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Abstract

In the high-dimensional regression model a response variable is linearly related to
p covariates, but the sample size n is smaller than p. We assume that only a small
subset of covariates is ‘active’ (i.e., the corresponding coefficients are non-zero),
and consider the model-selection problem of identifying the active covariates.
A popular approach is to estimate the regression coefficients through the Lasso
(`1-regularized least squares). This is known to correctly identify the active set
only if the irrelevant covariates are roughly orthogonal to the relevant ones, as
quantified through the so called ‘irrepresentability’ condition. In this paper we
study the ‘Gauss-Lasso’ selector, a simple two-stage method that first solves the
Lasso, and then performs ordinary least squares restricted to the Lasso active set.
We formulate ‘generalized irrepresentability condition’ (GIC), an assumption that
is substantially weaker than irrepresentability. We prove that, under GIC, the
Gauss-Lasso correctly recovers the active set.

1 Introduction

In linear regression, we wish to estimate an unknown but fixed vector of parameters θ0 ∈ Rp from n
pairs (Y1, X1), (Y2, X2), . . . , (Yn, Xn), with vectors Xi taking values in Rp and response variables
Yi given by

Yi = 〈θ0, Xi〉+Wi , Wi ∼ N(0, σ2) , (1)

where 〈 · , · 〉 is the standard scalar product.

In matrix form, letting Y = (Y1, . . . , Yn)T and denoting by X the design matrix with rows
XT

1 , . . . , X
T
n , we have

Y = X θ0 +W , W ∼ N(0, σ2In×n) . (2)

In this paper, we consider the high-dimensional setting in which the number of parameters exceeds
the sample size, i.e., p > n, but the number of non-zero entries of θ0 is smaller than p. We denote by
S ≡ supp(θ0) ⊆ [p] the support of θ0, and let s0 ≡ |S|. We are interested in the ‘model selection’
problem, namely in the problem of identifying S from data Y , X.

In words, there exists a ‘true’ low dimensional linear model that explains the data. We want to
identify the set S of covariates that are ‘active’ within this model. This problem has motivated a
large body of research, because of its relevance to several modern data analysis tasks, ranging from
signal processing [9, 5] to genomics [15, 16]. A crucial step forward has been the development of
model-selection techniques based on convex optimization formulations [17, 8, 6]. These formula-
tions have lead to computationally efficient algorithms that can be applied to large scale problems.
Such developments pose the following theoretical question: For which vectors θ0, designs X, and
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noise levels σ, the support S can be identified, with high probability, through computationally effi-
cient procedures? The same question can be asked for random designs X and, in this case, ‘high
probability’ will refer both to the noise realization W , and to the design realization X. In the rest of
this introduction we shall focus –for the sake of simplicity– on the deterministic settings, and refer
to Section 3 for a treatment of Gaussian random designs.

The analysis of computationally efficient methods has largely focused on `1-regularized least
squares, a.k.a. the Lasso [17]. The Lasso estimator is defined by

θ̂n(Y,X;λ) ≡ arg min
θ∈Rp

{ 1

2n
‖Y −Xθ‖22 + λ‖θ‖1

}
. (3)

In case the right hand side has more than one minimizer, one of them can be selected arbitrarily for
our purposes. It is worth noting that when columns of X are in general positions (e.g. when the
entries of X are drawn form a continuous probability distribution), the Lasso solution is unique [18].
We will often omit the arguments Y , X, as they are clear from the context. (A closely related method
is the so-called Dantzig selector [6]: it would be interesting to explore whether our results can be
generalized to that approach.)

It was understood early on that, even in the large-sample, low-dimensional limit n → ∞ at p
constant, supp(θ̂n) 6= S unless the columns of X with index in S are roughly orthogonal to the
ones with index outside S [12]. This assumption is formalized by the so-called ‘irrepresentability
condition’, that can be stated in terms of the empirical covariance matrix Σ̂ = (XTX/n). Letting
Σ̂A,B be the submatrix (Σ̂i,j)i∈A,j∈B , irrepresentability requires

‖Σ̂Sc,SΣ̂−1S,S sign(θ0,S)‖∞ ≤ 1− η , (4)

for some η > 0 (here sign(u)i = +1, 0, −1 if, respectively, ui > 0, = 0, < 0). In an early break-
through, Zhao and Yu [23] proved that, if this condition holds with η uniformly bounded away from
0, it guarantees correct model selection also in the high-dimensional regime p � n. Meinshausen
and Bülmann [14] independently established the same result for random Gaussian designs, with
applications to learning Gaussian graphical models. These papers applied to very sparse models, re-
quiring in particular s0 = O(nc), c < 1, and parameter vectors with large coefficients. Namely, scal-
ing the columns of X such that Σ̂i,i ≤ 1, for i ∈ [p], they require θmin ≡ mini∈S |θ0,i| ≥ c

√
s0/n.

Wainwright [21] strengthened considerably these results by allowing for general scalings of s0, p, n
and proving that much smaller non-zero coefficients can be detected. Namely, he proved that for a
broad class of empirical covariances it is only necessary that θmin ≥ cσ

√
(log p)/n. This scaling

of the minimum non-zero entry is optimal up to constants. Also, for a specific classes of random
Gaussian designs (including X with i.i.d. standard Gaussian entries), the analysis of [21] provides
tight bounds on the minimum sample size for correct model selection. Namely, there exists c`, cu >
0 such that the Lasso fails with high probability if n < c` s0 log p and succeeds with high probability
if n ≥ cu s0 log p.

While, thanks to these recent works [23, 14, 21], we understand reasonably well model selection
via the Lasso, it is fundamentally unknown what model-selection performances can be achieved
with general computationally practical methods. Two aspects of of the above theory cannot be
improved substantially: (i) The non-zero entries must satisfy the condition θmin ≥ cσ/

√
n to be

detected with high probability. Even if n = p and the measurement directions Xi are orthogonal,
e.g., X =

√
nIn×n, one would need |θ0,i| ≥ cσ/

√
n to distinguish the i-th entry from noise.

For instance, in [10], the authors prove a general upper bound on the minimax power of tests for
hypothesesH0,i = {θ0,i = 0}. Specializing this bound to the case of standard Gaussian designs, the
analysis of [10] shows formally that no test can detect θ0,i 6= 0, with a fixed degree of confidence,
unless |θ0,i| ≥ cσ/

√
n. (ii) The sample size must satisfy n ≥ s0. Indeed, if this is not the case,

for each θ0 with support of size |S| = s0, there is a one parameter family {θ0(t) = θ0 + t v}t∈R
with supp(θ0(t)) ⊆ S, Xθ0(t) = Xθ0 and, for specific values of t, the support of θ0(t) is strictly
contained in S.

On the other hand, there is no fundamental reason to assume the irrepresentability condition (4).
This follows from the requirement that a specific method (the Lasso) succeeds, but is unclear why
it should be necessary in general. In this paper we prove that the Gauss-Lasso selector has nearly
optimal model selection properties under a condition that is strictly weaker than irrepresentability.
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GAUSS-LASSO SELECTOR: Model selector for high dimensional problems

Input: Measurement vector y, design model X, regularization parameter λ, support size s0.
Output: Estimated support Ŝ.

1: Let T = supp(θ̂n) be the support of Lasso estimator θ̂n = θ̂n(y,X, λ) given by

θ̂n(Y,X;λ) ≡ arg min
θ∈Rp

{ 1

2n
‖Y −Xθ‖22 + λ‖θ‖1

}
.

2: Construct the estimator θ̂GL as follows:

θ̂GL
T = (XT

TXT )−1XT
T y , θ̂GL

T c = 0 .

3: Find s0-th largest entry (in modulus) of θ̂GL
T , denoted by θ̂GL

(s0)
, and let

Ŝ ≡
{
i ∈ [p] : |θ̂GL

i | ≥ |θ̂GL
(s0)
|
}
.

We call this condition the generalized irrepresentability condition (GIC). The Gauss-Lasso proce-
dure uses the Lasso to estimate a first model T ⊆ {1, . . . , p}. It then constructs a new estimator by
ordinary least squares regression of the data Y onto the model T .

We prove that the estimated model is, with high probability, correct (i.e., Ŝ = S) under conditions
comparable to the ones assumed in [14, 23, 21], while replacing irrepresentability by the weaker
generalized irrepresentability condition. In the case of random Gaussian designs, our analysis further
assumes the restricted eigenvalue property in order to establish a nearly optimal scaling of the sample
size n with the sparsity parameter s0.

In order to build some intuition about the difference between irrepresentability and generalized
irrepresentability, it is convenient to consider the Lasso cost function at ‘zero noise’:

G(θ; ξ) ≡ 1

2n
‖X(θ − θ0)‖22 + ξ‖θ‖1 =

1

2
〈(θ − θ0), Σ̂(θ − θ0)〉+ ξ‖θ‖1 .

Let θ̂ZN(ξ) be the minimizer of G( · ; ξ) and v ≡ limξ→0+ sign(θ̂ZN(ξ)). The limit is well defined
by Lemma 2.2 below. The KKT conditions for θ̂ZN imply, for T ≡ supp(v),

‖Σ̂T c,T Σ̂−1T,T vT ‖∞ ≤ 1 .

Since G( · ; ξ) has always at least one minimizer, this condition is always satisfied. Generalized
irrepresentability requires that the above inequality holds with some small slack η > 0 bounded
away from zero, i.e.,

‖Σ̂T c,T Σ̂−1T,T vT ‖∞ ≤ 1− η .

Notice that this assumption reduces to standard irrepresentability cf. Eq. (4) if, in addition, we ask
that v = sign(θ0). In other words, earlier work [14, 23, 21] required generalized irrepresentability
plus sign-consistency in zero noise, and established sign consistency in non-zero noise. In this paper
the former condition is shown to be sufficient.

From a different point of view, GIC demands that irrepresentability holds for a superset of the true
support S. It was indeed argued in the literature that such a relaxation of irrepresentability allows to
cover a significantly broader set of cases (see for instance [3, Section 7.7.6]). However, it was never
clarified why such a superset irrepresentability condition should be significantly more general than
simple irrepresentability. Further, no precise prescription existed for the superset of the true support.

Our contributions can therefore be summarized as follows:

• By tying it to the KKT condition for the zero-noise problem, we justify the expectation that
generalized irrepresentability should hold for a broad class of design matrices.

• We thus provide a specific formulation of superset irrepresentability, prescribing both the
superset T and the sign vector vT , that is, by itself, significantly more general than simple
irrepresentability.
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• We show that, under GIC, exact support recovery can be guaranteed using the Gauss-Lasso,
and formulate the appropriate ‘minimum coefficient’ conditions that guarantee this. As a
side remark, even when simple irrepresentability holds, our results strengthen somewhat
the estimates of [21] (see below for details).

The paper is organized as follows. In the rest of the introduction we illustrate the range of applicabil-
ity of GIC through a simple example and we discuss further related work. We finally introduce the
basic notations to be used throughout the paper. Section 2 treats the case of deterministic designs X,
and develops our main results on the basis of the GIC. Section 3 extends our analysis to the case of
random designs. In this case GIC is required to hold for the population covariance, and the analysis
is more technical as it requires to control the randomness of the design matrix. We refer the reader
to the long version of the paper [11] for the proofs of our main results and the technical steps.

1.1 An example

In order to illustrate the range of new cases covered by our results, it is instructive to consider a
simple example. A detailed discussion of this calculation can be found in [11]. The example corre-
sponds to a Gaussian random design, i.e., the rows XT

1 , . . .XT
n are i.i.d. realizations of a p-variate

normal distribution with mean zero. We write Xi = (Xi,1, Xi,2, . . . , Xi,p)
T for the components of

Xi. The response variable is linearly related to the first s0 covariates:

Yi = θ0,1Xi,1 + θ0,2Xi,2 + · · ·+ θ0,s0Xi,s0 +Wi ,

where Wi ∼ N(0, σ2) and we assume θ0,i > 0 for all i ≤ s0. In particular S = {1, . . . , s0}.
As for the design matrix, first p − 1 covariates are orthogonal at the population level, i.e., Xi,j ∼
N(0, 1) are independent for 1 ≤ j ≤ p−1 (and 1 ≤ i ≤ n). However the p-th covariate is correlated
to the s0 relevant ones:

Xi,p = aXi,1 + aXi,2 + · · ·+ aXi,s0 + b X̃i,p .

Here X̃i,p ∼ N(0, 1) is independent from {Xi,1, . . . , Xi,p−1} and represents the orthogonal com-
ponent of the p-th covariate. We choose the coefficients a, b ≥ 0 such that s0a2 + b2 = 1, whence
E{X2

i,p} = 1 and hence the p-th covariate is normalized as the first (p − 1) ones. In other words,
the rows of X are i.i.d. Gaussian Xi ∼ N(0,Σ) with covariance given by

Σij =


1 if i = j,

a if i = p, j ∈ S or i ∈ S, j = p,
0 otherwise.

For a = 0, this is the standard i.i.d. design and irrepresentability holds. The Lasso correctly recovers
the support S from n ≥ c s0 log p samples, provided θmin ≥ c′

√
(log p)/n. It follows from [21] that

this remains true as long as a ≤ (1−η)/s0 for some η > 0 bounded away from 0. However, as soon
as a > 1/s0, the Lasso includes the p-th covariate in the estimated model, with high probability.

On the other hand, Gauss-Lasso is successful for a significantly larger set of values of a. Namely, if

a ∈
[
0,

1− η
s0

]
∪
(

1

s0
,

1− η
√
s0

]
,

then it recovers S from n ≥ c s0 log p samples, provided θmin ≥ c′
√

(log p)/n. While the interval
((1−η)/s0, 1/s0] is not covered by this result, we expect this to be due to the proof technique rather
than to an intrinsic limitation of the Gauss-Lasso selector.

1.2 Further related work

The restricted isometry property [7, 6] (or the related restricted eigenvalue [2] or compatibility con-
ditions [19]) have been used to establish guarantees on the estimation and model selection errors of
the Lasso or similar approaches. In particular, Bickel, Ritov and Tsybakov [2] show that, under such
conditions, with high probability,

‖θ̂ − θ0‖22 ≤ Cσ2 s0 log p

n
.
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The same conditions can be used to prove model-selection guarantees. In particular, Zhou [24]
studies a multi-step thresholding procedure whose first steps coincide with the Gauss-Lasso. While
the main objective of this work is to prove high-dimensional `2 consistency with a sparse estimated
model, the author also proves partial model selection guarantees. Namely, the method correctly
recovers a subset of large coefficients SL ⊆ S, provided |θ0,i| ≥ cσ

√
s0(log p)/n, for i ∈ SL. This

means that the coefficients that are guaranteed to be detected must be a factor
√
s0 larger than what

is required by our results.

An alternative approach to establishing model-selection guarantees assumes a suitable mutual
incoherence conditions. Lounici [13] proves correct model selection under the assumption
maxi6=j |Σ̂ij | = O(1/s0). This assumption is however stronger than irrepresentability [19]. Candés
and Plan [4] also assume mutual incoherence, albeit with a much weaker requirement, namely
maxi6=j |Σ̂ij | = O(1/(log p)). Under this condition, they establish model selection guarantees
for an ideal scaling of the non-zero coefficients θmin ≥ cσ

√
(log p)/n. However, this result only

holds with high probability for a ‘random signal model’ in which the non-zero coefficients θ0,i have
uniformly random signs.

The authors in [22] consider the variable selection problem, and under the same assumptions on
the non-zero coefficients as in the present paper, guarantee support recovery under a cone condition.
The latter condition however is stronger than the generalized irrepresentability condition. In partic-
ular, for the example in Section 1.1 it yields no improvement over the standard irrepresentability.
The work [20] studies the adaptive and the thresholded Lasso estimators and proves correct model
selection assuming the non-zero coefficients are of order s0

√
(log p)/n.

Finally, model selection consistency can be obtained without irrepresentability through other meth-
ods. For instance [25] develops the adaptive Lasso, using a data-dependent weighted `1 regular-
ization, and [1] proposes the Bolasso, a resampling-based techniques. Unfortunately, both of these
approaches are only guaranteed to succeed in the low-dimensional regime of p fixed, and n→∞.

1.3 Notations

We provide a brief summary of the notations used throughout the paper. For a matrix A and set of
indices I, J , we let AJ denote the submatrix containing just the columns in J and AI,J denote the
submatrix formed by the rows in I and columns in J . Likewise, for a vector v, vI is the restriction
of v to indices in I . Further, the notation A−1I,I represents the inverse of AI,I , i.e., A−1I,I = (AI,I)

−1.
The maximum and the minimum singular values of A are respectively denoted by σmax(A) and
σmin(A). We write ‖v‖p for the standard `p norm of a vector v. Specifically, ‖v‖0 denotes the
number of nonzero entries in v. Also, ‖A‖p refers to the induced operator norm on a matrix A. We
use ei to refer to the i-th standard basis element, e.g., e1 = (1, 0, . . . , 0). For a vector v, supp(v)
represents the positions of nonzero entries of v. Throughout, we denote the rows of the design matrix
X byX1, . . . , Xn ∈ Rp and denote its columns by x1, . . . , xp ∈ Rn. Further, for a vector v, sign(v)
is the vector with entries sign(v)i = +1 if vi > 0, sign(v)i = −1 if vi < 0, and sign(v)i = 0
otherwise.

2 Deterministic designs

An outline of this section is as follows: (1) We first consider the zero-noise problem W = 0,
and prove several useful properties of the Lasso estimator in this case. In particular, we show
that there exists a threshold for the regularization parameter below which the support of the Lasso
estimator remains the same and contains supp(θ0). Moreover, the Lasso estimator support is not
much larger than supp(θ0). (2) We then turn to the noisy problem, and introduce the generalized
irrepresentability condition (GIC) that is motivated by the properties of the Lasso in the zero-noise
case. We prove that under GIC (and other technical conditions), with high probability, the signed
support of the Lasso estimator is the same as that in the zero-noise problem. (3) We show that the
Gauss-Lasso selector correctly recovers the signed support of θ0.
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2.1 Zero-noise problem

Recall that Σ̂ ≡ (XTX/n) denotes the empirical covariance of the rows of the design matrix. Given
Σ̂ ∈ Rp×p, Σ̂ � 0, θ0 ∈ Rp and ξ ∈ R+, we define the zero-noise Lasso estimator as

θ̂ZN(ξ) ≡ arg min
θ∈Rp

{ 1

2n
〈(θ − θ0), Σ̂(θ − θ0)〉+ ξ‖θ‖1

}
. (5)

Note that θ̂ZN(ξ) is obtained by letting Y = Xθ0 in the definition of θ̂n(Y,X; ξ).

Following [2], we introduce a restricted eigenvalue constant for the empirical covariance matrix Σ̂:

κ̂(s, c0) ≡ min
J⊆[p]
|J|≤s

min
u∈Rp

‖uJc‖1≤c0‖uJ‖1

〈u, Σ̂u〉
‖u‖22

. (6)

Our first result states that supp(θ̂ZN(ξ)) is not much larger than the support of θ0, for any ξ > 0.

Lemma 2.1. Let θ̂ZN = θ̂ZN(ξ) be defined as per Eq. (5), with ξ > 0. Then, if s0 = ‖θ0‖0,

‖θ̂ZN‖0 ≤

(
1 +

4‖Σ̂‖2
κ̂(s0, 1)

)
s0 . (7)

Lemma 2.2. Let θ̂ZN = θ̂ZN(ξ) be defined as per Eq. (5), with ξ > 0. Then there exist ξ0 =

ξ0(Σ̂, S, θ0) > 0, T0 ⊆ [p], v0 ∈ {−1, 0,+1}p, such that the following happens. For all ξ ∈ (0, ξ0),
sign(θ̂ZN(ξ)) = v0 and supp(θ̂ZN(ξ)) = supp(v0) = T0. Further T0 ⊇ S, v0,S = sign(θ0,S) and
ξ0 = mini∈S |θ0,i/[Σ̂−1T0,T0

v0,T0
]i|.

Finally we have the following standard characterization of the solution of the zero-noise problem.

Lemma 2.3. Let θ̂ZN = θ̂ZN(ξ) be defined as per Eq. (5), with ξ > 0. Let T ⊇ S and v ∈
{+1, 0,−1}p be such that supp(v) = T . Then sign(θ̂ZN) = v if and only if∥∥∥Σ̂T c,T Σ̂−1T,T vT

∥∥∥
∞
≤ 1 , (8)

vT = sign
(
θ0,T − ξΣ̂−1T,T vT

)
. (9)

Further, if the above holds, θ̂ZN is given by θ̂ZNT c = 0 and θ̂ZNT = θ0,T − ξΣ̂−1T,T vT .

Motivated by this result, we introduce the generalized irrepresentability condition (GIC) for deter-
ministic designs.

Generalized irrepresentability (deterministic designs). The pair (Σ̂, θ0), Σ̂ ∈ Rp×p, θ0 ∈ Rp
satisfy the generalized irrepresentability condition with parameter η > 0 if the following happens.
Let v0, T0 be defined as per Lemma 2.2. Then∥∥∥Σ̂T c

0 ,T0
Σ̂−1T0,T0

v0,T0

∥∥∥
∞
≤ 1− η . (10)

In other words we require the dual feasibility condition (8), which always holds, to hold with a
positive slack η.

2.2 Noisy problem

Consider the noisy linear observation model as described in (2), and let r̂ ≡ (XTW/n). We begin
with a standard characterization of sign(θ̂n), the signed support of the Lasso estimator (3).

Lemma 2.4. Let θ̂n = θ̂n(y,X;λ) be defined as per Eq. (3), and let z ∈ {+1, 0,−1}p with
supp(z) = T . Further assume T ⊇ S. Then the signed support of the Lasso estimator is given by
sign(θ̂n) = z if and only if∥∥∥Σ̂T c,T Σ̂−1T,T zT +

1

λ
(r̂T c − Σ̂T c,T Σ̂−1T,T r̂T )

∥∥∥
∞
≤ 1 , (11)

zT = sign
(
θ0,T − Σ̂−1T,T (λzT − r̂T )

)
. (12)
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Theorem 2.5. Consider the deterministic design model with empirical covariance matrix Σ̂ ≡
(XTX)/n, and assume Σ̂i,i ≤ 1 for i ∈ [p]. Let T0 ⊆ [p], v0 ∈ {+1, 0,−1}p be the set and
vector defined in Lemma 2.2. Assume that (i) σmin(Σ̂T0,T0) ≥ Cmin > 0. (ii) The pair (Σ̂, θ0)
satisfies the generalized irrepresentability condition with parameter η. Consider the Lasso estimator
θ̂n = θ̂n(y,X;λ) defined as per Eq. (3), with λ = (σ/η)

√
2c1 log p/n, for some constant c1 > 1,

and suppose that for some c2 > 0:

|θ0,i| ≥ c2λ+ λ
∣∣[Σ̂−1T0,T0

v0,T0 ]i
∣∣ for all i ∈ S, (13)∣∣[Σ̂−1T0,T0

v0,T0
]i
∣∣ ≥ c2 for all i ∈ T0 \ S. (14)

We further assume, without loss of generality, η ≤ c2
√
Cmin. Then the following holds true:

P
{

sign(θ̂n(λ)) = v0

}
≥ 1− 4p1−c1 . (15)

Note that even under standard irrepresentability, this result improves over [21, Theorem 1.(b)], in
that the required lower bound for |θ0,i|, i ∈ S, does not depend on ‖Σ̂−1S,S‖∞.

Remark 2.6. Condition (i) in Theorem 2.5 requires the submatrix Σ̂T0,T0
to have minimum singular

value bounded away form zero. Assuming Σ̂S,S to be non-singular is necessary for identifiability.
Requiring the minimum singular value of Σ̂T0,T0 to be bounded away from zero is not much more
restrictive since T0 is comparable in size with S, as stated in Lemma 2.1.

We next show that the Gauss-Lasso selector correctly recovers the support of θ0.

Theorem 2.7. Consider the deterministic design model with empirical covariance matrix Σ̂ ≡
(XTX)/n, and assume that Σ̂i,i ≤ 1 for i ∈ [p]. Under the assumptions of Theorem 2.5,

P
(
‖θ̂GL − θ0‖∞ ≥ µ

)
≤ 4p1−c1 + 2pe−nCminµ

2/2σ2

.

In particular, if Ŝ is the model selected by the Gauss-Lasso, then P(Ŝ = S) ≥ 1− 6 p1−c1/4.

3 Random Gaussian designs

In the previous section, we studied the case of deterministic design models which allowed for a
straightforward analysis. Here, we consider the random design model which needs a more involved
analysis. Within the random Gaussian design model, the rows Xi are distributed as Xi ∼ N(0,Σ)
for some (unknown) covariance matrix Σ � 0. In order to study the performance of Gauss-Lasso
selector in this case, we first define the population-level estimator. Given Σ ∈ Rp×p, Σ � 0,
θ0 ∈ Rp and ξ ∈ R+, the population-level estimator θ̂∞(ξ) = θ̂∞(ξ; θ0,Σ) is defined as

θ̂∞(ξ) ≡ arg min
θ∈Rp

{1

2
〈(θ − θ0),Σ(θ − θ0)〉+ ξ‖θ‖1

}
. (16)

In fact, the population-level estimator is obtained by assuming that the response vector Y is noiseless
and n =∞, hence replacing the empirical covariance (XTX/n) with the exact covariance Σ in the
lasso optimization problem (3). Note that the population-level estimator θ̂∞ is deterministic, albeit
X is a random design. We show that under some conditions on the covariance Σ and vector θ0,
T ≡ supp(θ̂n) = supp(θ̂∞), i.e., the population-level estimator and the Lasso estimator share
the same (signed) support. Further T ⊇ S. Since θ̂∞ (and hence T ) is deterministic, XT is a
Gaussian matrix with rows drawn independently from N(0,ΣT,T ). This observation allows for a
simple analysis of the Gauss-Lasso selector θ̂GL.

An outline of the section is as follows: (1) We begin with noting that the population-level estimator
θ̂∞(ξ) has the similar properties to θ̂ZN(ξ) stated in Section 2.1. In particular, there exists a threshold
ξ0, such that for all ξ ∈ (0, ξ0), supp(θ̂∞(ξ)) remains the same and contains supp(θ0). Moreover,
supp(θ̂∞(ξ)) is not much larger than supp(θ0). (2) We show that under GIC for covariance matrix
Σ (and other sufficient conditions), with high probability, the signed support of the Lasso estimator
is the same as the signed support of the population-level estimator. (3) Following the previous steps,
we show that the Gauss-Lasso selector correctly recovers the signed support of θ0.
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3.1 The n =∞ problem

Comparing Eqs. (5) and (16), the estimators θ̂ZN(ξ) and θ̂∞(ξ) are defined in a very similar manner
(the former is defined with respect to Σ̂ and the latter is defined with respect to Σ). It is easy to see
that θ̂∞ satisfies the properties stated in Section 2.1 once we replace Σ̂ with Σ.

3.2 The high-dimensional problem

We now consider the Lasso estimator (3). Recall the notations Σ̂ ≡ (XTX)/n and r̂ ≡ (XTW )/n.
Note that Σ̂ ∈ Rp×p, r̂ ∈ Rp are both random quantities in the case of random designs.
Theorem 3.1. Consider the Gaussian random design model with covariance matrix Σ � 0,
and assume that Σi,i ≤ 1 for i ∈ [p]. Let T0 ⊆ [p], v0 ∈ {+1, 0,−1}p be the determinis-
tic set and vector defined in Lemma 2.2 (replacing Σ̂ with Σ), and t0 ≡ |T0|. Assume that (i)
σmin(ΣT0,T0

) ≥ Cmin > 0. (ii) The pair (Σ, θ0) satisfies the generalized irrepresentability condi-
tion with parameter η. Consider the Lasso estimator θ̂n = θ̂n(y,X;λ) defined as per Eq. (3), with
λ = (4σ/η)

√
c1 log p/n, for some constant c1 > 1, and suppose that for some c2 > 0:

|θ0,i| ≥ c2λ+
3

2
λ
∣∣[Σ−1T0,T0

v0,T0
]i
∣∣ for all i ∈ S, (17)∣∣[Σ−1T0,T0

v0,T0
]i
∣∣ ≥ 2c2 for all i ∈ T0 \ S. (18)

We further assume, without loss of generality, η ≤ c2
√
Cmin. If n ≥ max(M1,M2)t0 log p with

M1 ≡ (74c1)/(η2Cmin), and M2 ≡ c1(32/(c2Cmin))2 , then the following holds true:

P
{

sign(θ̂n(λ)) = v0

}
≥ 1− pe− n

10 − 6e−
t0
2 − 8p1−c1 . (19)

Note that even under standard irrepresentability, this result improves over [21, Theorem 3.(ii)], in
that the required lower bound for |θ0,i|, i ∈ S, does not depend on ‖Σ−1/2S,S ‖∞.

Remark 3.2. Condition (i) follows readily from the restricted eigenvalue constraint, i.e.,
κ∞(t0, 0) > 0. This is a reasonable assumption since T0 is not much larger than S0, as stated
in Lemma 2.1 (replacing Σ̂ with Σ). Namely, s0 ≤ t0 ≤ (1 + 4‖Σ‖2/κ(s0, 1))s0.

Below, we show that the Gauss-Lasso selector correctly recovers the signed support of θ0.
Theorem 3.3. Consider the random Gaussian design model with covariance matrix Σ � 0,
and assume that Σi,i ≤ 1 for i ∈ [p]. Under the assumptions of Theorem 3.1, and for
n ≥ max(M1,M2)t0 log p, we have

P
(
‖θ̂GL − θ0‖∞ ≥ µ

)
≤ pe− n

10 + 6e−
s0
2 + 8p1−c1 + 2pe−nCminµ

2/2σ2

.

Moreover, letting Ŝ be the model returned by the Gauss-Lasso selector, we have

P(Ŝ = S) ≥ 1− p e− n
10 − 6 e−

s0
2 − 10 p1−c1 .

Remark 3.4. [Detection level] Let θmin ≡ mini∈S |θ0,i| be the minimum magnitude of the non-
zero entries of vector θ0. By Theorem 3.3, Gauss-Lasso selector correctly recovers supp(θ0), with
probability greater than 1− p e− n

10 − 6 e−
s0
2 − 10 p1−c1 , if n ≥ max(M1,M2)t0 log p, and

θmin ≥ Cσ
√

log p

n

(
1 + ‖Σ−1T0,T0

‖∞
)
, (20)

for some constant C. Note that Eq. (20) follows from Eqs. (17) and (18).
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