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Abstract

All the existing multi-task local learning methods are defined on homogeneous
neighborhood which consists of all data points from only one task. In this paper,
different from existing methods, we propose local learning methods for multi-
task classification and regression problems based on heterogeneous neighborhood
which is defined on data points from all tasks. Specifically, we extend the k-
nearest-neighbor classifier by formulating the decision function for each data point
as a weighted voting among the neighbors from all tasks where the weights are
task-specific. By defining a regularizer to enforce the task-specific weight matrix
to approach a symmetric one, a regularized objective function is proposed and
an efficient coordinate descent method is developed to solve it. For regression
problems, we extend the kernel regression to multi-task setting in a similar way
to the classification case. Experiments on some toy data and real-world datasets
demonstrate the effectiveness of our proposed methods.

1 Introduction

For single-task learning, besides global learning methods there are local learning methods [7], e.g.,
k-nearest-neighbor (KNN) classifier and kernel regression. Different from the global learning meth-
ods, the local learning methods make use of locality structure in different regions of the feature space
and are complementary to the global learning algorithms. In many applications, the single-task lo-
cal learning methods have shown comparable performance with the global counterparts. Moreover,
besides classification and regression problems, the local learning methods are also applied to some
other learning problems, e.g., clustering [18] and dimensionality reduction [19]. When the number
of labeled data is not very large, the performance of the local learning methods is limited due to s-
parse local density [14]. In this case, we can leverage the useful information from other related tasks
to help improve the performance which matches the philosophy of multi-task learning [8, 4, 16].
Multi-task learning utilizes supervised information from some related tasks to improve the perfor-
mance of one task at hand and during the past decades many advanced methods have been proposed
for multi-task learning, e.g., [17, 3, 9, 1, 2, 6, 12, 20, 14, 13]. Among those methods, [17, 14] are
two representative multi-task local learning methods. Even though both methods in [17, 14] use
KNN as the base learner for each task, Thrun and O’Sullivan [17] focus on learning cluster structure
among different tasks while Parameswaran and Weinberger [14] learn different distance metrics for
different tasks. The KNN classifiers use in both two methods are defined on the homogeneous neigh-
borhood which is the set of nearest data points from the same task the query point belongs to. In
some situation, it is better to use a heterogeneous neighborhood which is defined as the set of nearest
data points from all tasks. For example, suppose we have two similar tasks marked with two colors
as shown in Figure 1. For a test data point marked with ‘?’ from one task, we obtain an estima-
tion with low confidence or even a wrong one based on the homogeneous neighborhood. However,
if we can use the data points from both two tasks to define the neighborhood (i.e., heterogeneous
neighborhood), we can obtain a more confident estimation.
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Figure 1: Data points with one color
(i.e., black or red) are from the same
task and those with one type of marker
(i.e., ‘+’ or ‘-’) are from the same class.
A test data point is represented by ‘?’.

In this paper, we propose novel local learning models for
multi-task learning based on the heterogeneous neighbor-
hood. For multi-task classification problems, we extend
the KNN classifier by formulating the decision function
on each data point as weighted voting of its neighbors
from all tasks where the weights are task-specific. Since
multi-task learning usually considers that the contribution
of one task to another one equals that in the reverse direc-
tion, we define a regularizer to enforce the task-specific
weight matrix to approach a symmetric matrix and then
based on this regularizer, a regularized objective function
is proposed. We develop an efficient coordinate descent
method to solve it. Moreover, we also propose a local
method for multi-task regression problems. Specifically,
we extend the kernel regression method to multi-task setting in a similar way to the classification
case. Experiments on some toy data and real-world datasets demonstrate the effectiveness of our
proposed methods.

2 A Multi-Task Local Classifier based on Heterogeneous Neighborhood

In this section, we propose a local classifier for multi-task learning by generalizing the KNN algo-
rithm, which is one of the most widely used local classifiers for single-task learning.

Suppose we are given m learning tasks {Ti}mi=1. The training set consists of n triples (xi, yi, ti)
with the ith data point as xi ∈ RD, its label yi ∈ {−1, 1} and its task indicator ti ∈ {1, . . . ,m}. So
each task is a binary classification problem with ni = |{j|tj = i}| data points belonging to the ith
task Ti.
For the ith data point xi, we use Nk(i) to denote the set of the indices of its k nearest neighbors. If
Nk(i) is a homogeneous neighborhood which only contains data points from the task that xi belongs
to, we can use d(xi) = sgn

(∑
j∈Nk(i) s(i, j)yj

)
to make a decision for xi where sgn(·) denotes the

sign function and s(i, j) denotes a similarity function between xi and xj . Here, by definingNk(i) as
a heterogeneous neighborhood which contains data points from all tasks, we cannot directly utilize
this decision function and instead we introduce a weighted decision function by using task-specific
weights as

d(xi) = sgn

 ∑
j∈Nk(i)

wti,tj s(i, j)yj


where wqr represents the contribution of the rth task Tr to the qth one Tq when Tr has some data

points to be neighbors of a data point from Tq . Of course, the contribution from one task to itself
should be positive and also the largest, i.e., wii ≥ 0 and −wii ≤ wij ≤ wii for j 6= i. When
wqr(q 6= r) approaches wqq, it means Tr is very similar to Tq in local regions. At another extreme
where wqr(q 6= r) approaches−wqq , if we flip the labels of data points in Tr, Tr can have a positive
contribution −wqr to Tq which indicates that Tr is negatively correlated to Tq . Moreover, when
wqr/wqq(q 6= r) is close to 0 which implies there is no contribution from Tr to Tq , Tr is likely
to be unrelated to Tq . So the utilization of {wqr} can model three task relationships: positive task
correlation, negative task correlation and task unrelatedness as in [6, 20].

We use f(xi) to define the estimation function as f(xi) =
∑
j∈Nk(i) wti,tjs(i, j)yj . Then similar to

support vector machine (SVM), we use hinge loss l(y, y′) = max(0, 1− yy′) to measure empirical
performance on the training data. Moreover, recall that wqr represents the contribution of Tr to
Tq and wrq is the contribution of Tq to Tr. Since multi-task learning usually considers that the
contribution of Tr to Tq almost equals that of Tq to Tr, we expect wqr to be close to wrq . To encode
this priori information into our model, we can either formulate it as wqr = wrq , a hard constraint,
or a soft regularizer, i.e., minimizing (wqr − wrq)2 to enforce wqr ≈ wrq , which is more preferred.
Combining all the above considerations, we can construct a objective function for our proposed
method MT-KNN as

min
W

n∑
i=1

l(yi, f(xi)) +
λ1

4
‖W −WT ‖2F +

λ2

2
‖W‖2F s.t. wqq ≥ 0, wqq ≥ wqr ≥ −wqq (q 6= r) (1)
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where W is am×mmatrix with wqr as its (q, r)th element and ‖ ·‖F denotes Frobenius norm of a
matrix. The first term in the objective function of problem (1) measures the training loss, the second
one enforces W to be a symmetric matrix which implies wqr ≈ wrq , and the last one penalizes
the complexity of W. The regularization parameters λ1 and λ2 balance the trade-off between these
three terms.

2.1 Optimization Procedure

In this section, we discuss how to solve problem (1). We first rewrite f(xi) as f(xi) =∑m
j=1 wtij

(∑
l∈N jk (i)

s(i, l)yl

)
= wti x̂i whereN j

k (i) denotes the set of the indices of xi’s nearest
neighbors from the jth task in Nk(i), wti = (wti1, . . . , wtim) is the tith row of W, and x̂i is a
m× 1 vector with the jth element as

∑
l∈N jk (i)

s(i, l)yl. Then we can reformulate problem (1) as

min
W

m∑
i=1

∑
j∈Ti

l(yj ,wix̂j) +
λ1

4
‖W −WT ‖2F +

λ2

2
‖W‖2F s.t. wqq ≥ 0, wqq ≥ wqr ≥ −wqq(q 6= r).

(2)

To solve problem (2), we use a coordinate descent method, which is also named as an alternating
optimization method in some literatures.

By adopting the hinge loss in problem (2), the optimization problem for wik (k 6= i) is formulated
as

min
wik

λ

2
w2
ik − βikwik +

∑
j∈Ti

max(0, ajikwik + bjik) s.t. cik ≤ wik ≤ eik (3)

where λ = λ1 + λ2, βik = λ1wki, x̂jk is the kth element of x̂j , a
j
ik = −yj x̂jk, bjik = 1 −

yj
∑
t 6=k witx̂jt, cik = −wii, and eik = wii. If the objective function of problem (3) only has

the first two terms, this problem will become a univariate quadratic programming (QP) problem
with a linear inequality constraint, leading to an analytical solution. Moreover, similar to SVM we
can introduce some slack variables for the third term in the objective function of problem (3) and
then that problem will become a QP problem with ni + 1 variables and 2ni + 1 linear constraints.
We can use off-the-shelf softwares to solve this problem in polynomial time. However, the whole
optimization procedure may not be very efficient since we need to solve problem (3) and call QP
solvers for multiple times. Here we utilize the piecewise linear structure of the last term in the
objective function of problem (3) and propose a more efficient solution.

We assume all aj are non-zero and otherwise we can discard them without affecting the solution
since the corresponding losses are constants. We define six index sets as

C1 = {j|ajik > 0,−
bjik
ajik

< cik}, C2 = {j|ajik > 0, cik ≤ −
bjik
ajik
≤ eik}, C3 = {j|ajik > 0,−

bjik
ajik

> eik}

C4 = {j|ajik < 0,−
bjik
ajik

< cik}, C5 = {j|ajik < 0, cik ≤ −
bjik
ajik
≤ eik}, C6 = {j|ajik < 0,−

bjik
ajik

> eik}.

It is easy to show that when j ∈ C1∪C6 where the operator ∪ denotes the union of sets, ajikw+bjik >
0 holds for w ∈ [cik, eik], corresponding to the set of data points with non-zero loss. Oppositely
when j ∈ C3 ∪ C4, the values of the corresponding losses become zero since ajikw + bjik ≤ 0 holds
for w ∈ [cik, eik]. The variation lies in the data points with indices j ∈ C2 ∪ C5. We sort sequence
{−bjik/a

j
ik|j ∈ C2} and record it in a vector u of length du with u1 ≤ . . . ≤ udu . Moreover, we also

keep a index mapping qu with its rth element qur defined as qur = j if ur = −bjik/a
j
ik. Similarly,

for sequence {−bjik/a
j
ik|j ∈ C5}, we define a sorted vector v of length dv and the corresponding

index mapping qv . By using the merge-sort algorithm, we merge u and v into a sorted vector s and
then we add cik and eik into s as the minimum and maximum elements if they are not contained in
s. Obviously, in range [sl, sl+1] where sl is the lth element of s and ds is the length of s, problem
(3) becomes a univariate QP problem which has an analytical solution. So we can compute local
minimums in successive regions [sl, sl+1] (l = 1, . . . , ds − 1) and get the global minimum over
region [cik, eik] by comparing all local optima. The key operation is to compute the coefficients
of quadratic function over each region [sl, sl+1] and we devise an algorithm in Table 1 which only
needs to scan s once, leading to an efficient solution for problem (3).
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Table 1: Algorithm for problem (3)
01: Construct four sets C1, C2, C3, C4, C5 and C6;
02: Construct u, qu, v, qv and s;
03: Insert cik and eik into s if needed;
04: c0 :=

∑
j∈C1∪C2∪C6

bjik;
05: c1 :=

∑
j∈C1∪C2∪C6

ajik − βik;
06: w := sds ;
07: o := c0 + c1w + λw2/2;

for l = ds − 1 to 1
if sl+1 = ur for some r

08: c0 := c0 − b
qur
ik ; c1 := c1 − a

qur
ik ;

end if
if sl+1 = vr for some r

09: c0 := c0 + b
qvr
ik ; c1 := c1 + a

qvr
ik ;

end if
10: w0 := min(sl+1,max(sl,−

c1
λ ));

11: o0 := c0 + c1w0 + λw2
0/2;

if o0 < o
12: w := w0; o := o0;

end if
13: l := l− 1;

end for

The first step of the algorithm in Table 1 needs O(ni)
time complexity to construct the six sets C1 to C6. In step
2, we need to sort two sequences to obtain u and v in
O(du ln du + dv ln dv) time and merge two sequences to
get s in O(du + dv). Then it costs O(ni) to calculate
coefficients c0 and c1 by scanning C1, C2 and C6 in step
4 and 5. Then from step 6 to step 13, we need to scan
vector s once which costs O(du + dv) time. The overall
complexity of the algorithm in Table 1 is O(du ln du +
dv ln dv + ni) which is at most O(ni lnni) due to du +
dv ≤ ni.
For wii, the optimization problem is formulated as

min
wii

λ2

2
w2
ii +

∑
j∈Ti

max(0, ajiwii + bji ) s.t. wii ≥ ci, (4)

where aji = −yj x̂ji, bji = 1 − yj
∑
t6=i witx̂jt, ci =

max(0,maxj 6=i(|wij |)), and | · | denotes the absolute val-
ue of a scalar. The main difference between problem (3)
and (4) is that there exist a box constraint for wik in problem (3) but in problem (4) wii is only

lower-bounded. We define ei as ei = maxj{−
bji
aji
} for all aji 6= 0. For wii ∈ [ei,+∞), the objective

function of problem (4) can be reformulated as λ2

2 w
2
ii +

∑
j∈S(a

j
iwii + bji ) where S = {j|aji > 0}

and the minimum value in [ei,+∞) will take at w(1)
ii = max{ei,−

∑
j∈S a

j
i

λ2
}. Then we can use the

algorithm in Table 1 to find the minimizor w(2)
ii in the interval [ci, ei] for problem (4). Finally we

can choose the optimal solution to problem (4) from {w(1)
ii , w

(2)
ii } by comparing the corresponding

values of the objective function.

Since the complexity to solve both problem (3) and (4) is O(ni lnni), the complexity of one update
for the whole matrix W isO(m

∑m
i=1 ni lnni). Usually the coordinate descent algorithm converges

very fast in a small number of iterations and hence the whole algorithm to solve problem (2) or (1)
is very efficient.

We can use other loss functions for problem (2) instead of hinge loss, e.g., square loss l(s, t) =
(s − t)2 as in the least square SVM [10]. It is easy to show that problem (3) has an analytical

solution as wik = min

(
max

(
cik,

βik−2
∑
j∈Ti

a
j
ik
b
j
ik

λ+2
∑
j∈Ti

(a
j
ik

)2

)
, eik

)
and the solution to problem (4) can be

computed as wii = max

(
ci,

−2
∑
j∈Ti

a
j
i b
j
i

λ2+2
∑
j∈Ti

(a
j
i )

2

)
. Then the computational complexity of the whole

algorithm to solve problem (2) by adopting square loss is O(mn).

3 A Multi-Task Local Regressor based on Heterogeneous Neighborhood

In this section, we consider the situation that each task is a regression problem with each label
yi ∈ R.

Similar to the classification case in the previous section, one candidate for multi-task local regressor
is a generalization of kernel regression, a counterpart of KNN classifier for regression problems, and
the estimation function can be formulated as

f(xi) =

∑
j∈Nk(i)

wti,tj s(i, j)yj∑
j∈Nk(i)

wti,tj s(i, j)
(5)

where wqr also represents the contribution of Tr to Tq . Since the denominator of f(xi) is a linear
combination of elements in each row of W with data-dependent combination coefficients, if we
utilize a similar formulation to problem (1) with square loss, we need to solve a complex and non-
convex fractional programming problem. For computational consideration, we resort to another way
to construct the multi-task local regressor.
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Recall that the estimation function for the classification case is formulated as f(xi) =∑m
j=1 wtij

(∑
l∈N j

k
(i)
s(i, l)yl

)
. We can see that the expression in the brackets on the right-hand

side can be viewed as a prediction for xi based on its neighbors in the jth task. Inspired by this
observation, we can construct a prediction ŷij for xi based on its neighbors from the jth task by
utilizing any regressor, e.g., kernel regression and support vector regression. Here due to the local
nature of our proposed method, we choose the kernel regression method, which is a local regression

method, as a good candidate and hence ŷij is formulated as ŷij =

∑
l∈Nj

k
(i)

s(i,l)yl∑
l∈Nj

k
(i)

s(i,l)
. When j equals

ti which means we use neighbored data points from the task that xi belongs to, we can use this
prediction in confidence. However, if j 6= ti, we cannot totally trust the prediction and need to add
some weight wti,j as a confidence. Then by using the square loss, we formulate an optimization
problem to get the estimation function f(xi) based on {ŷij} as

f(xi) = argmin
y

m∑
j=1

wti,j(y − ŷ
i
j)

2 =

∑m
j=1 wti,j ŷ

i
j∑m

j=1 wti,j
. (6)

Compared with the regression function of the direct extension of kernel regression to multi-task
learning in Eq. (5), the denominator of our proposed regressor in Eq. (6) only includes the row
summation of W, making the optimization problem easier to solve as we will see later. Since the
scale of wij does not matter the value of the estimation function in Eq. (6), we constrain the row
summation of W to be 1, i.e.,

∑m
j=1 wij = 1 for i = 1, . . . ,m. Moreover, the estimation ŷiti

by using data from the same task as xi is more trustful than the estimations based on other tasks,
which suggests wii should be the largest among elements in the ith row. Then this constraint implies
that wii ≥ 1

m

∑
k wik = 1

m > 0. To capture the negative task correlations, wij (i 6= j) is only
required to be a real scalar and wij ≥ −wii. Combining the above consideration, we formulate an
optimization problem as

min
W

m∑
i=1

∑
j∈Ti

(wiŷj − yj)2 +
λ1

4
‖W −WT ‖2F +

λ2

2
‖W‖2F s.t.W1 = 1, wii ≥ wij ≥ −wii, (7)

where 1 denotes a vector of all ones with appropriate size and ŷj = (ŷj1, . . . , ŷ
j
m)T . In the following

section, we discuss how to optimize problem (7).

3.1 Optimization Procedure

Due to the linear equality constraints in problem (7), we cannot apply a coordinate descent method
to update variables one by one in a similar way to problem (2). However, similar to the SMO
algorithm [15] for SVM, we can update two variables in one row of W at one time to keep the linear
equality constraints valid.

We update each row one by one and the optimization problem with respect to wi is formulated as

min
wi

1

2
wiAwT

i +wib
T s.t.

m∑
j=1

wij = 1, −wii ≤ wij ≤ wii ∀j 6= i, (8)

where A = 2
∑
j∈Ti ŷjŷ

T
j + λ1I

i
m + λ2Im, Im is an m ×m identity matrix, Iim is a copy of Im

by setting the (i, i)th element to be 0, b = −2
∑
j∈Ti yjŷ

T
j − λ1cTi , and ci is the ith column of W

by setting its ith element to 0. We define the Lagrangian as

J =
1

2
wiAwT

i +wib
T − α(

m∑
j=1

wij − 1)−
∑
j 6=i

(wii − wij)βj −
∑
j 6=i

(wii + wij)γj .

The Karush-Kuhn-Tucker (KKT) optimality condition is formulated as
∂J

∂wij
= wiaj + bj − α+ βj − γj = 0, for j 6= i (9)

∂J

∂wii
= wiai + bi − α−

∑
k 6=i

(βk + γk) = 0 (10)

βj ≥ 0, (wii − wij)βj = 0 ∀j 6= i (11)
γj ≥ 0, (wii + wij)γj = 0 ∀j 6= i, (12)
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where aj is the jth column of A and bj is the jth element of b. It is easy to show that βjγj = 0
for all j 6= i. When wij satisfies wij = wii, according to Eq. (12) we have γj = 0 and further
wiaj + bj = α − βj ≤ α according to Eq. (9). When wij = −wii, based on Eq. (11) we can
get βj = 0 and then wiaj + bj = α + γj ≥ α. For wij between those two extremes (i.e.,
−wii < wij < wii), γj = βj = 0 according to Eqs. (11) and (12), which implies that wiaj + bj =
α. Moreover, Eq. (10) implies that wiai + bi = α +

∑
k 6=i(βk + γk) ≥ α. We define sets as

S1 = {j|wij = wii, j 6= i}, S2 = {j| − wii < wij < wii}, S3 = {j|wij = −wii}, and S4 = {i}.
Then a feasible wi is a stationary point of problem (8) if and only if maxj∈S1∪S2{wiaj + bj} ≤
mink∈S2∪S3∪S4{wiak + bk}. If there exist a pair of indices (j, k), where j ∈ S1 ∪ S2 and k ∈
S2 ∪ S3 ∪ S4, satisfying wiaj + bj > wiak + bk, {j, k} is called a violating pair. If the current
estimation wi is not an optimal solution, there should exist some violating pairs. Our SMO algorithm
updates a violating pair at one step by choosing the most violating pair {j, k} with j and k defined
as j = argmaxl∈S1∪S2{wial+ bl} and k = argminl∈S2∪S3∪S4{wial+ bl}. We define the update
rule for wij and wik as w̃ij = wij + t and w̃ik = wik − t. By noting that j cannot be i, t should
satisfy the following constraints to make the updated solution feasible:

when k = i, t− wik ≤ wij + t ≤ wik − t, t− wik ≤ wil ≤ wik − t ∀l 6= j&l 6= k

when k 6= i, −wii ≤ wij + t ≤ wii, −wii ≤ wik − t ≤ wii.

When k = i, there will be a constraint on t as t ≤ e ≡ min
(wik−wij

2 ,minl 6=j&l 6=k(wik − |wil|)
)

and otherwise t will satisfy c ≤ t ≤ e where c = max(wik − wii,−wij − wii) and e = min(wii −
wij , wii + wik). Then the optimization problem for t can be unified as

min
t

ajj + aii − 2aji
2

t2 + (wiaj + bj −wiai − bi)t s.t. c ≤ t ≤ e,

where for the case that k = i, c is set to be −∞. This problem has an analytical solution as
t = min

(
e,max

(
c,

wiai+bi−wiaj−bj
ajj+aii−2aji

))
. We update each row of W one by one until convergence.

4 Experiments

In this section, we test the empirical performance of our proposed methods in some toy data and
real-world problems.

4.1 Toy Problems

We first use one UCI dataset, i.e., diabetes data, to analyze the learned W matrix. The diabetes data
consist of 768 data points from two classes. We randomly select p percent of data points to form
the training set of two learning tasks respectively. The regularization parameters λ1 and λ2 are fixed
as 1 and the number of nearest neighbors is set to 5. When p = 20 and p = 40, the means of the

estimated W over 10 trials are
[

0.1025 0.1011
0.0980 0.1056

]
and

[
0.1014 0.1004
0.1010 0.1010

]
. This result shows

wij (j 6= i) is very close to wii for i = 1, 2. This observation implies our method can find that these
two tasks are positive correlated which matches our expectation since those two tasks are from the
same distribution.

For the second experiment, we randomly select p percent of data points to form the training set
of two learning tasks respectively but differently we flip the labels of one task so that those two
tasks should be negatively correlated. The matrices W’s learned for p = 20 and p = 40 are[

0.1019 −0.1017
−0.1007 0.1012

]
and

[
0.1019 −0.0999
−0.0997 0.1038

]
. We can see that wij (j 6= i) is very close

to −wii for i = 1, 2, which is what we expect.

As the third problem, we construct two learning tasks as in the first one but flip 50% percent of the
class labels in each class of those two tasks. Here those two tasks can be viewed as unrelated tasks
since the label assignment is random. The estimated matrices W’s for p = 20 and p = 40 are[

0.1575 0.0144
0.0398 0.1281

]
and

[
0.1015 −0.0003
0.0081 0.1077

]
, where wij (i 6= j) is much smaller than wii. From

the structure of the estimations, we can see that those two tasks are more likely to be unrelated,
matching our expectation. In summary, our method can learn the positive correlations, negative
correlations and task unrelatedness for those toy problems.
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4.2 Experiments on Classification Problems

Table 2: Comparison of classification errors of different
methods on the two classification problems in the form of
mean±std.

Letter USPS
KNN 0.0775±0.0053 0.0445±0.0131
mtLMNN 0.0511±0.0053 0.0141±0.0038
MTFL 0.0505±0.0038 0.0140±0.0025
MT-KNN(hinge) 0.0466±0.0023 0.0114±0.0013
MT-KNN(square) 0.0494±0.0028 0.0124±0.0014

Two multi-task classification prob-
lems are used in our experiments.
The first problem we investigate is
a handwritten letter classification ap-
plication consisting of seven tasks
each of which is to distinguish t-
wo letters. The corresponding letter-
s for each task to classify are: c/e,
g/y, m/n, a/g, a/o, f/t and h/n. Each
class in each task has about 1000 data
points which have 128 features corre-
sponding to the pixel values of hand-
written letter images. The second one is the USPS digit classification problem and it consists of nine
binary classification tasks each of which is to classify two digits. Each task contains about 1000 data
points with 255 features for each class.
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Figure 2: Comparison on average running time
over 100 trials between our proposed coordinate
descent methods and the CVX solver on classifi-
cation and regression problems.

Here the similarity function we use is a heat
kernel s(i, j) = exp{−‖xi−xj‖

2
2

2σ2 } where σ
is set to the mean pairwise Euclidean dis-
tance among training data. We use 5-fold
cross validation to determine the optimal λ1
and λ2 whose candidate values are chosen
from n × {0.01, 0.1, 0.5, 1, 5, 10, 100} and the
optimal number of nearest neighbors from
{5, 10, 15, 20}. The classification error is used
as the performance measure. We compare our
method, which is denoted as MT-KNN, with
the KNN classifier which is a single-task learn-
ing method, the multi-task large margin nearest
neighbor (mtLMNN) method [14]1 which is a
multi-task local learning method based on the
homogeneous neighborhood, and the multi-task
feature learning (MTFL) method [2] which is a
global method for multi-task learning. By uti-
lizing hinge and square losses, we also consider two variants of our MT-KNN method. To mimic
the real-world situation where the training data are usually limited, we randomly select 20% of the
whole data as training data and the rest to form the test set. The random selection is repeated for 10
times and we record the results in Table 2. From the results, we can see that our method MT-KNN
is better than KNN, mtLMNN and MTFL methods, which demonstrates that the introduction of the
heterogeneous neighborhood is helpful to improve the performance. For different loss functions
utilized by our method, MT-KNN with hinge loss is better than that with square loss due to the
robustness of the hinge loss against the square loss.

For those two problems, we also compare our proposed coordinate descent method described in
Table 1 with some off-the-shelf solvers such as the CVX solver [11] with respect to the running
time. The platform to run the experiments is a desktop with Intel i7 CPU 2.7GHz and 8GB RAM
and we use Matlab 2009b for implementation and experiments. We record the average running time
over 100 trials in Figure 2 and from the results we can see that on the classification problems above,
our proposed coordinate descent method is much faster than the CVX solver which demonstrates
the efficiency of our proposed method.

4.3 Experiments on Regression Problems

Here we study a multi-task regression problem to learn the inverse dynamics of a seven degree-of-
freedom SARCOS anthropomorphic robot arm.2 The objective is to predict seven joint torques based

1http://www.cse.wustl.edu/˜kilian/code/files/mtLMNN.zip
2http://www.gaussianprocess.org/gpml/data/
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on 21 input features, corresponding to seven joint positions, seven joint velocities and seven joint
accelerations. So each task corresponds to the prediction of one torque and can be formulated as a
regression problem. Each task has 2000 data points. The similarity function used here is also the heat
kernel and 5-fold cross validation is used to determine the hyperparameters, i.e., λ1, λ2 and k. The
performance measure used is normalized mean squared error (nMSE), which is mean squared error
on the test data divided by the variance of the ground truth. We compare our method denoted by MT-
KR with single-task kernel regression (KR), the multi-task feature learning (MTFL) under different
configurations on the size of the training set. Compared with KR and MTFL methods, our method
achieves better performance over different sizes of the training sets. Moreover, for our proposed
coordinate descent method introduced in section 3.1, we compare it with CVX solver and record
the results in the last two columns of Figure 2. We find the running time of our proposed method is
much smaller than that of the CVX solver which demonstrates that the proposed coordinate descent
method can speed up the computation of our MT-KR method.
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Figure 3: Comparison of different methods on the robot arm application when varying the size of
the training set.

4.4 Sensitivity Analysis
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Figure 4: Sensitivity analysis of the performance
of our method with respect to the number of near-
est neighbors at different data sets.

Here we test the sensitivity of the performance
with respect to the number of nearest neighbors.
By changing the number of nearest neighbors
from 5 to 40 at an interval of 5, we record the
mean of the performance of our method over 10
trials in Figure 4. From the results, we can see
our method is not very sensitive to the number
of nearest neighbors, which makes the setting
of k not very difficult.

5 Conclusion

In this paper, we develop local learning meth-
ods for multi-task classification and regression
problems. Based on an assumption that all task
pairs contributes to each other almost equally,
we propose regularized objective functions and develop efficient coordinate descent methods to
solve them. Up to here, each task in our studies is a binary classification problem. In some applica-
tions, there may be more than two classes in each task. So we are interested in an extension of our
method to multi-task multi-class problems. Currently the task-specific weights are shared by all data
points from one task. One interesting research direction is to investigate a localized variant where
different data points have different task-specific weights based on their locality structure.
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[13] A. Kumar and H. Daumé III. Learning task grouping and overlap in multi-task learning. In Proceedings
of the 29 th International Conference on Machine Learning, Edinburgh, Scotland, UK, 2012.

[14] S. Parameswaran and K. Weinberger. Large margin multi-task metric learning. In J. Lafferty, C. K. I.
Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors, Advances in Neural Information Process-
ing Systems 23, pages 1867–1875, 2010.

[15] J. C. Platt. Fast training of support vector machines using sequential minimal optimization. In
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods: Support Vector
Learning. MIT Press, 1998.

[16] S. Thrun. Is learning the n-th thing any easier than learning the first? In D. S. Touretzky, M. Mozer, and
M. E. Hasselmo, editors, Advances in Neural Information Processing Systems 8, pages 640–646, Denver,
CO, 1995.

[17] S. Thrun and J. O’Sullivan. Discovering structure in multiple learning tasks: The TC algorithm. In
Proceedings of the Thirteenth International Conference on Machine Learning, pages 489–497, Bari, Italy,
1996.

[18] M. Wu and B. Schölkopf. A local learning approach for clustering. In B. Schölkopf, J. C. Platt, and
T. Hoffman, editors, Advances in Neural Information Processing Systems 19, pages 1529–1536, Vancou-
ver, British Columbia, Canada, 2006.

[19] M. Wu, K. Yu, S. Yu, and B. Schölkopf. Local learning projections. In Proceedings of the Twenty-Fourth
International Conference on Machine Learning, pages 1039–1046, Corvallis, Oregon, USA, 2007.

[20] Y. Zhang and D.-Y. Yeung. A convex formulation for learning task relationships in multi-task learning.
In Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence, pages 733–742, Catalina
Island, California, 2010.

9


