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Abstract

Optimal transport distances are a fundamental family dhdises for probability
measures and histograms of features. Despite their appehkoretical proper-
ties, excellent performance in retrieval tasks and inteiformulation, their com-
putation involves the resolution of a linear program whoasst can quickly be-
come prohibitive whenever the size of the support of thesasomes or the his-
tograms’ dimension exceeds a few hundred. We propose iwthrisa new family

of optimal transport distances that look at transport potd from a maximum-
entropy perspective. We smooth the classic optimal tramgpoblem with an

entropic regularization term, and show that the resultiptinoum is also a dis-
tance which can be computed through Sinkhorn’s matrix sgaigorithm at a
speed that is several orders of magnitude faster than thedrefport solvers. We
also show that this regularized distance improves uporsiclagptimal transport
distances on the MNIST classification problem.

1 Introduction

Choosing a suitable distance to compare probabilities sygkoblem in statistical machine learn-
ing. When little is known on the probability space on whicéda probabilities are supported, various
information divergences with minimalistic assumptiongdbeen proposed to play that part, among
which the Hellinger,y., total variation or Kullback-Leibler divergences. Where throbability
space is a metric space, optimal transport distances (V/i2909, §6)a.k.a.earth mover’'s (EMD)

in computer vision (Rubner et al., 1997), define a more pawgdometry to compare probabilities.

This power comes, however, with a heavy computational gege No matter what the algorithm
employed — network simplex or interior point methods — thet@ computing optimal transport
distances scales at least@(d3log(d)) when comparing two histograms of dimensiéror two
point clouds each of sizéin a general metric space (Pele and Werman, 2009, §2.1).

In the particular case that the metric probability spacentdrest can be embedded®¥ andn is
small, computing or approximating optimal transport dis&s can become reasonably cheap. In-
deed, whem = 1, their computation only requiré€3(d log d) operations. When > 2, embeddings

of measures can be used to approximate them in linear tindgland Thaper, 2003; Grauman and
Darrell, 2004; Shirdhonkar and Jacobs, 2008) and netwanglex solvers can be modified to run
in quadratic time (Gudmundsson et al., 2007; Ling and Oka€@&y7). However, the distortions of
such embeddings (Naor and Schechtman, 2007) as well asgbaential increase of costs incurred
by such modifications as grows make these approaches inapplicable whexceeds 4. Outside of
the perimeter of these cases, computing a single distariaeée a pair of measures supported by
a few hundred points/bins in an arbitrary metric space cemitaore than a few seconds on a single
CPU. This issue severely hinders the applicability of optitransport distances in large-scale data
analysis and goes as far as putting into question theiraalvywithin the field of machine learning,
where high-dimensional histograms and measures in higiemiional spaces are now prevalent.



We show in this paper that another strategy can be employsggeed-up optimal transport, and even
potentially define a better distance in inference tasks. dDategy is valid regardless of the metric
characteristics of the original probability space. Rathan exploit properties of the metric proba-
bility space of interest (such as embeddability in a low-elisional Euclidean space) we choose to
focus directly on the original transport problem, and ragak it with an entropic term. We argue
that this regularization is intuitive given the geometrytioé optimal transport problem and has,
in fact, been long known and favored in transport theory &t traffic patterns (Wilson, 1969).
From an optimization point of view, this regularization hrasltiple virtues, among which that of
turning the transport problem into a strictly convex praobléhat can be solved with matrix scaling
algorithms. Such algorithms include Sinkhorn’s celelidiged point iteration (1967), which is
known to have a linear convergence (Franklin and Lorenz9188ight, 2008). Unlike other itera-
tive simplex-like methods that need to cycle through comptenditional statements, the execution
of Sinkhorn’s algorithm only relies on matrix-vector prads. \We propose a novel implementation
of this algorithm that can compusgmultaneouslyhe distance of a single point to a family of points
using matrix-matrix products, and which can therefore bplémented on GPGPU architectures.
We show that, on the benchmark task of classifying MNIST tdjgiegularized distances perform
better than standard optimal transport distances, and e@ofputed several orders of magnitude
faster.

This paper is organized as follows: we provide reminderspim@l transport theory in Section 2,
introduce Sinkhorn distances in Section 3 and provide #lyoic details in Section 4. We follow
with an empirical study in Section 5 before concluding.

2 Reminders on Optimal Transport

Transport Polytope and Interpretation as a Set of Joint Prokabilities In what follows, (-, -)
stands for the Frobenius dot-product. For two probabilégtersr andc in the simplex,; := {z €
R4 : 271, = 1}, wherel, is thed dimensional vector of ones, we writé(r, ¢) for the transport
polytope ofr ande, namely the polyhedral set dfx d matrices,

U(r,c) :={P € R | P1y=r,PT1, = c}.

U(r, c) contains all nonnegativé x d matrices with row and column sumsand ¢ respectively.
U(r, c) has a probabilistic interpretation: fdf andY two multinomial random variables taking
valuesin{l,--- ,d}, each with distributiom andc respectively, the séf (r, ¢) contains all possible
joint probabilitiesof (X, Y"). Indeed, any matri € U(r, ¢) can be identified with a joint probabil-
ity for (X,Y") such thap(X = i,Y = j) = p;;. We define the entropy and the Kullback-Leibler
divergences oP, @ € U(r,c) and a marginals € ¥, as

d d
Pij
h(r)=— Zri logr;, h(P)=-— Z pijlogpi;, KL(P|Q) = Zpij log q—J
i=1 ij=1 ij v
Optimal Transport Distance Betweenr andc Given ad x d cost matrixM, the cost of mapping
r to ¢ using a transport matrix (or joint probability) can be quantified a&P, M ). The problem
defined in Equation (1)

dlﬂ (T’, C) = Penlljl(? ) <Pa M > (1)

is called anoptimal transport (OT)problem betweem andc given costM. An optimal tableP*
for this problem can be obtained, among other approachéstheé network simplex (Ahuja et al.,
1993, 89). The optimum of this problend,,(r, ¢), is a distance betweenandc (Villani, 2009,
86.1) whenever the matriX/ is itself a metric matrix, namely whenevéf belongs to the cone of
distance matrices (Avis, 1980; Brickell et al., 2008):

M= {MeR¥*:Vi,j<dmy=0si=jVijk<dmy<mp+mg}

For a general matrix/, the worst case complexity of computing that optimum scialé(d* log d)
for the best algorithms currently proposed, and turns obeteuper-cubic in practice as well (Pele
and Werman, 2009, §2.1).



3 Sinkhorn Distances: Optimal Transport with Entropic Constraints

Entropic Constraints on Joint Probabilities The following information theoretic inequality
(Cover and Thomas, 1991, §2) for joint probabilities

Vr,c € ¥4,YP € U(r,c), h(P) < h(r) + h(c),

is tight, since thendependence tabte:” (Good, 1963) has entrogy(rc’) = h(r) + h(c). By the
concavity of entropy, we can introduce the convex set

Un(r,c) :={P € U(r,c) | KL(P|rc") < a} = {P € U(r,c) | h(P) > h(r)+h(c)—a} C U(r,c).

These two definitions are indeed equivalent, since one cly eaeck thalK L(P||rc’) = h(r) +

h(c) — h(P), a quantity which is also the mutual informatié(X||Y") of two random variables
(X,Y) should they follow the joint probability’ (Cover and Thomas, 1991, §2). Hence, the set of
tablesP whose Kullback-Leibler divergence i@’ is constrained to lie below a certain threshold
can be interpreted as the set of joint probabilitiesn U (r, ¢) which havesufficient entropyvith
respect tdv(r) andh(c), or small enougimutual information For reasons that will become clear in
Section 4, we call the quantity below the Sinkhorn distarfceandc:

Definition 1 (Sinkhorn Distance)ds (7, ¢) := - 15111(1 )(P, M)
eUq(r,c

Why consider an entropic constraint in optimal transpoitt® first reason is computational, and is
detailed in Section 4. The second reason is built upon thevfolg intuition. As a classic result
of linear optimization, the OT problem is always solved oneatex of U (r,c). Such a vertex is

a sparsel x d matrix with only up to2d — 1 non-zero elements (Brualdi, 2006, §8.1.3). From a
probabilistic perspective, such vertices are quasi-d@testic joint probabilities, since ip;; > 0,
then very few probabilitiep;; for j # j’ will be non-zero in general. Rather than considering
such outliers of/(r, ¢) as the basis of OT distances, we propose to restrict thetséartow cost
joint probabilities to tables with sufficient smoothnesotéthat this is equivalent to considering
the maximume-entropy principle (Jaynes, 1957; Darroch aatd|i®, 1972) if we were to maximize
entropy while keeping the transportation cost constrained

Before proceeding to the description of the properties nkisorn distances, we note that Ferradans
et al. (2013) have recently explored similar ideas. Thegxand penalize (through graph-based
norms) the original transport problem to avoid undesirgiotgperties exhibited by the original op-
tima in the problem of color matching. Combined, their idea @urs suggest that many more
smooth regularizers will be worth investigating to solve the OT problem, driven by either or both
computational and modeling motivations.

Metric Properties of Sinkhorn Distances When« is large enough, the Sinkhorn distance co-
incides with the classic OT distance. When= 0, the Sinkhorn distance has a closed form and
becomes a negative definite kernel if one assumesith# itself a negative definite distance, or

equivalently a Euclidean distance mattix

Property 1. For « large enough, the Sinkhorn distangég ., is the transport distancé,,.

Proof. Since for anyP € U(r,c), h(P) is lower bounded by (h(r) + h(c)), we have that for
large enougl/,, (r, ¢) = U (r, ¢) and thus both quantities coincidi.

Property 2 (Independence Kernelyly, o = 7 Me. If M is a Euclidean distance matridy, o is a
negative definite kernel and .0, the independence kernel, is positive definite for ajl 0.

The proof is provided in the appendix. Beyond these two extreases, the main theorem of this
section states that Sinkhorn distances are symmetric distygaangle inequalities for all possible
values ofa. Since fora small enoughiy o (r,7) > 0 for anyr such thath(r) > 0, Sinkhorn
distances cannot satisfy theincidence axionid(x,y) = 0 < x = y holds for allz, y). However,
multiplying das.« by 1, suffices to recover the coincidence property if needed.

Theorem 1. For all & > 0 andM € M, das,« iS Symmetric and satisfies all triangle inequalities.
The function(r, ¢) — 1,.dn o (7, c) satisfies all three distance axioms.

30,301, , 4 € R™ such thatm;; = |jw; — o;||3. Recall that, in that casé\/ raised to powet
element-wise[m};], 0 < t < 1is also a Euclidean distance matrix (Berg et al., 1984, §38,10).
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Figure 1: Transport polytop& (r, ¢) and Kullback-Leibler ballU, (r, ¢) of level o centered
aroundrc”. This drawing implicitly assumes that the optimal trangg®@t is unique. The Sinkhorn
distanceis (7, ¢) is equal to{ Py, M ), the minimum of the dot product with/ on that ball. For
large enough, both objectives coincide[&4s(r, ¢) gradually overlaps witl/ (r, ¢) in the vicinity

of P*. The dual-sinkhorn distane&, (r, c), the minimum of the transport problem regularized by
minus the entropy divided b, reaches its minimum at a unique soluti&r', forming a regular-
ization path for varying\ from rc” to P*. For a given value ofy, and a pair(r, c) there exists

A € [0, 0] such that bothl}, (1, ¢) anddys (7, ¢) coincide.dy}, can be efficiently computed using
Sinkhorn’s fixed point iteration (1967). Although the coryence toP* of this fixed point iteration

is theoretically guaranteed as — oo, the procedure cannot work beyond a problem-dependent
value\ ., beyond which some entries ef ** are represented as zeroes in memory.

The gluing lemma (Villani, 2009, p.19) is key to proving ti@I distances are indeed distances. We
propose a variation of this lemma to prove our result:

Lemma 1 (Gluing Lemma With Entropic ConstraintLeta > 0 andzx,y,z € X4. LetP €
Ua(z,y) and@ € Uq(y, 2). LetS be thed x d defined asiy, := 3~ %ﬁ ThenS € U, (z, 2).

The proof is provided in the appendix. We can prove the tt@imgequality ford,, o by using the
same proof strategy than that used for classic transpdsratiss:

Proof of Theorem 1The symmetry ofi,, , is a direct result of\/'s symmetry. Letr, y, z be three
elements int,. Let P € U, (z,y) and@ € U, (y, z) be two optimal solutions fod; . (z, y) and
dra(y, z) respectively. Using the matri& of U, (z, z) provided in Lemma 1, we proceed with the
following chain of inequalities:

. Pijqjk p qjk
dM,oz(xvz) = Pell}il?z,z)<P7M Zmzk Z Sk < Zk mij + M) SR
ij
k k k

_ Z ng% +myi szQJ Z Mi;pij QJ + Z Mk Z bij

ijk
= Zmijpij + ijijk = dM,a(%?J) + dM,a(y, z). 1

i ik

4 Computing Regularized Transport with Sinkhorn’s Algorit hm

We consider in this section a Lagrange multiplier for the@py constraint of Sinkhorn distances:

1
For\ > 0, dy,(r,¢) := (P* M), whereP* = argmin (P, M ) — Xh(P). 2)
PeU(r,c)

By duality theory we have that to eaehcorresponds a € [0, oo] such thatly o (r, ¢) = dy;(r, c)
holds for that paifr, ). We calld}, thedual-Sinkhorn divergencand show that it can be computed

4



for a much cheaper cost than the original distasige Figure 1 summarizes the relationships be-
tweend,y, dar.. anddy),. Since the entropy aP* decreases monotonically with computingdy

can be carried out by computing, with increasing values of until h(P*) reaches(r)+h(c)—a.

We do not consider this problem here and only use the dudh8im divergence in our experiments.

Computing d3, with Matrix Scaling Algorithms ~ Adding an entropy regularization to the opti-
mal transport problem enforces a simple structure on thenaptegularized transpoi?™:

Lemma 2. For A > 0, the solutionP* is unique and has the for?* = diag(u)K diag(v),
whereu andv are two non-negative vectors Bf uniquely defined up to a multiplicative factor and
K := e=*M is the element-wise exponential-oA) .

Proof. The existence and unicity aP* follows from the boundedness &f(r, c) and the strict
convexity of minus the entropy. The fact that can be written as a rescaled versionfofs a well
known fact in transport theory (Erlander and Stewart, 18303): letL(P, «, 8) be the Lagrangian
of Equation (2) with dual variables, 3 € R¢ for the two equality constraints i (r, c):

1
L(P,a,B) = Z \Pid log pij + pigmij + o (P1g—r) + 7 (PT14 — o).
ij
For any couple(i,j), (0L/0pi; = 0) = pi = e V2 Aie=Amiie=1/2-38;  Since K is
strictly positive, Sinkhorn’s theorem (1967) states thwdré exists ainique matrixof the form
diag(u)K diag(v) that belongs td/(r, c), whereu,v > 04. P> is thus necessarily that matrix,
and can be computed with Sinkhorn’s fixed point iterationw) < (r./Kv,c./K'u). B

Given K and marginals: andc¢, one only needs to iterate Sinkhorn’s update a sufficientbarm
of times to converge td*. One can show that these successive updates carry ouivitdyrahe
projection of K on U(r, ¢) in the Kullback-Leibler sense. This fixed point iteratiomdze written
as a single update < r./ K (c./K'u). Whenr > 04, diag(1./r) K can be stored in d x d matrix
K to save one Schur vector product operation with the update 1./(K (c./K'w)). This can be
easily ensured by selecting the positive indices,@s seen in the first line of Algorithm 1.

Algorithm 1 Computation ol = [d},(r, c1), - - - ,d}, (1, cn)], Using Matlab syntax.
Input M, \,r,C :=[e1,- - ,cn].
I=(r>0;r=r(I);M=M(,:); K =exp(—\M)
u = ones (length (r), N)/length (r);
K = bsxfun (@rdivide , K, r) % equivalenttds = diag(1./r)K
while u changes or any other relevant stopping critedon
u=1./(K(C./(K'u)))
end while
v=C./(K'u)
d = sum(u. * (K. * M)v)

Parallelism, Convergence and Stopping Criteria As can be seen right above, Sinkhorn’s algo-
rithm can be vectorized and generalized\{adarget histograms,,--- ,cy. WhenN = 1 andC

is a vector in Algorithm 1, we recover the simple iterationntiened in the proof of Lemma 2.
WhenN > 1, the computations folN target histograms can be simultaneously carried out by up-
dating a single matrix of scaling factouse RiXN instead of updating a scaling vectore R<.

This important observation makes the execution of Algonithparticularly suited to GPGPU plat-
forms. Despite ongoing research in that field (Bieling et2010) such speed ups have not been yet
achieved on complex iterative procedures such as the nesimplex. Using Hilbert’s projective
metric, Franklin and Lorenz (1989) prove that the convecgeaf the scaling factar (as well as)

is linear, with a rate bounded above b{K )?, where

0(K)—1 Ki K'm
K(K) = VOE) — 1 <1, andf(K) = max —Hogm
O(K)+1 irgilom K51 Kim
The upper bouna(K) tends tol as\ grows, and we do observe a slower convergende’agets
closer to the optimal verteR* (or the optimal facet o/ (r, ¢) if it is not unique). Different stopping
criteria can be used for Algorithm 1. We consider two in tharky which we detail below.



5 Experimental Results

MNIST Digits We test the performance of

dual-Sinkhorn divergences on the MNIST MNIST Data: Average CV Error (SVM)
digits dataset. Each image is converted as a Function of Data Size

to a vector of intensities on th20 x 20 009 [ Y
pixel grid, which are then normalized tg _ =<G:h
sum tol. We consider a subset d¥ < —
{3,5,12,17,25} x 103 points in the dataset. BEVD

IND

For each subset, we provide mean and stdg .
Il Sinkhorn

dard deviation of classification error usin
a 4 fold (3 test, 1 train) cross validation
(CV) scheme repeated 6 times, resultin
in 24 different experiments. Given a dist
tanced, we form the kernek—%/*, where
t > 0 is chosen by CV on each train;
ing fold within {1, ¢10(d), g20(d), ¢s50(d)}, 30005000 8000 12000 17000 25000
Whereqs is the s% quantile of a subset of Dataset Size. 1/4 Train, 3/4 Test, 6 repeats
distances observed in that fold. We regu-
larize non-positive definite kernel matricegigure 2: Average test errors with shaded confi-
resulting from this computation by addinglence intervals. Errors are computed using 1/4 of the
a sufficiently large diagonal term. SVM'sdataset for train and 3/4 for test. Errors are averaged
were run with Libsvm (one-vs-one) for mul-over 4 foldsx 6 repeats = 24 experiments.

ticlass classification. We select the regular-

izationC'in 101204} ysing 2 folds/2 repeats CV on the training fold. We consitieriellinger,

X2, total variation and squared Euclidean (Gaussian kerns@rmtes.M is the400 x 400 matrix

of Euclidean distances between & x 20 bins in the grid. We also tried Mahalanobis distances
on this example usingxp(-tM.”2)  , t>0 as well as its inverse, with varying values iofbut
none of these results proved competitive. For the Indepesedkernel we consideréehg;] where

a € {0.01,0.1,1} is chosen by CV on each training fold. We sel&éh {5,7,9,11} x 1/gs0(M)
wheregso (M (:)) is the median distance between pixels. We set the numbereaf-fiwint iterations

to an arbitrary number of 20 iterations. In most (though fiptfalds, the valuex = 9 comes up as
the best setting. The dual-Sinkhorn divergence beats bfearsargin all other distances, including
the classic optimal transport distance, here labeled as EMD

Does the Dual-Sinkhorn Divergence Con-
verge to the EMD? We study the conver- Deviation of Sinkhorn’s Distance
gence of the dual-Sinkhorn divergence tq o EMD on subset of MNIST Data
wards classic optimal transport distances as | , ‘ ‘ ‘
A grows. Because of the regularization ip S
Equation (2),d3,(r, ¢) is necessarily larger
thand,,(r, ¢), and we expect this gap to de
crease as\ increases. Figure 3 illustrates
this by plotting the boxplot of the distri-
butions of (d},(r,c) — du(r,¢))/da(r,c) |
over 40? pairs of images from the MNIST| 5
database. d}, typically approximates the| .
EMD with a high accuracy wheh exceeds
50 (median relative gap df.4% and1.2%

for 50 and 100 respectively). For this exper- + ..
iment as well aall the other experiments be- S
low, we compute a vector aV divergences

d at each iteration, and stop wheoneof
the N values ofd varies more in absoluteFigure 3: Decrease of the gap between the dual-
value than a 1/100th of a percere.we stop Sinkhorn divergence and the EMD as a function of

when||dg./di_; — 1o < le — 4. A on a subset of the MNIST dataset.
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Several Orders of Magnitude Faster . A
. Computational Speed for Histograms of
We measure the computational speed pf Varying Dimension Drawn Uniformly on the Simplex

classic optimal transport distances vs. that (log log scale) ‘
of dual-Sinkhorn divergences using Rul- ~«-FastEMD ‘ ‘ T
ner et al’s (1997) and Pele and Wer- 10° - Rubnersemd |- » i
man’s (2009) publicly available imple-| & “¥-Sink. GPU 2=50 Rt
mentations. We pick a random distanges MG e

matrix M by generating a random graph € | |.m sink. GPUA=10 =7

of d vertices with edge presence probabil-2 ' [ |4-sink cPur=1 | _=7-*

ity 1/2 and edge weights uniformly dis- -¢- Sink. GPU A1

tributed between 0 and 1M is the all-
pairs shortest-path matrix obtained from
this connectivity matrix using the Floyd-
Warshall algorithm (Ahuja et al., 1993
85.6). Using this proceduréy is likely
to be an extreme ray of the cond (Avis,
1980, p.138). The elements dff are
then normalized to have unit median. We =~ [_....---*" ‘ ‘ ‘ ‘
implemented Algorithm 1 in matlab, ang 64 128 Higg%ram Dimena 1024 2048
useemd.mexandemd.hat _gd_metric

g'e)li/hc f'leél'au The EMD dlsta_nc?s ancf:igure 4: Average computational time required to com-
2m66 OGrE X are Sn'mkr?n aég‘g € Co?ute a distance between two histograms sampled uni-
(2. z Xeon). Sinkhorn IS ru ormly in thed dimensional simplex for varying values

o_r:ja N)\\/_idialQiJ(?%rOo KS}\OOB clard. V\Ilte CONot 4. Dual-Sinkhorn divergences are run both on a sin-
sider A in {1,10,50}. A = 1resultsin 10 =p(yand on a GPU card.
a relatively dense matriX(, with results

comparable to that of the Independence kernel, while\fer 10 or 50 & = e~ * has very small
values. Rubner et al.’s implementation cannot be run fdogrems larger thad = 512. As can be
expected, the competitive advantage of dual-Sinkhorrrgemces over EMD solvers increases with
the dimension. Using a GPU results in a speed-up of an additarder of magnitude.

vg. Execution Time per Distanc

A
S

Empirical Complexity To provide an accu-
rate picture of the actual cost of the algorithn, lterations Required to Obtain 1e-4 Relative
we replicate the experiments above but foclis Predision on the Dual-Sinkhorn Divergence
. . . . (log log Scale) -5
now on the number of iterations (matrix-matri — b
products) typically needed to obtain the conver -
gence of a set ofV divergences from a given
pointr, all uniformly sampled on the simplex
As can be seen in Figure 5, the number of it
erations required for vectat to converge in-
creases as *M becomes diagonally dominant
However, the total number of iterations dogs
not seem to vary with respect to the dimen-
sion. This observation can explain why we do
observe a quadratic (empirical) time complex-
ity O(dQ) with respect to the dimensiod in 164 128 256 512 1024 2048
Figure 4 above. These results suggest that the Histogram Dimension
costly action of keeping track of the actual ap-
proximation error (computing variations i) Figure 5: The influence ok on the number of
is not required, and that simply predefining #erations required to converge on histograms uni-
fixed number of iterations can work well andormly sampled from the simplex.
yield even additional speedups.

Number of lterations Required to Converge
O

10 } }

10

¥ % ¥ % % *

6 Conclusion

We have shown that regularizing the optimal transport goblvith an entropic penalty opens the
door for new numerical approaches to compute OT. This reigakion yields speed-ups that are
effectiveregardless of any assumptions on the ground métficBased on preliminary evidence, it



seems that dual-Sinkhorn divergences do not perform whesethe EMD, and may in fact perform
better in applications. Dual-Sinkhorn divergences areup@terized by a regularization weight
which should be tuned having both computational and perdoiea objectives in mind, but we have
not observed a need to establish a trade-off between batbeth reasonably small values\afeem
to perform better than large ones.
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7 Appendix: Proofs

Proof of Property 1.The setlU; (r, ¢) contains all joint probabilitie® for which h(P) = h(r) +
h(c). In that case (Cover and Thomas, 1991, Theorem 2.6.6) apalidU;,(r,c) can only be
equal to the singletofirc’}. If M is negative definite, there exists vectégs, - - - , ¢4) in some
Euclidean spacR™ such thatn;; = ||¢; — ¢;||3 through (Berg et al., 1984, §3.3.2). We thus have

that
r"Me =" "riciloi — ;11> = O _rilleill> + _cillill®) = 2> (rivs, ¢j05)
ij 7 [ 17
=rTu+cTu—2rTKe

whereu; = ||¢;||?> andK;; = (¢:, ;). We used the fact thd r; = >~ ¢; = 1 to go from the

first to the second equality? M c is thus a n.d. kernel because it is the sum of two n.d. kertieds:
first term (r7u + ¢T'u) is the sum of the same function evaluated separatelyamdc, and thus a
negative definite kernel (Berg et al., 1984, §3.2.10); thledderm—2r7 K is negative definite as
minus a positive definite kernel (Berg et al., 1984, Defimitg3.1.1).H

Remark.The proof above suggests a faster way to compute the Indepeaéernel. Given a matrix
M, one can indeed pre-compute the vector of notnes well as a Cholesky factdr of K above

to preprocess a dataset of histograms by premultiplying eservations; by L and only store
Lr; as well as precomputing its diagonal terfu. Note that the independence kernel is positive
definite on histograms with the same 1-norm, but is no longsitipe definite for arbitrary vectors.

Proof of Lemma 1Let T be the a probability distribution ofil, - - - , d}* whose coefficients are
defined as D
tz]k = U J ) (3)
Yj

for all indices; such thaty; > 0. For indicesj such that; = 0, all valuest;;;, are set td.
LetS := [}, tijilik. Sis a transport matrix betweenandz. Indeed,
Pijdjk 4k djk
s = S B = S Sy = 3 4, = S = o ol sums)
i i J J

PB)IETE B) SIS zp” > z iy, 3 py = v row sums)
k j j k J Yj j

We now prove thah(S) > h(z) + h(z) — a. Let (X, Y, Z) be three random variables jointly
distributed ag’. Since by definition of” in Equation (3)

p(X,Y, Z) = p(X,Y)p(Y, Z)/p(Y) = p(X)p(Y[X)p(Z|Y),

the triplet(X,Y, Z) is a Markov chainX — Y — Z (Cover and Thomas, 1991, Equation 2.118)
and thus, by virtue of the data processing inequality (Camer Thomas, 1991, Theorem 2.8.1), the
following inequality between mutual informations applies

I(X;Y) > I(X; Z), namely h(X,Z) —h(X) — h(Z) > h(X,Y) — h(X) — h(Y) > —
|
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