
Documents as multiple overlapping windows into a

grid of counts

Alessandro Perina

1
Nebojsa Jojic

1
Manuele Bicego

2
Andrzej Turski

1

1
Microsoft Corporation, Redmond, WA

2
University of Verona, Italy

Abstract

In text analysis documents are often represented as disorganized bags of words;
models of such count features are typically based on mixing a small number of
topics [1,2]. Recently, it has been observed that for many text corpora documents
evolve into one another in a smooth way, with some features dropping and new
ones being introduced. The counting grid [3] models this spatial metaphor liter-
ally: it is a grid of word distributions learned in such a way that a document’s own
distribution of features can be modeled as the sum of the histograms found in a
window into the grid. The major drawback of this method is that it is essentially
a mixture and all the content must be generated by a single contiguous area on
the grid. This may be problematic especially for lower dimensional grids. In this
paper, we overcome this issue by introducing the Componential Counting Grid

which brings the componential nature of topic models to the basic counting grid.
We evaluated our approach on document classification and multimodal retrieval
obtaining state of the art results on standard benchmarks.

1 Introduction

A collection of documents, each consisting of a disorganized bag of words is often modeled
compactly using mixture or admixture models, such as Latent Semantic Analysis (LSA) [4] and
Latent Dirichlet Allocation (LDA) [1]. The data is represented by a small number of semantically
tight topics, and a document is assumed to have a mix of words from an even smaller subset of these
topics. There are no strong constraints in how the topics are mixed [5].
Recently, an orthogonal approach emerged: it has been observed that for many text corpora
documents evolve into one another in a smooth way, with some words dropping and new ones
being introduced. The counting grid model (CG) [3] takes this spatial metaphor – of moving
through sources of words and dropping and picking new words – literally: it is multidimensional
grid of word distributions, learned in such a way that a document’s own distribution of words can
be modeled as the sum of the distributions found in some window into the grid. By using large
windows to collate many grid distributions from a large grid, CG model can be a very large mixture
without overtraining, as these distributions are highly correlated. LDA model does not have this
benefit, and thus has to deal with a smaller number of topics to avoid overtraining.

In Fig.1a we show an excerpt of a grid learned from cooking recipes from around the world. Each
position in the grid is characterized by a distribution over the words in a vocabulary and for each
position we show the 3 words with higher probability whenever they exceed a threshold. The shaded
positions, are characterized by the presence, with a non-zero probability, of the word “bake”1. On
the grid we also show the windows W of size 4 ⇥ 5 for 5 recipes. Nomi (1), an Afghan egg-based
bread, is close to the recipe of the usual pugliese bread (2), as indeed they share most of the ingre-
dients and procedure and their windows largely overlap. Note how moving from (1) to (2) the word

1Which may or may not be in the top three
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Figure 1: a) A particular of a E = 30 ⇥ 30 componential counting grid ⇡i learned over a corpus
of recipes. In each cell we show the 0-3 most probable words greater than a threshold. The area
in shaded red has ⇡(

0
bake

0
) > 0. b) For 6 recipes, we show how their components are mapped

onto this grid. The “mass” of each component (e.g., ✓ see Sec.2) is represented with the window
thickness. For each component c = j in position j, we show the words generated in each window
cz ·

P
j2Wi

⇡j(z)

“egg” is dropped. Moving to the right we encounter the basic pizza (3) whose dough is very simi-
lar to the bread’s. Continuing to the right words often associated to desserts like sugar, almond, etc
emerge. It is not surprising that baked desserts such as cookies (4), and pastry in general, are mapped
here. Finally further up we encounter other desserts which do not require baking, like tiramisu (5),
or chocolate crepes. This is an example of a“topical shift”; others appear in different portions of the
full grid which is included in the additional material.
The major drawback of counting grids is that they are essentially a mixture model, assuming only
one source for all features in the bag and the topology of the space highly constrains the document
mappings resulting in local minima or suboptimal grids. For example, more structured recipes like
Grecian Chicken Gyros Pizza or Tex-Mex pizza would have very low likelihood, as words related to
meat, which is abundant in both, are hard to generate in the baking area where the recipes would
naturally goes.

As first contribution we extend here the counting grid model so that each document can be rep-
resented by multiple latent windows, rather than just one. In this way, we create a substantially
more flexible admixture model, the componential counting grid (CCG), which becomes a direct
generalization of LDA as it does allow multiple sources (e.g., the windows) for each bag, in a math-
ematically identical way as LDA. But, the equivalent of LDA topics are windows in a counting grid,
which allows the model to have a very large number of topics that are highly related, as shift in the
grid only slightly refines any topic.
Starting from the same grid just described, we recomputed the mapping of each recipe which now
can be described by multiple windows, if needed. Fig. 1b shows mappings for some recipes. Also
the words generated in each component are shown. The three pizzas place most of the mass in the
same area (dough), but the words related to the topping are borrowed from different areas. Another
example is the Caesar salad which have a component in the salad/vegetable area, and borrows the
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croutons from the bread area.
By observing Fig.1b, one can also notice how the embedding produced by CCGs yields to a sim-
ilarity measure based on the grid usage of each sample. For example, words relative to the three
pizzas are generated from windows that overlap, therefore they share words usage and thus they are
“similar”. As second contribution we exploited this fact to define a novel generative kernel, whose
performance largely outperformed similar classification strategies based on LDA’s topic usage [1,2].
We evaluated componential counting grids and in particular the kernel, on the 20-Newsgroup dataset
[6], on a novel dataset of recipes which we will make available to the community, and on the re-
cent “Wikipedia picture of the day” dataset [7]. In all the experiments, CCGs set a new state of the
art. Finally, for the first time we explore visualization through examples and videos available in the
additional material.

2 Counting Grids and Componential Counting Grids
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Figure 2: a) Plate notation representing the CCG
model. b) CCG generative process for one word:
Pick a window from ✓, Pick a position within the
window, Pick a word. c) Illustration of UW and
⇤

W
✓ relative to the particular ✓ shown in plate b).

The basic Counting Grid ⇡i is a set of distribu-
tions over the vocabulary on the N -dimensional
discrete grid indexed by i where each id 2
[1 . . . Ed] and E describes the extent of the
counting grid in d dimensions. The index z in-
dexes a particular word in the vocabulary z =

[1 . . . Z] being Z the size of the vocabulary. For
example, ⇡i(

0
Pizza

0
) is the probability of the

word “Pizza” at the location i. Since ⇡ is a grid
of distributions,

P
z ⇡i(z) = 1 everywhere on

the grid. Each bag of words is represented by a
list of words {wt}Tt=1 and each word w

t
n takes

a value between 1 and Z. In the rest of the pa-
per, we will assume that all the samples have N
words.
Counting Grids assume that each bags follow
a word distribution found somewhere in the
counting grid; in particular, using windows of
dimensions W, a bag can be generated by first
averaging all counts in the window Wi starting
at grid location i and extending in each direc-
tion d by Wd grid positions to form the histogram hi(z) =

1Q
d Wd

P
j2Wi

⇡j(z), and then generating
a set of features in the bag (see Fig.1a where we used a 3⇥ 4 window). In other words, the position
of the window i in the grid is a latent variable given which we can write the probability of the bag
as

p({w}|i) =
Y

n

hi,z =

Y

n

�
1Q
d Wd

·
X

j2Wi

⇡j(wn)
�
,

Relaxing the terminology, E and W are referred to as, respectively, the counting grid and the win-
dow size. The ratio of the two volumes, , is called the capacity of the model in terms of an
equivalent number of topics, as this is how many non-overlapping windows can be fit onto the grid.
Finally, with Wi we indicate the particular window placed at location i.

Componential Counting Grids As seen in the previous section, counting grids generate words
from a distribution in a window W , placed at location i in the grid. Windows close in the grid
generate similar features because they share many cells: As we move the window on the grid,
some new features appear while others are dropped. On the other hand componential models, like
[1], represent the standard way of modeling of text corpora. In these models each feature can be
generated by a different source or topic, and documents are then seen as admixtures of topics.
Componential counting grids get the best of both worlds: being based on the counting grid geometry
they capture smooth shifts of topics, plus their componential nature, which allows documents to be
generated by several windows (akin to LDA’s topics). The number of windows need not be specified
a-priori.

Componential Counting Grids assumes the following generative process (also illustrated by Fig.2b.)
for each document in a corpus:
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1. Sample the multinomial over the locations ✓ ⇠ Dir(↵)

2. For each of the N words wn

a) Choose a at location ln ⇠ Multinomial(✓) for a window of size W

b) Choose a location within the window Wln ; kn

c) Choose a word wn from ⇡kn

As visible, each word wn is generated from a different window, placed at location ln, but the choice
of the window follows the same prior distributions ✓ for all words. It worth noticing that when
W = 1⇥ 1, ln = kn and the model becomes Latent Dirichlet Allocation.
The Bayesian network is shown in Fig.2a) and it defines the following joint probability distribution

P =

Y

t,n

X

ln

X

kn

p(wn|kn,⇡) · p(kn|ln) · p(ln|✓) · p(✓|↵) (1)

where p(wn = z|kn = i,⇡) = ⇡i(z) is a multinomial over the vocabulary, p(kn = i|ln = k) =

U

W
(i � k) is a distribution over the grid locations, with U

W uniform and equal to (

1
|W | ) in the

upper left window of size W and 0 elsewhere (See Fig.2c). Finally p(ln|✓) = ✓(l) is the prior
distribution over the windows location, and p(✓|↵) = Dir(✓;↵) is a Dirichlet distribution of
parameters ↵.

Since the posterior distribution p(k, l, ✓|w,⇡,↵) is intractable for exact inference, we learned the
model using variational inference [8].
We firstly introduced the posterior distributions q, approximating the true posterior as qt(k, l, ✓) =
q

t
(✓) ·Qn

�
q

t
(kn) · qt(ln)

�
being q(kn) and q(ln) multinomials over the locations, and q(✓) a Dirac

function centered at the optimal value ˆ

✓.
Then by bounding (variationally) the non-constant part of logP , we can write the negative free
energy F , and use the iterative variational EM algorithm to optimize it.

logP � �F =

X

t

⇣X

n

� X

ln,kn

q

t
(kn) ·qt(ln) · log ⇡kn(wn) ·UW

(kn� ln) ·✓ln ·p(✓|↵)
��H(q

t
)

⌘

(2)
where H(q) is the entropy of the distribution q.
Minimization of Eq. 2 reduces in the following update rules:

q

t
(kn = i) / ⇡i(wn) · exp

⇣ X

ln=j

q

t
(ln = j) · logUW

(i� j)
⌘

(3)

q

t
(ln = i) / ✓

t
(i) · exp

⇣ X

kn=j

q

t
(kn = j) · logUW

(j� i)
⌘

(4)

✓

t
(i) / ↵i � 1 +

X

n

q

t
(ln = i) (5)

⇡i(z) /
X

t

X

n

q

t
(kn = i)[wn=z] (6)

where [wn = z] is an indicator function, equal to 1 when wn is equal to z. Finally, the parameters ↵
of the Dirichlet prior can be either kept fixed [9] or learned using standard techniques [10].

The minimization procedure described by Eqs.3-6 can be carried out efficiently in O(N logN)

time using FFTs [11].

Some simple mathematical manipulations of Eq.1 can yield to a speed up. In fact, from Eq.1 one
can marginalize the variable ln

P =

Y

t,n

X

ln=i,kn=j

p(wn|kn = j) · p(kn = j|ln = i) · p(ln = i|✓) · p(✓|↵)

=

Y

t,n

X

ln=i,kn=j

⇡j(wn) · UW
(j� i) · ✓(i) · p(✓(i)|↵i)

=

Y

t,n

X

kn=j

⇡j(wn) ·
⇣ X

ln=i

U

W
(j� i) · ✓(i)

⌘
· p(✓(i)|↵i) =

Y

t,n

X

kn=j

⇡j(wn) · ⇤W
✓t · p(✓(i)|↵i)(7)
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where ⇤

W
✓ is a distribution over the grid locations, equal to the convolution of UW with ✓. The

update for q(k) becomes
q

t
(kn = i) / ⇡i(wn) · ⇤W

✓ (i) (8)
In the same way, we can marginalize the variable kn

P =

Y

t,n

X

ln=i

✓(i) ·
⇣ X

kn=j

U

W
(j� i) ·⇡j(wn)

⌘
·p(✓(i)|↵i) =

Y

t,n

X

ln=i

✓(i) ·hi(wn) ·p(✓(i)|↵i) (9)

to obtain the new update for qt(ln)

q

t
(ln = i) / hi(wn) · ✓t(i) (10)

where hi is the feature distribution in a window centered at location i, which can be efficiently
computed in linear time using cumulative sums [3]. Eq.10 highlights further relationships between
CCGs and LDA: CCGs can be thought as an LDA model whose topics live on the space defined
by the counting grids geometry. The new updates for the cell distribution q(k) and the window
distribution q(l), require only a single convolution and, more importantly, they don’t directly depend
on each other. The model becomes more efficient and has a faster convergence. This is very critical
especially when we are analyzing big text corpora.
The most similar generative model to CCG comes from the statistic community. Dunson et al. [12]
worked on sources positioned in a plane at real-valued locations, with the idea that sources within
a radius would be combined to produce topics in an LDA-like model. They used an expensive
sampling algorithm that aimed at moving the sources in the plane and determining the circular
window size. The grid placement of sources of CCG yields much more efficient algorithms and
denser packing.

2.1 A Kernel based on CCG embedding

Hybrid generative discriminative classification paradigms have been shown to be a practical and
effective way to get the best of both worlds in approaching classification [13–15]. In the context of
topic models a simple but effective kernel is defined as the product of the topic proportions of each
document. This kernel measures the similarity between topic usage of each sample and it proved to
be effective on several tasks [15–17]. Despite CCG’s ✓s, the locations proportions, can be thought
as LDA’s, we propose another kernel, which exploits exactly the same geometric reasoning of the
underlying generative model. We observe in fact that by construction, each point in the grid depends
by its neighborhood, defined by W and this information is not captured using ✓, but using ⇤

W
✓

which is defined by spreading ✓ in the appropriate window (Eq.7).
More formally, given two samples t and u, we define a kernel based on CCG embedding as

K(t, u) =

X

i

S(⇤W
✓t (i),⇤W

✓u(i)) where ⇤

W
✓ (i) =

X

j

U

W
(i� j) · ✓(j) (11)

where S(·, ·) is any similarity measure which defines a kernel.
In our experiments we considered the simple product, even if other measures, such as histogram
intersection can be used. The final kernel turns to be (⇥ is the dot-product)

KLN (t, u) =

X

i

⇤

W
✓t (i) · ⇤W

✓u(i) = Tr

�
⇤

W
✓t ⇥ ⇤

W
✓u

�
(12)

3 Experiments

Although our model is fairly simple, it is still has multiple aspects that can be evaluated. As a
generative model, it can be evaluated in left-out likelihood tests. Its latent structure, as in other gen-
erative models, can be evaluated as input to classification algorithms. Finally, as both its parameters
and the latent variables live in a compact space of dimensionality and size chosen by the user, our
learning algorithm can be evaluated as an embedding method that yields itself to data visualization
applications. As the latter two have been by far the more important sets of metrics when it comes to
real-world applications, our experiments focus on them.
In all the tests we considered squared grids of size E = [40⇥ 40,50⇥ 50, . . . ,90⇥ 90] and win-
dows of size W = [2⇥2,4⇥4, . . . ,8⇥8]. A variety of other methods are occasionally compared
to, with slightly different evaluation methods described in individual subsections, when appropriate.
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Document Classification We compared componential counting grids (CCGs) with counting grids
[3] (CGs), latent Dirichlet allocation [1] (LDA) and the spherical admixture model [2] (SAM), fol-
lowing the validation paradigm previously used in [2, 3].
Each data sample consists of a bag of words and a label. The bags were used without labels to train
a model that capture covariation in word occurrences, with CGs mostly modeling thematic shifts,
LDA and SAM modeling topic mixing and CCGs both aspects. Then, the label prediction task is
performed in a 10-folds crossevaluation setting, using the linear kernel presented in Eq.12 which
for LDA reduces in using a linear kernel on the topic proportions. To show the effectiveness of the
spreading in the kernel definition, we also report results by employing CCG’s ✓s instead of ⇤W

✓ . For
CGs we used the original strategy [3], Nearest Neighbor in the embedding space, while for SAM
we reported the results from the original paper. To the best of our knowledge the strategies just de-
scribed, based on [3] and [2], are two of the most effective methods to classify text documents. SAM
is characterized by the same hierarchical nature of LDA, but it represents bags using directional dis-
tributions on a spherical manifold modeling features frequency, presence and absence. The model
captures fine-grained semantic structure and performs better when small semantic distinctions are
important. CCGs map documents on a probabilistic simplex (e.g., ✓) and for W > [1 ⇥ 1] can be
thought as an LDA model whose topics, hi, are much finer as computed from overlapping windows
(see also Eq.10); a comparison is therefore natural.
As first dataset we considered the CMU newsgroup dataset2. Following previous work [2, 3, 6]
we reduced the dataset into subsets with varying similarities among the news groups; news-

20-different, with posts from rec.sport.baseball, sci.space and alt.atheism,
news-20-similar, with posts from rec.talk.baseball, talk.politics.gun and
talk.politics.misc and news-20-same, with posts from comp.os.ms-windows,
comp.windows.x and comp.graphics. For the news-20-same subset (the hardest), in Fig.3a
we show the accuracies of CCGs and LDA across the complexities. On the x-axis we have the dif-
ferent model size, in term of capacity , whereas in the y-axis we reported the accuracy. The same
 can be obtained with different choices of E and W therefore we represented the grid size E using
gray levels, the lighter the marker the bigger the grid. The capacity  is roughly equivalent to the
number of LDA topics as it represents the number of independent windows that can be fit in the grid
and we compared the with LDA using this parallelism [18].
Componential counting grids outperform Latent Dirichlet Allocation across all the spectrum and the
accuracy regularly raises with  independently from the Grid size3. The priors helped to prevent
overtraining for big capacities . When using CCG’s ✓s to define the kernel, as expected the accu-

2http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/news20.html
3This happens for “reasonable” window sizes. For small windows (e.g, 2 ⇥ 2), the model doesn’t have

enough overlapping power and performs similarly a mixture model.
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Table 1: Document classification. The improvement on Similar and Same are statistically sig-
nificant. The accuracies for SAM are taken from [2] and they represent the best results obtained
across the choice of number of topics. BOW stands for classification with a linear SVM on the
counts matrices.

Dataset CCG 2D CG 3D CG LDA BOW SAM⇤

[3] [3] [1] [2]
Different 96,49% 96,51% 96,34% 91,8% 91,43% 94,1%
Similar 92,81% 89,72% 90,11% 85,7% 81,52% 88,1%
Same 83,63% 81,28% 81,03% 75,6% 71,81% 78,1%
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Figure 4: A simple interface built upon the word embedding ⇡.

racy dropped (blue dots in Fig.3).
Results for all the datasets and for a variety of methods, are reported in Tab.1 where we employed
10% of the training data as validation set to pick a complexity (a different complexity have been
chosen for each fold). As visible, CCG outperforms other models, with a larger margin on the more
challenging same and similar datasets, where we would indeed expect that quilting the topics to
capture fine-grained similarities and differences would be most helpful.
As second dataset, we downloaded 10K Mastercook recipes, which are freely available on the web
in plain text format. Then we extracted the words of each recipe from its ingredients and cooking
instructions and we used the origin of the recipe, to divide the dataset in 15 classes4. The resulting
dataset has a vocabulary size of 12538 unique words and a total of ⇠1M tokens.
To classify the recipes we used 10-fold crossevaluation with 5 repetitions, picking 80 random recipes
per-class for each repetition. Classification results are illustrated in Fig. 3b. As for the previous test,
CCG classification accuracies grows regularly with  independently from the grid size E. Com-
ponential models (e.g., LDA and CCGs) performed significantly better as to correctly classify the
origin of a recipe, spice palettes, cooking style and procedures must be identified. For example while
most Asian cuisines uses similar ingredients and cooking procedures they definitely have different
spice palettes. Counting Grids, being mixtures, cannot capture that as they map a recipe in a single
location which heavily depends on the ingredients used. Among componential models, CCGs work
the best.

Multimodal Retrieval We considered the Wikipedia Picture of the Day dataset [7], where the task
is multi-modal image retrieval: given a text query, we aim to find images that are most relevant to it.
To accomplish this, we firstly learned a model using the visual words of the training data {wt,V },

obtaining ✓

t
,⇡

V
i . Then, keeping ✓

t fixed and iterating the M-step, we embedded the textual words
{wt,T } obtaining ⇡

W
i . For each test sample we inferred the values of ✓t,V and ✓

t,W respectively
from ⇡

V
i and ⇡

W
i and we used Eq.12 to compute the retrieval scores. As in [7] we split the data in 10

4We considered the following cuisines: Afghan, Cajun, Chinese, English, French, German, Greek, Indian,

Indonesian, Italian, Japanese, Mexican, Middle Eastern, Spanish and Thai.
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folds and we used a validation set to pick a complexity. Results are illustrated in Fig.3c. Although
we used this simple procedure without directly training a multimodal model, CCGs outperform
LDA, CorrLDA [19] and the multimodal document random field model presented in [7] and sets a
new state of the art.
The area under the curve (AUC) for our method is 21.92±0.6, while for [7] is 23.14±1.49 (Smaller
values indicate better performance). Counting Grids and LDA both fail with AUCs around 40.

Visualization Important benefits of CCGs are that 1) they lay down sources ⇡i on a 2-D dimen-
sional grid, which are ready for visualization, and 2) they enforce that close locations generate
similar topics, which leads to smooth thematic shifts that provide connections among distant topics
on the grid. This is very useful for sensemaking [20]. To demonstrate this we developed a simple
interface. A particular is shown in Fig.4b, relative to the extract of the counting grid shown in Fig.4a.
The interface is pannable and zoomable and, at any moment, on the screen only the top
N = 500 words are shown. To define the importance of each word in each position
we weighted ⇡i(z) with the inverse document frequency. Fig.4b shows the lowest level of
zoom: only words from few cells are visible and the font size resembles their weight. A
user can zoom in to see the content of particular cells/areas, until he reaches the high-
est level of zoom when most of the words generated in a position are visible, Fig.4c.

FRY

DEEP FRY

STIR FRY

Figure 5: Search result for the word “fry”.

We also propose a simple search strategy: once
a keyword ẑ is selected, each word z in each po-
sition j, is weighted with a word and position
dependent weights. The first is equal to 1 if z

co-occur with ẑ in some document, and 0 other-
wise, while the latter is the sum of ⇡i(ẑ) in all the
js given that there exists a window Wk that con-
tains both i and j. Other strategies are of course
possible. As result, this strategy highlights some
areas and words, related to ẑ on the grid and in
each areas words related (similar topic) to ẑ ap-
pears. Interestingly, if a search term is used in
different contexts, few islands may appear on the
grid. For example Fig.5 shows the result of the
search for ẑ =“fry”: The general frying is well
separated from “deep frying” and “stir frying”
which appears at the extremes of the same is-
land. Presenting search results as islands on a
2-dimensional grid, apparently improves the standard strategy, a linear list of hits, in which recipes
relative to the three frying styles would have be mixed, while tempura have little to do with pan fried

noodles.

4 Conclusion

In this paper we presented the componential counting grid model – which bridges the topic model
and counting grid worlds – together with a similarity measure based on it. We demonstrated that
the hidden mapping variables associated with each document can naturally be used in classification
tasks, leading to the state of the art performance on a couple of datasets.
By means of proposing a simple interface, we have also shown the great potential of CCGs to visu-
alize a corpora. Although the same holds for CGs, this is the first paper that investigate this aspect.
Moreover CCGs subsume CGs as the components are used only when needed. For every restart, the
grids qualitatively always appeared very similar, and some of the more salient similarity relation-
ships were captured by all the runs. The word embedding produced by CCG has also advantages
w.r.t. other Euclidean embedding methods such as ISOMAP [21], CODE [22] or LLE [23], which
are often used for data visualization. In fact CCG’s computational complexity is linear in the dataset
size, as opposed to the quadratic complexity of [21, 21–23] which all are based on pairwise dis-
tances. Then [21, 23] only embed documents or words while CG/CCGs provide both embeddings.
Finally as opposed to previous co-occurrence embedding methods that consider all pairs of words,
our representation naturally captures the same word appearing in multiple locations where it has
a different meaning based on context. The word “memory” in the Science magazine corpus is a
striking example (memory in neruoscience, memory in electronic devices, immunologic memory).
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