Analyzing Hogwild Parallel Gaussian Gibbs Sampling

Matthew J. Johnson James Saunderson Alan S. Willsky
EECS, MIT EECS, MIT EECS, MIT
mattjjlmit.edu jamess@mit.edu willsky@mit.edu
Abstract

Sampling inference methods are computationally difficult to scale for many mod-
els in part because global dependencies can reduce opportunities for parallel com-
putation. Without strict conditional independence structure among variables, stan-
dard Gibbs sampling theory requires sample updates to be performed sequentially,
even if dependence between most variables is not strong. Empirical work has
shown that some models can be sampled effectively by going “Hogwild” and sim-
ply running Gibbs updates in parallel with only periodic global communication,
but the successes and limitations of such a strategy are not well understood.

As a step towards such an understanding, we study the Hogwild Gibbs sampling
strategy in the context of Gaussian distributions. We develop a framework which
provides convergence conditions and error bounds along with simple proofs and
connections to methods in numerical linear algebra. In particular, we show that if
the Gaussian precision matrix is generalized diagonally dominant, then any Hog-
wild Gibbs sampler, with any update schedule or allocation of variables to proces-
sors, yields a stable sampling process with the correct sample mean.

1 Introduction

Scaling probabilistic inference algorithms to large datasets and parallel computing architectures is a
challenge of great importance and considerable current research interest, and great strides have been
made in designing parallelizeable algorithms. Along with the powerful and sometimes complex
new algorithms, a very simple strategy has proven to be surprisingly successful in some situations:
running Gibbs sampling updates, derived only for the sequential setting, in parallel without globally
synchronizing the sampler state after each update. Concretely, the strategy is to apply an algorithm
like Algorithm 1. We refer to this strategy as “Hogwild Gibbs sampling” in reference to recent
work [1] in which sequential computations for computing gradient steps were applied in parallel
(without global coordination) to great beneficial effect.

This Hogwild Gibbs sampling strategy has long been considered a useful hack, perhaps for preparing
decent initial states for a proper serial Gibbs sampler, but extensive empirical work on Approximate
Distributed Latent Dirichlet Allocation (AD-LDA) [2, 3, 4, 5, 6], which applies the strategy to
generate samples from a collapsed LDA model, has demonstrated its effectiveness in sampling LDA
models with the same predictive performance as those generated by standard serial Gibbs [2, Figure
3]. However, the results are largely empirical and so it is difficult to understand how model properties
and algorithm parameters might affect performance, or whether similar success can be expected
for any other models. There have been recent advances in understanding some of the particular
structure of AD-LDA [6], but a thorough theoretical explanation for the effectiveness and limitations
of Hogwild Gibbs sampling is far from complete.

Sampling inference algorithms for complex Bayesian models have notoriously resisted theoretical
analysis, so to begin an analysis of Hogwild Gibbs sampling we consider a restricted class of mod-
els that is especially tractable for analysis: Gaussians. Gaussian distributions and algorithms are
tractable because of their deep connection with linear algebra. Further, Gaussian sampling is of

Algorithm 1 Hogwild Gibbs Sampling
Require: Samplers G,(Z—;) which sample p(x;|x—; = Z-;), a partition {Z;,Zs,...,Zx} of
{1,2,...,n}, and an inner iteration schedule ¢(k, ¢) > 0
1: Initialize z(V)

2: for ¢ = 1,2,... until convergence do > global iterations/synchronizations
3: fork=1,2,..., K in parallel do > for each of K parallel processors
(1 —

4: y(Ik) — x%k

5: forj=1,2,...,q(k,¢)do > run local Gibbs steps with old

6: for i € 7, do > statistics from other processors
. —(7) ~(£) =(7) =(0)

7: 7y’ <—Gi(le,...,yzjk\{i},...,xIK)

gzt (gj(ﬁ(u)) e gng’Z))) > globally synchronize statistics

great interest in its own right, and there is active research in developing powerful Gaussian sam-
plers [7, 8, 9, 10]. Gaussian Hogwild Gibbs sampling could be used in conjunction with those
methods to allow greater parallelization and scalability, given an understanding of its applicability
and tradeoffs.

Toward the goal of understanding Gaussian Hogwild Gibbs sampling, the main contribution of this
paper is a linear algebraic framework for analyzing the stability and errors in Gaussian Hogwild
Gibbs sampling. Our framework yields several results, including a simple proof for a sufficient
condition for all Gaussian Hogwild Gibbs sampling processes to be stable and yield the correct
asymptotic mean no matter the allocation of variables to processors or number of sub-iterations
(Proposition 1, Theorem 1), as well as an analysis of errors introduced in the process variance.

Code to regenerate our plOtS is available at https://github.com/mattjj/gaussian-hogwild-gibbs.

2 Related Work

There has been significant work on constructing parallel Gibbs sampling algorithms, and the contri-
butions are too numerous to list here. One recent body of work [11] provides exact parallel Gibbs
samplers which exploit graphical model structure for parallelism. The algorithms are supported by
the standard Gibbs sampling analysis, and the authors point out that while heuristic parallel sam-
plers such as the AD-LDA sampler offer easier implementation and often greater parallelism, they
are currently not supported by much theoretical analysis.

The parallel sampling work that is most relevant to the proposed Hogwild Gibbs sampling analysis
is the thorough empirical demonstration of AD-LDA [2, 3, 4, 5, 6] and its extensions. The AD-LDA
sampling algorithm is an instance of the strategy we have named Hogwild Gibbs, and Bekkerman
et al. [5, Chapter 11] suggests applying the strategy to other latent variable models.

The work of Thler et al. [6] provides some understanding of the effectiveness of a variant of AD-LDA
by bounding in terms of run-time quantities the one-step error probability induced by proceeding
with sampling steps in parallel, thereby allowing an AD-LDA user to inspect the computed error
bound after inference [6, Section 4.2]. In experiments, the authors empirically demonstrate very
small upper bounds on these one-step error probabilities, e.g. a value of their parameter ¢ = 10~*
meaning that at least 99.99% of samples are expected to be drawn just as if they were sampled
sequentially. However, this per-sample error does not necessarily provide a direct understanding
of the effectiveness of the overall algorithm because errors might accumulate over sampling steps;
indeed, understanding this potential error accumulation is of critical importance in iterative systems.
Furthermore, the bound is in terms of empirical run-time quantities, and thus it does not provide
guidance regarding on which other models the Hogwild strategy may be effective. Ihler et al. [6,
Section 4.3] also provides approximate scaling analysis by estimating the order of the one-step
bound in terms of a Gaussian approximation and some distributional assumptions.

Finally, Niu et al. [1] provides both a motivation for Hogwild Gibbs sampling as well as the Hog-
wild name. The authors present “a lock-free approach to parallelizing stochastic gradient descent”
(SGD) by providing analysis that shows, for certain common problem structures, that the locking

https://github.com/mattjj/gaussian-hogwild-gibbs

and synchronization needed to run a stochastic gradient descent algorithm “correctly” on a multi-
core architecture are unnecessary, and in fact the robustness of the SGD algorithm compensates for
the uncertainty introduced by allowing processors to perform updates without locking their shared
memory.

3 Background

In this section we fix notation for Gaussian distributions and describe known connections between
Gaussian sampling and a class of stationary iterative linear system solvers which are useful in ana-
lyzing the behavior of Hogwild Gibbs sampling.

The density of a Gaussian distribution on n variables with mean vector y and positive definite!
covariance matrix > > 0 has the form

p(z) o exp {—%(w —u)'e(x — ,u)} xexp{—3z"Jr+hTz} (1)

where we have written the information parameters J := X~ and h := Ju. The matrix .J is often
called the precision matrix or information matrix, and it has a natural interpretation in the context of
Gaussian graphical models: its entries are the coefficients on pairwise log potentials and its sparsity
pattern is exactly the sparsity pattern of a graphical model. Similarly h, also called the potential
vector, encodes node potentials and evidence.

In many problems [12] one has access to the pair (J, 2) and must compute or estimate the moment
parameters ;1 and 3 (or just the diagonal) or generate samples from A (i1, Y). Sampling provides
both a means for estimating the moment parameters and a subroutine for other algorithms. Comput-
ing p from (J, h) is equivalent to solving the linear system Ju = h for p.

One way to generate samples is via Gibbs sampling, in which one iterates sampling each x; con-
ditioned on all other variables to construct a Markov chain for which the invariant distribution is
the target N (p1, ¥). The conditional distributions for Gibbs sampling steps are p(z;|x-; = T—;)
exp {—%Jiil‘? + (hl — Ji_‘ifﬁi)l‘i} . That is, we update each x; via z; + %“(hl — Jiﬂi.’fl_.i) + v;

where v; S N(0, +).

Since each variable update is a linear function of other variables with added Gaussian noise, we can
collect one scan for: = 1,2, ..., n into a matrix equation relating the sampler state at ¢t and ¢ + 1:

2D = _plLptt) — pILTe® 4 plh 4 D350 5O K (0, 1),

where we have split J = L + D + L7 into its strictly lower-triangular, diagonal, and strictly upper-
triangular parts, respectively. Note that z(**1) appears on both sides of the equation, and that the
sparsity patterns of L and LT ensure that each entry of 2(*+1) depends on the appropriate entries of
2" and 2(**1), We can re-arrange the equation into an update expression:

2 = D+ L)L+ (D+ L) h+ (D+ L), 50 K A0, D).

The expectation of this update is exactly the Gauss-Seidel iterative linear system solver update [13,
Section 7.3] applied to Jyu = h, ie. z(*tD) = —(D+ L) 'LT2® 4 (D + L)~ 'h. Therefore a
Gaussian Gibbs sampling process can be interpreted as Gauss-Seidel iterates on the system Ju = h
with appropriately-shaped noise injected at each iteration.

Gauss-Seidel is one instance of a stationary iterative linear solver based on a matrix splitting. In
general, one can construct a stationary iterative linear solver for any splitting J = M — N where M
is invertible, and similarly one can construct iterative Gaussian samplers via
_ _ _ iid
e = (MIN)2® + M~th+ M~1o® o® A0, MT + N) 2)
with the constraint that M7 + N = 0 (i.e. that the splitting is P-regular [14]). For an iterative
process like (2) to be stable or convergent for any initialization we require the eigenvalues of its

! Assume models are non-degenerate: matrix parameters are of full rank and densities are finite everywhere.

update map to lie in the interior of the complex unit disk, i.e. p(M ~*N) := max; |\;(M~IN)| < 1
[13, Lemma 7.3.6]. The Gauss-Seidel solver (and Gibbs sampling) correspond to choosing M to be
the lower-triangular part of .J and N to be the negative of the strict upper-triangle of J. J = Oisa
sufficient condition for Gauss-Seidel to be convergent [13, Theorem 7.5.41] [15], and the connection
to Gibbs sampling provides an independent proof.

For solving linear systems with splitting-based algorithms, the complexity of solving linear systems
in M directly affects the computational cost per iteration. For the Gauss-Seidel splitting (and hence
Gibbs sampling), M is chosen to be lower-triangular so that the corresponding linear system can
be solved efficiently via backsubstitution. In the sampling context, the per-iteration computational
complexity is also determined by the covariance of the injected noise process v(*), because at each
iteration one must sample from a Gaussian distribution with covariance M7 + N

We highlight one other standard stationary iterative linear solver that is relevant to analyzing Gaus-
sian Hogwild Gibbs sampling: Jacobi iterations, in which one splits J = D — A where D is the
diagonal part of J and A is the negative of the off-diagonal part. Due to the choice of a diagonal
M , each coordinate update depends only on the previous sweep’s output, and thus the Jacobi update
sweep can be performed in parallel. A sufficient condition for the convergence of Jacobi iterates
is for J to be a generalized diagonally dominant matrix (i.e. an H-matrix) [13, Definition 5.13]. A
simple proof 2 due to Ruozzi et al. [16], is to consider Gauss-Seidel iterations on a lifted 2n x 2n

system:
D —A\ G-Supdate D! 0 0 A - 0 D 1A 3
-A D)7 \ptapt p1)\o o) \o (D 14)?) ©)

Therefore one iteration of Gauss-Seidel on the lifted system is exactly two applications of the Jacobi
update D~' A to the second half of the state vector, so Jacobi iterations converge if Gauss-Seidel
on the lifted system converges. Furthermore, a sufficient condition for Gauss-Seidel to converge
on the lifted system is for it to be positive semi-definite, and by taking Schur complements we
require D — AD 1A= 0or I — (D_%AD_%)(D_%AD_%) > 0, which is equivalent to requiring
generalized diagonal dominance [13, Theorem 5.14].

4 Gaussian Hogwild Analysis

Given that Gibbs sampling iterations and Jacobi solver iterations, which can be computed in parallel,
can each be written as iterations of a stochastic linear dynamical system (LDS), it is not surprising
that Gaussian Hogwild Gibbs sampling can also be expressed as an LDS by appropriately composing
these ideas. In this section we describe the LDS corresponding to Gaussian Hogwild Gibbs sampling
and provide convergence and error analysis, along with a connection to a class of linear solvers.

For the majority of this section, we assume that the number of inner iterations performed on each
processor is constant across time and processor index; that is, we have a single number ¢ = ¢(k, £)
of sub-iterations per processor for each outer iteration. We describe how to relax the assumption at
the end of this subsection.

Given a joint Gaussian distribution of dimension n represented by a pair (J, k) as in (1), we repre-
sent an allocation of the n scalar variables to local processors by a partition of {1,2,...,n}, where
we assume partition elements are contiguous without loss of generality. Consider a block-Jacobi
splitting of J into its block diagonal and block off-diagonal components, J = Dyjock — A, accord-
ing to the partition. A includes the cross-processor potentials, and this block-Jacobi splitting will
model the outer iterations in Algorithm 1. We further perform a Gauss-Seidel splitting on Dyjock
into (block-diagonal) lower-triangular and strictly upper-triangular parts, Dp,ck = B — C; these
processor-local Gauss-Seidel splittings model the inner Gibbs sampling steps in Algorithm 1. We
refer to this splitting J = B — C — A as the Hogwild splitting; see Figure 1a for an example.

For each outer iteration of the Hogwild Gibbs sampler we perform ¢ processor-local Gibbs steps,
effectively applying the block-diagonal update B~'C repeatedly using Az(Y) + h as a potential

2 When J is symmetric one can arrive at the same condition by applying a similarity transform as in Propo-
sition 5. We use the lifting argument here because we extend the idea in our other proofs.

vector that includes out-of-date statistics from the other processors. The resulting update operator
for one outer iteration of the Hogwild Gibbs sampling process can be written as

q—1) .
2D = (B710) " + Y " (B7'C)' BT (Ax<t> +h+ v(t’j)) oD EN(0,D) @)
j=0

where D is the diagonal of J. Note that we shape the noise diagonally because in Hogwild Gibbs
sampling we simply apply standard Gibbs updates in the inner loop.

As mentioned previously, the update in (4) is written so that the number of sub-iterations is homo-
geneous, but the expression can easily be adapted to model any numbers of sub-iterations by writing
a separate sum over j for each block row of the output and a separate matrix power for each block
in the first B~'C term. The proofs and arguments in the following subsections can also be extended
with extra bookkeeping, so we focus on the homogeneous ¢ case for convenience.

4.1 Convergence and Correctness of Means

Because the Gaussian Hogwild Gibbs sampling iterates form a Gaussian linear dynamical system,
the process is stable (i.e. its iterates converge in distribution) if and only if [13, Lemma 7.3.6] the
deterministic part of the update map (4) has spectral radius less than unity, i.e.

q—1
T:=(B'O)'+> (B 'C)YB'A=(B'O)+(I—-(B'O))YB-C)"'4a (5
§=0
satisfies p(T) < 1. We can write T' = T2, + (I — T}!))Thiock Where Tiyq is the purely Gauss-
Seidel update when A = 0 and T}cx for the block Jacobi update, which corresponds to solving the
processor-local linear systems exactly at each outer iteration. The update (5) falls into the class of
two-stage splitting methods [14, 17, 18], and the next proposition is equivalent to such two-stage
solvers having the correct fixed point.

Proposition 1. If a Gaussian Hogwild Gibbs process is stable, the asymptotic mean is correct.

Proof. 1f the process is stable the mean process has a unique fixed point, and from (4) and (5) we can
write the fixed-point equation for the process mean fihog as (I —T") tthog = (L —Tina) (L —Thiock) thog =
(I=Tna)(B—C)"th,hence (I—(B—C) ' A)pinog = (B—C)'hand pinog = (B—C—A)"th. O

The behavior of the spectral radius of the update map can be very complicated, even generically
over simple ensembles. In Figure 1b, we compare p(T') for ¢ = 1 and ¢ = oo (corresponding to
T = Thiock) With models sampled from a natural random ensemble; we see that there is no general
relationship between stability at ¢ = 1 and at ¢ = oc.

Despite the complexity of the update map’s stability, in the next subsection we give a simple ar-
gument that identifies its convergence with the convergence of Gauss-Seidel iterates on a larger,
non-symmetric linear system. Given that relationship we then prove a condition on the entries of
J that ensures the convergence of the Gaussian Hogwild Gibbs sampling process for any choice of
partition or sub-iteration count.

4.1.1 A lifting argument and sufficient condition

First observe that we can write multiple steps of Gauss-Seidel as a single step of Gauss-Seidel on
a larger system: given J = L — U where L is lower-triangular (including the diagonal, unlike the
notation of Section 3) and U is strictly upper-triangular, consider applying Gauss-Seidel to a larger
block k£ x k system:

L U L=t _
U L G-S L~tuL~t Lt U L'
. — : - = : (6)
UL L0 Lt e Lot L Loyt
Therefore one step of Gauss-Seidel on the larger system corresponds to k applications of the Gauss-
Seidel update L ~—'U from the original system to the last block element of the lifted state vector.

Now we provide a lifting on which Gauss-Seidel corresponds to Gaussian Hogwild Gibbs iterations.

#
ooy X
X X

Sy
x x x
. Ry ok K g x
gL R

I < XQ,(%:X s X X

mE m 10 ééw% >
- x %X X
T \ & Xw;*}wwﬁxf

A B c O
. . . 0.8 %
(a) Support pattern (in black) of the Hogwild split- « R E K
ting J = B — C — A with n = 9 and the processor 0.8 0.9 1.0 L1 1.2
partition {{1? 27 3}7 {47 57 6}5 {7a 87 9}} AT a=1
(b) p(T) for ¢ = 1 versus for g = co
0001210 A=0 > A=0
_ 00010/ — PB lc) =0.670 S B ~10)1 = 0.670
2 — p(B —0.448 o — p(B'C)1 =0.448
% 0.0008 |1 — (B =0.300 IS — p(B~LC)1 = 0.300 5
o
§) — (B 1c)l 0.201 20010 — p(B *()1 0201 2%
8 0.0006 _5 Z.
° %
S 0.0004]
g f 0.005
0.0002 ©
0.0000 — 0.000
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
t t
(c) II projects to the block diagonal (d) II projects to the off-block-diagonal

Figure 1: (a) visualization of the Hogwild splitting; (b) Hogwild stability for generic models; (c)
and (d) typical plots of ||II(X — Ehog)||rro. In (b) each point corresponds to a sampled model
J = QQT + nrl with Q; S (0,1), r S Uniform[0.5,1] , n = 24 with an even partition of
size 4. In (¢) and (d), models are J = B — C — tA where B — C — A = QQ", n = 150 with an
even partition of size 3. The plots can be generated with python figures.py -seed=0.

Proposition 2. Tiwo applications of the Hogwild update T of (5) are equivalent to the update to the
last block element of the state vector in one Gauss-Seidel iteration on the (2qn) x (2gn) system

E —F\. (" . 2o p A%
(F E)xz(;)wzthE: F= : . @)
h -CB A

Proof. By comparing to the block update in (3), it suffices to consider E~!F. Furthermore, since
the claim concerns the last block entry, we need only consider the last block row of E~'F. E is
block lower-bidiagonal as the matrix that is inverted in (6), so E~! has the same lower-triangular
form as in (6) and the product of the last block row of E~1 with the last block column of F yields

(B710)" + Y4 (BT\CYBT'A=T. O

Proposition 3. Gaussian Hogwild Gibbs sampling is convergent if Gauss-Seidel converges on (7).

Unfortunately the lifting is not symmetric and so we cannot impose positive semi-definiteness on
the lifted system; however, another sufficient condition for Gauss-Seidel stability can be applied:

Theorem 1. If J is generalized diagonally dominant (i.e. an H-matrix, see Berman et al. [13, Def-

inition 5.13, Theorem 5.14]) then Hogwild Gibbs sampling is convergent for any variable partition
and any number of sub-iterations.

Proof. If J is generalized diagonally dominant then there exists a diagonal scaling matrix R such
that J := JR is row diagonally dominant, i.e. Ji > > ki \J2J| Since each scalar row of the
coefficient matrix in (7) contains only entries from one row of J and zeros, it is generalized diag-
onally dominant with a scaling matrix that consists of 2¢ copies of R along the diagonal. Finally,
Gauss-Seidel iterations on generalized diagonally dominant systems are convergent [13, Theorem
5.14], so by Proposition 3 the corresponding Hogwild Gibbs iterations are convergent. [

In terms of Gaussian graphical models, generalized diagonally dominant models include tree models
and latent tree models (since H-matrices are closed under Schur complements), in which the den-
sity of the distribution can be written as a tree-structured set of pairwise potentials over the model
variables and a set of latent variables. Latent tree models are useful in modeling data with hierar-
chical or multi-scaled relationships, and this connection to latent tree structure is evocative of many
hierarchical Bayesian models. More broadly, diagonally dominant systems are well-known for their
tractability and applicability in many other settings [19], and Gaussian Hogwild Gibbs provides
another example of their utility.

Because of the connection to linear system solvers based on two-stage multisplittings, this result
can be identified with [18, Theorem 2.3], which shows that if the coefficient matrix is an H-matrix
then the two-stage iterative solver is convergent. Indeed, by the connection between solvers and
samplers one can prove our Theorem 1 as a corollary to [18, Theorem 2.3] (or vice-versa), though
our proof technique is much simpler. The other results on two-stage multisplittings [18, 14], can
also be applied immediately for results on the convergence of Gaussian Hogwild Gibbs sampling.

The sufficient condition provided by Theorem 1 is coarse in that it provides convergence for any par-
tition or update schedule. However, given the complexity of the processes, as exhibited in Figure 1b,
it is difficult to provide general conditions without taking into account some model structure.

4.1.2 Exact local block samples

Convergence analysis simplifies greatly in the case where exact block samples are drawn at each
processor because q is sufficiently large or because another exact sampler [9, 10] is used on each
processor. This regime of Hogwild Gibbs sampling is particularly interesting because it minimizes
communication between processors.

In (4), we see that as ¢ — oo we have T' — Tyjock; that is, the deterministic part of the update
becomes the block Jacobi update map, which admits a natural sufficient condition for convergence:

Proposition 4. If (B —C)~2 A(B — C)~2)2 < I, then block Hogwild Gibbs sampling converges.

Proof. Since similarity transformations preserve eigenvalues, with A := (B — C)" 2 A(B — ()2
we have p(Tpioek) = p((B — C)2(B — C)"'A(B — C)~2) = p(A) and since A is symmetric
A2 < T=> p(A) <l= p(Tblock> < 1. O]

4.2 Variances

Since we can analyze Gaussian Hogwild Gibbs sampling as a linear dynamical system, we can write
an expression for the steady-state covariance Yo Of the process when it is stable. For a general
stable LDS of the form z(*+1 = T2® + v® with v ~ N(0, %) the steady-state covariance
is given by the series > ;o T'%;, 7T, which is the solution to the linear discrete-time Lyapunov
equation ¥ — TSTT = % in X,

The injected noise for the outer loop of the Hogwild iterations is generated by the inner loop, which
itself has injected noise with covariance D, the diagonal of .J, so for Hogwild sampling we have

Sinj = Z?;é(B_lC)jB_lDB_T(B_lC)jT. The target covariance is J 1 = (B — C — A)~L.

Composing these expressions we see that the Hogwild covariance is complicated, but we can analyze
some salient properties in at least two regimes: when A is small and when local processors draw
exact block samples (e.g. when ¢ — 00).

4.2.1 First-order effectsin A

Intuitively, the Hogwild strategy works best when cross-processor interactions are small, and so it
is natural to analyze the case when A is small and we can discard terms that include powers of A
beyond first order.

When A = 0, the model is independent across processors and both the exact covariance and the
Hogwild steady-state covariance for any ¢ is (B —C)~*. For small nonzero A, we consider Xpog(A)

to be a function of A and linearize around A = 0 to write Xpog(A) &~ (B — C) ™! + [DoShog (A),
where the derivative [Do o] (A) is a matrix determined by the linear equation

[DoEhog) (A) — S[DoThog) (A)ST = A — SAST — (I — S)A(I —)T

where A := (B — C)"'A(B—C)*and S := (B~1C). See the supplementary materials. We
can compare this linear approximation to the linear approximation for the exact covariance:

Jl=[I+B-C)"A+(B-C) A+](B-CO)'=(B-C)"+ A (8)

Since A has zero block-diagonal and .S is block-diagonal, we see that to first order A has no effect on
the block-diagonal of either the exact covariance or the Hogwild covariance. As shown in Figure lc,
in numerical experiments higher-order terms improve the Hogwild covariance on the block diagonal
relative to the A = 0 approximation, and the improvements increase with local mixing rates.

The off-block-diagonal first-order term in the Hogwild covariance is nonzero and it depends on the
local mixing performed by S. In particular, if global synchronization happens infrequently relative
to the speed of local sampler mixing (e.g. if ¢ is large), S ~ 0 and DoXpoe ~ 0, S0 Xpoe =~
(B — C)~! (to first order in A) and cross-processor interactions are ignored (though they are still
used to compute the correct mean, as per Proposition 1). However, when there are directions in
which S is slow to mix, DoXhog picks up some parts of the correct covariance’s first-order term, A.
Figure 1d shows the off-block-diagonal error increasing with faster local mixing for small A.

Intuitively, more local mixing, and hence relatively less frequent global synchronization, degrades
the Hogwild approximation of the cross-processor covariances. Such an effect may be undesirable
because increased local mixing reflects greater parallelism (or an application of more powerful local
samplers [9, 10]). In the next subsection we show that this case admits a special analysis and even an
inexpensive correction to recover asymptotically unbiased estimates for the full covariance matrix.

4.2.2 Exact local block samples

As local mixing increases, e.g. as ¢ — oo or if we use an exact block local sampler between global
synchronizations, we are effectively sampling in the lifted model of Eq. (3) and therefore we can use
the lifting construction to analyze the error in variances:

Proposition 5. When local block samples are exact, the Hogwild sampled covariance ¥y, satisfies
S={I+(B-C)"A)Su, and |2~ Spogl| < |I(B — C) 7 Al || Zhog|

where X = J~1 is the exact target covariance and || - || is any submultiplicative matrix norm.

Proof. Using the lifting in (3), the Hogwild process steady-state covariance is the marginal covari-
ance of half of the lifted state vector, so using Schur complements we can write Yo, = ((B—C) —
AB-C)TA)t =[I+(B-C)"tA)?+...](B—C)~L. We can compare this series to the exact
expansion in (8) to see that Yy, includes exactly the even powers (due to the block-bipartite lifting),
so therefore ¥ —Ypos = [(B—C)'A+((B=C) A3+ |(B-C) ' = (B-C) 'AZp,. O

5 Conclusion

We have introduced a framework for understanding Gaussian Hogwild Gibbs sampling and shown
some results on the stability and errors of the algorithm, including (1) quantitative descriptions for
when a Gaussian model is not “too dependent” to cause Hogwild sampling to be unstable (Proposi-
tion 2, Theorem 1, Proposition 4); (2) given stability, the asymptotic Hogwild mean is always correct
(Proposition 1); (3) in the linearized regime with small cross-processor interactions, there is a trade-
off between local mixing and error in Hogwild cross-processor covariances (Section 4.2.1); and (4)
when local samplers are run to convergence we can bound the error in the Hogwild variances and
even efficiently correct estimates of the full covariance (Proposition 5). We hope these ideas may be
extended to provide further insight into Hogwild Gibbs sampling, in the Gaussian case and beyond.

6 Acknowledgements

This research was supported in part under AFOSR Grant FA9550-12-1-0287.

References

(1]
(2]

(3]
(4]

(5]
(6]

(71
(8]
(9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]
[18]

[19]

F. Niu, B. Recht, C. Ré, and S.J. Wright. “Hogwild!: A lock-free approach to parallelizing
stochastic gradient descent”. In: Advances in Neural Information Processing Systems (2011).
D. Newman, A. Asuncion, P. Smyth, and M. Welling. “Distributed inference for latent dirich-
let allocation”. In: Advances in Neural Information Processing Systems 20.1081-1088 (2007),
pp. 17-24.

D. Newman, A. Asuncion, P. Smyth, and M. Welling. “Distributed algorithms for topic mod-
els”. In: The Journal of Machine Learning Research 10 (2009), pp. 1801-1828.

Z. Liu, Y. Zhang, E.Y. Chang, and M. Sun. “PLDA+: Parallel latent dirichlet allocation with
data placement and pipeline processing”. In: ACM Transactions on Intelligent Systems and
Technology (TIST) 2.3 (2011), p. 26.

R. Bekkerman, M. Bilenko, and J. Langford. Scaling up machine learning: Parallel and dis-
tributed approaches. Cambridge University Press, 2012.

A. Thler and D. Newman. “Understanding Errors in Approximate Distributed Latent Dirich-
let Allocation”. In: Knowledge and Data Engineering, IEEE Transactions on 24.5 (2012),
pp- 952-960.

Y. Liu, O. Kosut, and A. S. Willsky. “Sampling GMRFs by Subgraph Correction”. In: NIPS
2012 Workshop: Perturbations, Optimization, and Statistics (2012).

G. Papandreou and A. Yuille. “Gaussian sampling by local perturbations”. In: Neural Infor-
mation Processing Systems (NIPS). 2010.

A. Parker and C. Fox. “Sampling Gaussian distributions in Krylov spaces with conjugate
gradients”. In: SIAM Journal on Scientific Computing 34.3 (2012), pp. 312-334.

Colin Fox and Albert Parker. “Convergence in Variance of First-Order and Second-Order
Chebyshev Accelerated Gibbs Samplers”. 2013. URL: http://www.physics.otago.
ac.nz/data/fox/publications/SIAM_CS_2012-11-30.pdf.

J. Gonzalez, Y. Low, A. Gretton, and C. Guestrin. “Parallel Gibbs Sampling: From Colored
Fields to Thin Junction Trees”. In: In Artificial Intelligence and Statistics (AISTATS). Ft.
Lauderdale, FL., May 2011.

M. J. Wainwright and M. L. Jordan. “Graphical models, exponential families, and variational
inference”. In: Foundations and Trends®) in Machine Learning 1.1-2 (2008), pp. 1-305.

A. Berman and R.J. Plemmons. “Nonnegative Matrices in the Mathematical Sciences”. In:
Classics in Applied Mathematics, 9 (1979).

M. J. Castel V. Migallén and J. Penadés. “On Parallel two-stage methods for Hermitian pos-
itive definite matrices with applications to preconditioning”. In: Electronic Transactions on
Numerical Analysis 12 (2001), pp. 88—112.

D. Serre. Nov. 2011. URL: http : / /mathoverflow . net /questions /80793 /
is—gauss - seidel —guaranteed-to - converge —on - semi —positive -
definite-matrices/80845#80845.

Nicholas Ruozzi and Sekhar Tatikonda. “Message-Passing Algorithms for Quadratic Min-
imization”. In: Journal of Machine Learning Research 14 (2013), pp. 2287-2314. URL:
http://Jmlr.org/papers/v14/ruozzil3a.html.

A. Frommer and D.B. Szyld. “On asynchronous iterations”. In: Journal of computational and
applied mathematics 123.1 (2000), pp. 201-216.

A. Frommer and D.B. Szyld. “Asynchronous two-stage iterative methods”. In: Numerische
Mathematik 69.2 (1994), pp. 141-153.

J. A. Kelner, L. Orecchia, A. Sidford, and Z. A. Zhu. A Simple, Combinatorial Algorithm for
Solving SDD Systems in Nearly-Linear Time. 2013. arXiv: 1301.6628 [cs.DS].

http://www.physics.otago.ac.nz/data/fox/publications/SIAM_CS_2012-11-30.pdf
http://www.physics.otago.ac.nz/data/fox/publications/SIAM_CS_2012-11-30.pdf
http://mathoverflow.net/questions/80793/is-gauss-seidel-guaranteed-to-converge-on-semi-positive-definite-matrices/80845#80845
http://mathoverflow.net/questions/80793/is-gauss-seidel-guaranteed-to-converge-on-semi-positive-definite-matrices/80845#80845
http://mathoverflow.net/questions/80793/is-gauss-seidel-guaranteed-to-converge-on-semi-positive-definite-matrices/80845#80845
http://jmlr.org/papers/v14/ruozzi13a.html
http://arxiv.org/abs/1301.6628

