by ‖A‖p := p

√
Tr(|A|p) the p-Schatten, or p-class norm of a linear

bounded operator A [15, p. 84].

2.1 Subspace estimates

Letting C := Ex∼ρx⊗ x be the (uncentered) covariance operator associated to ρ, it is easy to show
that Sρ = RanC. Similarly, given the empirical covariance Cn := 1

n

∑n
i=1 x ⊗ x, we define the

empirical subspace estimate
Ŝn := span(Xn) = RanCn

(note that the closure is not needed in this case because Ŝn is finite-dimensional). We also define
the k-truncated (kernel) PCA subspace estimate Ŝkn := RanCkn, where Ckn is obtained from Cn by
keeping only its k top eigenvalues. Note that, since the PCA estimate Ŝkn is spanned by the top k
eigenvectors of Cn, then clearly Ŝkn ⊆ Ŝk

′

n for k < k′, and therefore {Ŝkn}nk=1 is a nested family of
subspaces (all of which are contained in Sρ).

As discussed in Section 4.1, since kernel-PCA reduces to regular PCA in a feature space [18] (and
can be computed with knowledge of the kernel alone), the following discussion applies equally to
kernel-PCA estimates, with the understanding that, in that case, Sρ is the span of the support of ρ in
the feature space.

2.2 Performance criteria

In order for a bound of the form of Equation (1) to be meaningful, a choice of performance criteria
d must be made. We define the distance

dα,p(U, V ) := ‖(PU − PV )Cα‖p (2)

between subspaces U, V , which is a metric over the space of subspaces contained in Sρ, for 0 ≤
α ≤ 1

2 and 1 ≤ p ≤ ∞. Note that dα,p depends on ρ through C but, in the interest of clarity,
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this dependence is omitted in the notation. While of interest in its own right, it is also possible
to express important performance criteria as particular cases of dα,p. In particular, the so-called
reconstruction error [13]:

dR(Sρ, Ŝ) := Ex∼ρ‖PSρ(x)− PŜ(x)‖2H
is dR(Sρ, ·) = d1/2,2(Sρ, ·)2 .

Note that dR is a natural criterion because a k-truncated PCA estimate minimizes a suitable error
dR over all subspaces of dimension k. Clearly, dR(Sρ, Ŝ) vanishes whenever Ŝ contains Sρ and,
because the family {Ŝkn}nk=1 of PCA estimates is nested, then dR(Sρ, Ŝ

k
n) is non-increasing with k.

As shown in [13], a number of unsupervised learning algorithms, including (kernel) PCA, k-means,
k-flats, sparse coding, and non-negative matrix factorization, can be written as a minimization of dR
over an algorithm-specific class of sets (e.g. over the set of linear subspaces of a fixed dimension in
the case of PCA).

3 Summary of results

Our main technical contribution is a bound of the form of Eq. (1), for the k-truncated PCA estimate
Ŝkn (with the empirical estimate Ŝn := Ŝnn being a particular case), whose proof is postponed to
Sec. 7. We begin by bounding the distance dα,p between Sρ and the k-truncated PCA estimate Ŝkn,
given a known covariance C.
Theorem 3.1. Let {xi}1≤i≤n be drawn i.i.d. according to a probability measure ρ supported on
the unit ball of a separable Hilbert space H, with covariance C. Assuming n > 3, 0 < δ < 1,
0 ≤ α ≤ 1

2 , 1 ≤ p ≤ ∞, the following holds for each k ∈ {1, . . . , n}:

P
[
dα,p(Sρ, Ŝ

k
n) ≤ 3tα

∥∥Cα(C + tI)−α
∥∥
p

]
≥ 1− δ (3)

where t = max{σk, 9
n log n

δ }, and σk is the k-th top eigenvalue of C.

We say that C has eigenvalue decay rate of order r if there are constants q,Q > 0 such that
qj−r ≤ σj ≤ Qj−r, where σj are the (decreasingly ordered) eigenvalues of C, and r > 1. From
Equation (2) it is clear that, in order for the subspace learning problem to be well-defined, it must
be ‖Cα‖p <∞, or alternatively: αp > 1/r. Note that this condition is always met for p =∞, and
also holds in the reconstruction error case (α = 1/2, p = 2), for any decay rate r > 1.

Knowledge of an eigenvalue decay rate can be incorporated into Theorem 3.1 to obtain explicit
learning rates, as follows.
Theorem 3.2 (Polynomial eigenvalue decay). Let C have eigenvalue decay rate of order r. Under
the assumptions of Theorem 3.1, it is, with probability 1− δ

dα,p(Sρ, Ŝ
k
n) ≤

{
Q′k−rα+

1
p if k < k∗n (polynomial decay)

Q′k∗n
−rα+ 1

p if k ≥ k∗n (plateau)
(4)

where it is k∗n =
(

qn
9 log(n/δ)

)1/r
, and Q′ = 3

(
Q1/rΓ(αp− 1/r)Γ(1 + 1/r)/Γ(1/r)

)1/p
.

The above theorem guarantees a drop in dα,p with increasing k, at a rate of k−rα+1/p, up to k = k∗n,
after which the bound remains constant. The estimated plateau threshold k∗ is thus the value of
truncation past which the upper bound does not improve. Note that, as described in Section 5, this
performance drop and plateau behavior is observed in practice.

The proofs of Theorems 3.1 and 3.2 rely on recent non-commutative Bernstein-type inequalities on
operators [5, 23], and a novel analytical decomposition. Note that classical Bernstein inequalities in
Hilbert spaces (e.g. [14]) could also be used instead of [23]. However, while this approach would
simplify the analysis, it produces looser bounds, as described in Section 7.

If we consider an algorithm that produces, for each set of n samples, an estimate Ŝkn with k ≥ k∗n
then, by plugging the definition of k∗n into Eq. 4, we obtain an upper bound on dα,p as a function of
n.
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Corollary 3.3. Let C have eigenvalue decay rate of order r, and Q′, k∗n be as in Theorem 3.2. Let
Ŝ∗n be a truncated subspace estimate Ŝkn with k ≥ k∗n. It is, with probability 1− δ,

dα,p(Sρ, Ŝ
∗
n) ≤ Q′

(
9 (log n− log δ)

qn

)α− 1
rp

Remark 3.4. Note that, by setting k = n, the above corollary also provides guarantees on the rate
of convergence of the empirical estimate Sn = span(Xn) to Sρ, of order

dα,p(Sρ, Sn) = O

((
log n− log δ

n

)α− 1
rp

)
.

Corollary 4.1 and remark 3.4 are valid for all n such that k∗n ≤ n (or equivalently such that
nr−1(log n − log δ) ≥ q/9). Note that, because ρ is supported on the unit ball, its covariance
has eigenvalues no greater than one, and therefore it must be q < 1. It thus suffices to require that
n > 3 to ensure the condition k∗n ≤ n to hold.

4 Applications of subspace learning

We describe next some of the main uses of subspace learning in the literature.

4.1 Kernel PCA and embedding methods

One of the main applications of subspace learning is in reducing the dimensionality of the input.
In particular, one may find nested subspaces of dimension 1 ≤ k ≤ n that minimize the dis-
tances from the original to the projected samples. This procedure is known as the Karhunen-Loève,
PCA, or Hotelling transform [12], and has been generalized to Reproducing-Kernel Hilbert Spaces
(RKHS) [18].

In particular, the above procedure amounts to computing an eigen-decomposition of the empirical
covariance (Sec. 2.1):

Cn =

n∑
i=1

σiui ⊗ ui,

where the k-th subspace estimate is Ŝkn := RanCkn = span{ui : 1 ≤ i ≤ k}. Note that, in the
general case of kernel PCA, we assume the samples {xi}1≤i≤n to be in some RKHS H, which are
obtained from the observed variables (z1, . . . , zn) ∈ Zn, for some space Z, through an embedding
xi := φ(zi). Typically, due to the very high dimensionality of H, we may only have indirect
information about φ in the form a kernel function K : Z × Z → R: a symmetric, positive definite
function satisfying K(z, w) = 〈φ(z), φ(w)〉H [20] (for technical reasons, we also assume K to be
continuous). Note that every suchK has a unique associated RKHS, and viceversa [20, p. 120–121],
whereas, givenK, the embedding φ is only unique up to an inner product-preserving transformation.

Given a point z ∈ Z, we can make use of K to compute the coordinates of the projection of its
embedding φ(z) onto Ŝkn ⊆ H by means of a simple k-truncated eigen-decomposition of Kn.

It is easy to see that the k-truncated kernel PCA subspace Ŝkn minimizes the empirical reconstruction
error dR(Ŝn, Ŝ), among all subspaces Ŝ of dimension k. Indeed, it is

dR(Ŝn, Ŝ) = Ex∼ρ̂‖x− PŜ(x)‖2H = Ex∼ρ̂
〈
(I − PŜ)x, (I − PŜ)x

〉
H

= Ex∼ρ̂
〈
I − PŜ , x⊗ x

〉
HS

=
〈
I − PŜ , Cn

〉
HS

,
(5)

where 〈·, ·〉
HS

is the Hilbert-Schmidt inner product, from which it is easy to see that the k-
dimensional subspace minimizing Equation 5 (alternatively maximizing < PŜ , Cn >) is spanned
by the k-top eigenvectors of Cn.

Since we are interested in the expected dR(Sρ, Ŝ
k
n) (rather than the empirical dR(Ŝn, Ŝ)) error of the

kernel PCA estimate, we may obtain a learning rate for Equation 5 by particularizing Theorem 3.2
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to the reconstruction error, for all k (Theorem 3.2), and for k ≥ k∗ with a suitable choice of k∗
(Corollary 4.1). In particular, recalling that dR(Sρ, ·) = dα,p(Sρ, ·)2 with α = 1/2 and p = 2,
and choosing a value of k ≥ k∗n that minimizes the bound of Theorem 3.2, we obtain the following
result.

Corollary 4.1 (Performance of PCA / Reconstruction error). Let C have eigenvalue decay rate of
order r, and Ŝ∗n be as in Corollary 3.3. Then it holds, with probability 1− δ,

dR(Sρ, Ŝ
∗
n) = O

((
log n− log δ

n

)1−1/r
)

where the dependence on δ is hidden in the Landau symbol.

4.2 Support estimation

The problem of support estimation consists in recovering the support M of a distribution ρ on
a metric space Z from identical and independent samples Zn = (zi)1≤i≤n. We briefly recall a
recently proposed approach to support estimation based on subspace learning [9], and discuss how
our results specialize to this setting, producing a qualitative improvement to theirs.

Given a suitable reproducing kernel K on Z (with associated feature map φ), the support M can
be characterized in terms of the subspace Sρ = span φ(M) ⊆ H [9]. More precisely, letting
dV (x) = ‖x − PV x‖H be the point-subspace distance to a subspace V , it can be shown (see [9])
that, if the kernel separates 1 M , then it is

M = {z ∈ Z | dSρ(φ(z)) = 0}.

This suggests an empirical estimate M̂ = {z ∈ Z | dŜ(φ(z)) ≤ τ} of M , where Ŝ = span φ(Zn),
and τ > 0. With this choice, almost sure convergence limn→∞ dH(M, M̂) = 0 in the Hausdorff
distance [1] is related to the convergence of Ŝ to Sρ [9]. More precisely, if the eigenfunctions of the
covariance operator C = Ez∼ρ [φ(z)⊗ φ(z)] are uniformly bounded, then it suffices for Hausdorff
convergence to bound from above d r−1

2r ,∞
(where r > 1 is the eigenvalue decay rate of C). The

following results specializes Corollary 3.3 to this setting.

Corollary 4.2 (Performance of set learning). If 0 ≤ α ≤ 1
2 , then it holds, with probability 1− δ,

dα,∞(Sρ, Ŝ
∗
n) = O

((
log n− log δ

n

)α)
where the constant in the Landau symbol depends on δ.
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Figure 1: The figure shows the experimental be-
havior of the distance dα,∞(Ŝk, Sρ) between the
empirical and the actual support subspaces, with
respect to the regularization parameter. The set-
ting is the one of section 5. Here the actual sub-
space is analytically computed, while the empiri-
cal one is computed on a dataset with n = 1000
and 32bit floating point precision. Note the nu-
merical instability as k tends to 1000.

Letting α = r−1
2r above yields a high probability bound of order O

(
n−

r−1
2r

)
(up to logarithmic

factors), which is considerably sharper than the bound O
(
n−

r−1
2(3r−1)

)
found in [8] (Theorem 7).

1A kernel is said to separate M if its associated feature map φ satisfies φ−1(span φ(M)) = M (e.g. the
Abel kernel is separating).
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Note that these are upper bounds for the best possible choice of k (which minimizes the bound).
While the optima of both bounds vanish with n → ∞, their behavior is qualitatively different. In
particular, the bound of [8] is U-shaped, and diverges for k = n, while ours is L-shaped (no trade-
off), and thus also convergent for k = n. Therefore, when compared with [8], our results suggest
that no regularization is required from a statistical point of view though, as clarified in the following
remark, it may be needed for purposes of numerical stability.

Remark 4.3. While, as proven in Corollary 4.2, regularization is not needed from a statistical
perspective, it can play a role in ensuring numerical stability in practice. Indeed, in order to find
M̂ , we compute dŜ(φ(z)) with z ∈ Z. Using the reproducing property of K, it can be shown that,

for z ∈ Z, it is dŜk(φ(z)) = K(z, z) −
〈
tz, (K̂

k
n)†tz

〉
where (tz)i = K(z, zi), K̂n is the Gram

matrix (K̂n)ij = K(zi, zj), K̂k
n is the rank-k approximation of K̂n, and (K̂k

n)† is the pseudo-inverse
of K̂k

n. The computation of M̂ therefore requires a matrix inversion, which is prone to instability for
high condition numbers. Figure 1 shows the behavior of the error that results from replacing Ŝ by
its k-truncated approximation Ŝk. For large values of k, the small eigenvalues of Ŝ are used in the
inversion, leading to numerical instability.

5 Experiments

Figure 2: The spectrum of the empirical covariance (left), and the expected distance from a random
sample to the empirical k-truncated kernel-PCA subspace estimate (right), as a function of k (n =
1000, 1000 trials shown in a boxplot). Our predicted plateau threshold k∗n (Theorem 3.2) is a good
estimate of the value k past which the distance stabilizes.

In order to validate our analysis empirically, we consider the following experiment. Let ρ be a
uniform one-dimensional distribution in the unit interval. We embed ρ into a reproducing-kernel
Hilbert space H using the exponential of the `1 distance (k(u, v) = exp{−‖u − v‖1}) as kernel.
Given n samples drawn from ρ, we compute its empirical covariance in H (whose spectrum is
plotted in Figure 2 (left)), and truncate its eigen-decomposition to obtain a subspace estimate Ŝkn, as
described in Section 2.1.

Figure 2 (right) is a box plot of reconstruction error dR(Sρ, Ŝ
k
n) associated with the k-truncated

kernel-PCA estimate Ŝkn (the expected distance inH of samples to Ŝkn), with n = 1000 and varying
k. While dR is computed analytically in this example, and Sρ is fixed, the estimate Ŝkn is a random
variable, and hence the variability in the graph. Notice from the figure that, as pointed out in [6] and
discussed in Section 6, the reconstruction error dR(Sρ, Ŝ

k
n) is always a non-increasing function of k,

due to the fact that the kernel-PCA estimates are nested: Ŝkn ⊂ Ŝk
′

n for k < k′ (see Section 2.1). The
graph is highly concentrated around a curve with a steep intial drop, until reaching some sufficiently
high k, past which the reconstruction (pseudo) distance becomes stable, and does not vanish. In our
experiments, this behavior is typical for the reconstruction distance and high-dimensional problems.

Due to the simple form of this example, we are able to compute analytically the spectrum of the
true covariance C. In this case, the eigenvalues of C decay as 2γ/((kπ)2 + γ2), with k ∈ N, and
therefore they have a polynomial decay rate r = 2 (see Section 3). Given the known spectrum decay
rate, we can estimate the plateau threshold k = k∗n in the bound of Theorem 3.2, which can be seen

6



to be a good approximation of the observed start of a plateau in dR(Sρ, Ŝ
k
n) (Figure 2, right). Notice

that our bound for this case (Corollary 4.1) similarly predicts a steep performance drop until the
threshold k = k∗n (indicated in the figure by the vertical blue line), and a plateau afterwards.

6 Discussion

Figure 3 shows a comparison of our learning rates with existing rates in the literature [6, 19]. The
plot shows the polynomial decay rate c of the high probability bound dR(Sρ, Ŝ

k
n) = O(n−c), as a

function of the eigenvalue decay rate r of the covariance C, computed at the best value k∗n (which
minimizes the bound).

4 6 8 10

0.2

0.4

0.6

0.8

r

Figure 3: Known upper bounds for the polynomial decay rate c (for the best choice of k), for
the expected distance from a random sample to the empirical k-truncated kernel-PCA estimate,
as a function of the covariance eigenvalue decay rate (higher is better). Our bound (purple line),
consistently outperforms previous ones [19] (black line). The top (dashed) line [6], has significantly
stronger assumptions, and is only included for completeness.

The learning rate exponent c, under a polynomial eigenvalue decay assumption of the data covari-
ance C, is c = s(r−1)

r−s+sr for [6] and c = r−1
2r−1 for [19], where s is related to the fourth moment. Note

that, among the two (purple and black) that operate under the same assumptions, our bound (purple
line) is the best by a wide margin. The top, best performing, dashed line [6] is obtained for the best
possible fourth-order moment constraint s = 2r, and is therefore not a fair comparison. However, it
is worth noting that our bounds perform almost as well as the most restrictive one, even when we do
not include any fourth-order moment constraints.

Choice of truncation parameter k. Since, as pointed out in Section 2.1, the subspace estimates Ŝkn
are nested for increasing k (i.e. Ŝkn ⊆ Ŝk

′

n for k < k′), the distance dα,p(Sρ, Ŝkn), and in particular
the reconstruction error dR(Sρ, Ŝ

k
n), is a non-increasing function of k. As has been previously dis-

cussed [6], this suggests that there is no tradeoff in the choice of k. Indeed, the fact that the estimates
Ŝkn become increasing close to Sρ as k increases indicates that, when minimizing dα,p(Sρ, Ŝkn), the
best choice is the highest: k = n.

Interestingly, however, both in practice (Section 5), and in theory (Section 3), we observe that a typ-
ical behavior for the subspace learning problem in high dimensions (e.g. kernel PCA) is that there is
a certain value of k = k∗n, past which performance plateaus. For problems such as spectral embed-
ding methods [22, 10, 25], in which a degree of dimensionality reduction is desirable, producing an
estimate Ŝkn where k is close to the plateau threshold may be a natural parameter choice: it leads to
an estimate of the lowest dimension (k = k∗n), whose distance to the true Sρ is almost as low as the
best-performing one (k = n).
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7 Sketch of the proofs

Due to the novelty of the the techniques employed, and in order to clarify how they may be used
in other contexts, we provide here a proof of our main theoretical result, Theorem 3.1, with some
details omitted in the interest of conciseness.

For each λ > 0, we denote by rλ(x) := 1{x > λ} the step function with a cut-off at λ. Given
an empirical covariance operator Cn, we will consider the truncated version rλ(Cn) where, in this
notation, rλ is applied to the eigenvalues of Cn, that is, rλ(Cn) has the same eigen-structure as Cn,
but its eigenvalues that are less or equal to λ are clamped to zero.

In order to prove the bound of Equation (3), we begin by proving a more general upper bound of
dα,p(Sρ, Ŝ

k
n), which is split into a random (A), and a deterministic part (B, C). The bound holds for

all values of a free parameter t > 0, which is then constrained and optimized in order to find the
(close to) tightest version of the bound.

Lemma 7.1. Let t > 0, 0 ≤ α ≤ 1/2, and λ = σk(C) be the k-th top eigenvalue of C, it is,

dα,p(Sρ, Ŝ
k
n) ≤ ‖(C + tI)

1
2 (Cn + tI)−

1
2 ‖2α∞︸ ︷︷ ︸

A

· {3/2(λ+ t)}α︸ ︷︷ ︸
B

· ‖Cα(C + tI)−α‖p︸ ︷︷ ︸
C

(6)

Note that the right-hand side of Equation (6) is the product of three terms, the left of which (A)
involves the empirical covariance operator Cn, which is a random variable, and the right two (B, C)
are entirely deterministic. While the term B has already been reduced to the known quantities t, α, λ,
the remaining terms are bound next. We bound the random termA in the next Lemma, whose proof
makes use of recent concentration results [23].

Lemma 7.2 (Term A). Let 0 ≤ α ≤ 1/2, for each 9
n log n

δ ≤ t ≤ ‖C‖∞, with probability 1− δ it
is

(2/3)α ≤ ‖(C + tI)
1
2 (Cn + tI)−

1
2 ‖2α∞ ≤ 2α

Lemma 7.3 (Term C). Let C be a symmetric, bounded, positive semidefinite linear operator on H.
If σk(C) ≤ f(k) for k ∈ N, where f is a decreasing function then, for all t > 0 and α ≥ 0, it holds∥∥Cα(C + tI)−α

∥∥
p
≤ inf

0≤u≤1
guαt

−uα (7)

where guα =
(
f(1)uαp +

∫∞
1
f(x)uαpdx

)1/p
. Furthermore, if f(k) = gk−1/γ , with 0 < γ < 1

and αp > γ, then it holds ∥∥Cα(C + tI)−α
∥∥
p
≤ Qt−γ/p (8)

where Q = (gγΓ(αp− γ)Γ(1 + γ)/Γ(γ))
1/p.

The combination of Lemmas 7.1 and 7.2 leads to the main theorem 3.1, which is a probabilistic
bound, holding for every k ∈ {1, . . . , n}, with a deterministic term ‖Cα(C + tI)−α‖p that depends
on knowledge of the covariance C. In cases in which some knowledge of the decay rate of C is
available, Lemma 7.3 can be applied to obtain Theorem 3.2 and Corollary 3.3. Finally, Corollary 4.1
is simply a particular case for the reconstruction error dR(Sρ, ·) = dα,p(Sρ, ·)2, with α = 1/2, p =
2.

As noted in Section 3, looser bounds would be obtained if classical Bernstein inequalities in
Hilbert spaces [14] were used instead. In particular, Lemma 7.2 would result in a range for t of
qn−r/(r+1) ≤ t ≤ ‖C‖∞, implying k∗ = O(n1/(r+1)) rather than O(n1/r), and thus Theorem 3.2
would become (for k ≥ k∗) dα,p(Sρ, Skn) = O(n−αr/(r+1)+1/(p(r+1))) (compared with the sharper
O(n−α+1/rp) of Theorem 3.2). For instance, for p = 2, α = 1/2, and a decay rate r = 2 (as
in the example of Section 5), it would be: d1/2,2(Sρ, Sn) = O(n−1/4) using Theorem 3.2, and
d1/2,2(Sρ, Sn) = O(n−1/6) using classical Bernstein inequalities.
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