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Abstract

We provide a unified framework for the high-dimensional analysis of
“superposition-structured” or “dirty” statistical models: where the model param-
eters are a superposition of structurally constrained parameters. We allow for any
number and types of structures, and any statistical model. We consider the gen-
eral class of M -estimators that minimize the sum of any loss function, and an
instance of what we call a “hybrid” regularization, that is the infimal convolution
of weighted regularization functions, one for each structural component. We pro-
vide corollaries showcasing our unified framework for varied statistical models
such as linear regression, multiple regression and principal component analysis,
over varied superposition structures.

1 Introduction

High-dimensional statistical models have been the subject of considerable focus over the past
decade, both theoretically as well as in practice. In these high-dimensional models, the ambient
dimension of the problem p may be of the same order as, or even substantially larger than the sample
size n. It has now become well understood that even in this type of high-dimensional p > n scal-
ing, it is possible to obtain statistically consistent estimators provided one imposes structural con-
straints on the statistical models. Examples of such structural constraints include sparsity constraints
(e.g. compressed sensing), graph-structure (for graphical model estimation), low-rank structure (for
matrix-structured problems), and sparse additive structure (for non-parametric models), among oth-
ers. For each of these structural constraints, a large body of work have proposed and analyzed
statistically consistent estimators. For instance, a key subclass leverage such structural constraints
via specific regularization functions. Examples include ¢;-regularization for sparse models, nuclear
norm regularization for low-rank matrix-structured models, and so on.

A caveat to this strong line of work is that imposing such “clean” structural constraints such as
sparsity or low-rank structure, is typically too stringent for real-world messy data. What if the
parameters are not exactly sparse, or not exactly low rank? Indeed, over the last couple of years,
there has been an emerging line of work that address this caveat by “mixing and matching” different
structures. Chandrasekaran et al. [5] consider the problem of recovering an unknown low-rank and
an unknown sparse matrix, given the sum of the two matrices; for which they point to applications
in system identification in linear time-invariant systems, and optical imaging systems among others.
Chandrasekaran et al. [6] also apply this matrix decomposition estimation to the learning of latent-
variable Gaussian graphical models, where they estimate an inverse covariance matrix that is the sum
of sparse and low-rank matrices. A number of papers have applied such decomposition estimation
to robust principal component analysis: Candes et al. [3] learn a covariance matrix that is the sum
of a low-rank factored matrix and a sparse “error/outlier” matrix, while [9, 15] learn a covariance
matrix that is the sum of a low-rank matrix and a column-sparse error matrix. Hsu et al. [7] analyze
this estimation of a sum of a low-rank and elementwise sparse matrix in the noisy setting; while
Agarwal et al. [1] extend this to the sum of a low-rank matrix and a matrix with general structure.
Another application is multi-task learning, where [8] learn a multiple-linear-regression coefficient



matrix that is the sum of a sparse and a block-sparse matrix. This strong line of work can be seen to
follow the resume of estimating a superposition of two structures; and indeed their results show this
simple extension provides a vast increase in the practical applicability of structurally constrained
models. The statistical guarantees in these papers for the corresponding M -estimators typically
require fairly extensive technical arguments that extend the analyses of specific single-structured
regularized estimators in highly non-trivial ways.

This long-line of work above on M-estimators and analyses for specific pairs of super-position
structures for specific statistical models, lead to the question: is there a unified framework for study-
ing any general tuple (i.e. not just a pair) of structures, for any general statistical model? This is
precisely the focus of this paper: we provide a unified framework of “superposition-structured” or
“dirty” statistical models, with any number and any types of structures, for any statistical model.
By such “superposition-structure,” we mean the constraint that the parameter be a superposition of
“clean” structurally constrained parameters. In addition to the motivation above, of unifying the
burgeoning list of works above, as well as to provide guarantees for many novel superpositions (of
for instance more than two structures) not yet considered in the literature; another key motivation is
to provide insights on the key ingredients characterizing the statistical guarantees for such dirty sta-
tistical models. Our unified analysis allows the following very general class of M -estimators, which
are the sum of any loss function, and an instance of what we call a “hybrid” regularization func-
tion, that is the infimal convolution of any weighted regularization functions, one for each structural
component. As we show, this is equivalent to an M -estimator that is the sum of (a) a loss function
applied to the sum of the multiple parameter vectors, one corresponding to each structural compo-
nent; and (b) a weighted sum of regularization functions, one for each of the parameter vectors. We
stress that our analysis allows for general loss functions, and general component regularization func-
tions. We provide corollaries showcasing our unified framework for varied statistical models such as
linear regression, multiple regression and principal component analysis, over varied superposition
structures.

2 Problem Setup

We consider the following general statistical modeling setting. Consider a random variable Z with
distribution P, and suppose we are given n observations Z7' := {71, ..., Z,} drawn i.i.d. from P.
We are interested in estimating some parameter §* € RP of the distribution P. We assume that
the statistical model parameter 6* is “superposition-structured,” so that it is the sum of parameter
components, each of which is constrained by a specific structure. For a formalization of the notion
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of structure, we first review some terminology from [11]. There, they use subspace pairs (M,M™),
where M C M, to capture any structured parameter. M is the model subspace that captures

the constraints imposed on the model parameter, and is typically low-dimensional. ML is the
perturbation subspace of parameters that represents perturbations away from the model subspace.
They also define the property of decomposability of a regularization function, which captures the
suitablity of a regularization function R to particular structure. Specifically, a regularization function

R is said to be decomposable with respect to a subspace pair (M, Ml), if
R(u+v) =R(u)+R(v), forallue M, ve M .

For any structure such as sparsity, low-rank, etc., we can define the corresponding low-dimensional
model subspaces, as well as regularization functions that are decomposable with respect to the cor-
responding subspace pairs.

L. Sparse vectors. Given any subset S C {1,...,p} of the coordinates, let M(S) be the subspace
of vectors in R? that have support contained in S. It can be seen that any parameter § € M (S)

would be atmost |.S|-sparse. For this case, we use M(S) = M(S), so that ML(S) = M-(S). As
shown in [11], the ¢; norm R(6) = ||#]|1, commonly used as a sparsity-encouraging regularization
function, is decomposable with respect to subspace pairs (M (S), M (9)).

IL. Low-rank matrices. Consider the class of matrices © € R¥*™ that have rank r < min{k, m}.
For any given matrix ©, we let row(0) C R™ and col(©) C R* denote its row space and column
space respectively. For a given pair of 7-dimensional subspaces U C R¥ and V' C R™, we define
the subspace pairs as follows: M(U,V) := {© € R**™ | row(©) C V, col(©) C U} and



ML(U,V) = {© € R*™ | row(©) C V*, col(©) C UL}. As[11] show, the nuclear norm
R(0) = ||0]]1 is decomposable with respect to the subspace pairs (M (U, V), M (U, V).

In our dirty statistical model setting, we do not just have one, but a set of structures; suppose we

index them by the set /. Our key structural constraint can then be stated as: 6* = 3, 07, where
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0% is a “clean” structured parameter with respect to a subspace pair (M, M), for M, C M,.
We also assume we are given a set of regularization functions R, (-), for @ € I that are suited to
the respective structures, in the sense that they are decomposable with respect to the subspace pairs

(Mo, My).

Let £ : €2 x 2™ — R be some loss function that assigns a cost to any parameter § € 2 C RP, for a
given set of observations Z7'. For ease of notation, in the sequel, we adopt the shorthand £(8) for
L(6; ZT). We are interested in the following “super-position” estimator:

i £( 3 6a) + 30 Ao Ralf) ()
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where (\y)aer are the regularization penalties. This optimization problem involves not just one
parameter vector, but multiple parameter vectors, one for each structural component: while the
loss function applies only to the sum of these, separate regularization functions are applied to the
corresponding parameter vectors. We will now see that this can be re-written to a standard M-
estimation problem which minimizes, over a single parameter vector, the sum of a loss function and
a special “dirty” regularization function.

Given a vector ¢ := (¢q)acs Of convex-combination weights, suppose we define the following
“dirty” regularization function, that is the infimal convolution of a set of regularization functions:

R(6;¢c) = inf { Y caRalba) Y b= 9}. 2)

acl a€cl

It can be shown that provided the individual regularization functions R(-), for o € I, are norms,
R(+; c) is a norm as well. We discuss this and other properties of this hybrid regularization function
R(-; c) in Appendix A.

Proposition 1. Suppose (é\a)ae 1 is the solution to the M -estimation problem in (1). Then 0 =
Zael 0, is the solution to the following problem:

gréig L(0) + AR (6;¢), €)]

where co, = Ao/ Similarly, lfa is the solution to (3), then there is a solution (é\a)ae] to the

M -estimation problem (1), such that § := ) ;0.

Proposition 1 shows that the optimization problems (1) and (3) are equivalent. While the tuning
parameters in (1) correspond to the regularization penalties (Ay)acr, the tuning parameters in (3)
correspond to the weights (¢, )aer specifying the “dirty” regularization function. In our unified
analysis theorem, we will provide guidance on setting these tuning parameters as a function of
various model-parameters.

3 Error Bounds for Convex ) -estimators

Our goal is to provide error bounds Ha— 0*||, between the target parameter 6, the minimizer of the

population risk, and our M -estimate 6 from (1), for any error norm || - ||. A common example of an
error norm for instance is the {2 norm || - ||2. We now turn to the properties of the loss function and
regularization function that underlie our analysis. We first restate some natural assumptions on the
loss and regularization functions.

(C1) The loss function £ is convex and differentiable.

(C2) The regularizers R, are norms, and are decomposable with respect to the subspace pairs
(Ma,/\?i), where M, C M.



Our next assumption is a restricted strong convexity assumption [11]. Specifically, we will require
the loss function L to satisfy:

(C3) (Restricted Strong Convexity) For all A, € Q, where (), is the parameter space for the
parameter component c,

OL(AL;0%) = L(0" + Ay) — L(6%) — <V0£(9*),Aa> > kel Aall? = gaR2E(Ad),
where £ . is a “curvature” parameter, and g,R2 (A, ) is a “tolerance” parameter.

Note that these conditions (C1)-(C3) are imposed even when the model has a single clean structural
constraint; see [11]. Note that g,, is usually a function on the problem size decreasing in the sample

size; in the standard Lasso with |I| = 1 for instance, g, = k’%.

Our next assumption is on the interaction between the different structured components.

(C4) (Structural Incoherence) For all A, € Q,,

‘c 0+ 3" Au) + (1] = L7 = S L(6" + As) ZHA 17+ haR2(A
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Note that for a model with a single clean structural constraint, with |I| = 1, the condition (C4) is
trivially satisfied since the LHS becomes 0. We will see in the sequel that for a large collection
of loss functions including all linear loss functions, the condition (C4) simplifies considerably, and
moreover holds with high probability, typically with i, = 0. We note that this condition is much
weaker than “incoherence” conditions typically imposed when analyzing specific instances of such
superposition-structured models (see e.g. references in the introduction), where the assumptions
typically include (a) assuming that the structured subspaces (M, )acr intersect only at {0}, and (b)
that the sizes of these subspaces are extremely small.

Finally, we will use the notion of subspace compatibility constant defined in [11], that captures the
relationship between the regularization function R(-) and the error norm || - ||, over vectors in the

subspace M: W(M, || - [|) := sup,e pp {0y ﬁ
Theorem 1. Suppose we solve the M-estimation problem in (3), with hybrid regularization
R(-;c), where the convex-combination weights ¢ are set as ¢, = Mg ael Mo With Ay 2>

2R (V@aﬁ(e*; Zf)) Further, suppose conditions (C1) - (C4) are satisfied. Then, the parame-
ter error bounds are given as:

||§9*|§< i )maxA Uo(Ma) + (I1/7/VR).

acl

where

- 2
Fem 50|l (max Ao Wa(Ma)) . g o= max /g + o
2 ael @ )\a
> [32° 02 R2 (Tas (62) + 2|?| Ra(Mrrz (03)) |-
a€el

—
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Remarks: (R1) It is instructive to compare Theorem 1 to the main Theorem in [11], where they
derive parameter error bounds for any M-estimator with a decomposable regularizer, for any
“clean” structure. Our theorem can be viewed as a generalization: we recover their theorem
when we have a single structure with |I| = 1. We cannot derive our result in turn from their
theorem applied to the M-estimator (3) with the hybrid regularization function R(+;c): the
“superposition” structure is not captured by a pair of subspaces, nor is the hybrid regularization
function decomposable, as is required by their theorem. Our setting as well as analysis is strictly
more general, because of which we needed the additional structural incoherence assumption (C4)
(which is trivially satisfied when |I| = 1).

(R2) Agarwal et al. [1] provide Frobenius norm error bounds for the matrix-decomposition problem
of recovering the sum of low-rank and a general structured matrix. In addition to the greater
generality of our theorem and framework, Theorem 1 addresses two key drawbacks of their
theorem even in their specific setting. First, the proof for their theorem requires the regularization



penalty A for the second structure to be strongly bounded away from zero: their convergence rate
does not approach zero even with infinite number of samples n. Theorem 1, in contrast, imposes
the weaker condition A\, > 2R, (VQQL(G*; Zf)), which as we show in the corollaries, allows
for the convergence rates to go to zero as a function of the samples. Second, they assumed much
stronger conditions for their theorem to hold; in Theorem 1 in contrast, we pose much milder
“local” RSC conditions (C3), and a structural incoherence condition (C4).

(R3) The statement in the theorem is deterministic for fixed choices of (\,). We also note that

the theorem holds for any set of subspace pairs (M, /Wi)ae 7 with respect to which the cor-
responding regularizers are decomposable. As noted earlier, the M, should ideally be set to
the structured subspace in which the true parameter at least approximately lies, and which we
want to be as small as possible (note that the bound includes a term that depends on the size
of this subspace via the subspace compatibility constant). In particular, if we assume that the
subspaces are chosen so that IT . (6)) = 0 i.e. 87 € M,, then we obtain the simpler bound in
the following corollary. °

Corollary 1. Suppose we solve the M -estimation problem in (1), with hybrid regularization
R(+;c), where the convex-combination weights ¢ are set as co = Ao/ Y gep Ao With Ao >
2R (V(;OE(G*; Zf)), and suppose conditions (C1) - (C4) are satisfied. Further, suppose that the
subspace-pairs are chosen so that 07, € M. Then, the parameter error bounds are given as:

3|1

0— 0| < (22 M.,).
15071 < () maea v (3,

It is now instructive to compare the bounds of Theorem 1, and Corollary 1. Theorem 1 has two terms:
the first of which is the sole term in the bound in Corollary 1. This first term can be thought of as
the “estimation error” component of the error bound, when the parameter has exactly the structure
being modeled by the regularizers. The second term can be thought of as the “approximation error”
component of the error bound, which is the penalty for the parameter not exactly lying in the struc-
tured subspaces modeled by the regularizers. The key term in the “estimation error’” component, in
Theorem 1, and Corollary 1, is:

O = max Ao Vo (My).
acl

Note that each A, is larger than a particular norm of the sample score function (gradient of the loss
at the true parameter): since the expected value of the score function is zero, the magnitude of the
sample score function captures the amount of “noise” in the data. This is in turn scaled by ¥, (M, ),
which captures the size of the structured subspace corresponding to the parameter component 67,.
can thus be thought of as capturing the amount of noise in the data relative to the particular structure
at hand.

We now provide corollaries showcasing our unified framework for varied statistical models such as
linear regression, multiple regression and principal component analysis, over varied superposition
structures.

4 Convergence Rates for Linear Regression

In this section, we consider the linear regression model:
Y = Xe* + u}7 (4)

where Y € R" is the observation vector, and 0* € RP is the true parameter. X € R"*P is the
“observation” matrix; while w € R" is the observation noise. For this class of statistical models, we
will consider the instantiation of (1) with the loss function £ consisting of the squared loss:

1 2
Jin {”HY_X(QZEI 0,) ‘2+;Aam(ea)}. )

a)ael

For this regularized least squared estimator (5), conditions (C1-C2) in Theorem 1 trivially hold.

The restricted strong convexiry condition (C3) reduces to the following. Noting that £(6* + A,) —
L(0%) — (VoL(0%),Ay) = 1| XAL]||2, we obtain the following restricted eigenvalue condition:

T n



M3) LIXAL3 > kel|Aal? — gaRE(AL) forall A, € Q.

Finally, our structural incoherence condition reduces to the following: Noting that |£(0* +

SacrBa) + (I| = DLEOY) = 3 cr LOOF + An)| = 2| Z(Kﬁ(XAa,XAgH in this specific
case,

(D4) %’ Za<ﬁ<XAa?XAB>‘ S %Za€[ ||A0£||2 + Zae] haRi(Aa)

4.1 Structural Incoherence with Gaussian Design

We now show that the condition (D4) required for Theorem 1, holds with high probability when the
observation matrix is drawn from a so-called X-Gaussian ensemble: where each row X is indepen-
dently sampled from N (0, X). Before doing so, we first state some assumption on the population
covariance matrix X. Let Pjs denote the matrix corresponding to the projection operator for the
subspace M. We will then require the following assumption:

3Ayq ¥y (v/};l'n )
Ayp Wy (M’Y2 )

_ _ _ _ _ _ ze
s o (o 5P} (P 5P ) o (PP )} £ 0
Proposition 2. Suppose each row X; of the observation matrix X is independently sampled from
N(0,%), and the condition (C-Linear) (6) holds. Further, suppose that 111 (07,) = 0, for all
a € 1. Then, it holds that with probability at least 1 — 4

(C-Linear) Let A := max,, ,, {2 + } For any o, 8 € I,

max{n,p}’
2 KR 2
a<f a
GO

when the number of samples scales as n > ¢ > ) (maxa U, (M,)? +max{log p, log n})

for some constant c that depends only on the distribution of X.

Condition (D3) is the usual restricted eigenvalue condition which has been analyzed previously in
“clean-structured” model estimation, so that we can directly appeal to previous results [10, 12] to
show that it holds with high probability when the observation matrix is drawn from the >-Gaussian
ensemble.

We are now ready to derive the consequences of the deterministic bound in Theorem 1 for the case
of the linear regression model above.

4.2 Linear Regression with Sparse and Group-sparse structures

We now consider the following superposition structure, comprised of both sparse and group-sparse
structures. Suppose that a set of groups § = {G1,Gs,...,G,} are disjoint subsets of the index-
set {1,...,p}, each of size at most |G;| < m. Suppose that the linear regression parameter 6* is
a superposition of a group-sparse component 6 with respect to this set of groups G, as well as a
sparse component ¢} with respect to the remaining indices {1, ...,p}\Uj_, G}, so that 0* = 0 +0.
Then, we use the hybrid regularization function Y ; Aa Ra(ba) = As||0s]l1 + Ag|l04l1,o Where
101110 := 3Zi-1 16, [la for a > 2.

Corollary 2. Consider the linear model (4) where 0* is the sum of exact s-sparse 87 and exact s,
group-sparse 0. Suppose that each row X; of the observation matrix X is independently sampled
Sfrom N (0,%). Further, suppose that (6) holds and w is sub-Gaussian with parameter o. Then, if we

solve (5) with
1 1-1/a 1
)\S:8aq/ﬂ and )\g:8a{m +14/ qu},
n vn n

then, with probability at least 1 — c1 exp(—can)2?) — c3/q?, we have the error bound:

~ 24 1 Somi—1/a 1
||0—9*|2<”max{\/”gp, Ve qu}.
R n vn n
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Let us briefly compare the result from Corollary 2 with those from single-structured regularized
estimators. Since the total sparsity of 8* is bounded by ||6]|o < ms, + s, “clean” ¢; regularized

least squares, with high probability, gives the bound [11]: [|6, — 6% |2 = O (\/ W) .On

the other hand, the support of §* also can be interpreted as comprising s, + s disjoint groups in the
worst case, so that “clean” ¢ /{5 group regularization entails, with high probability, the bound [11]:

100,70, — 07]|2 = O (\/(Gg—;s)m + \/W) . We can easily verify that Corollary 2 achieves

better bounds, considering the fact p < mq.

5 Convergence Rates for Multiple Regression

In this section, we consider the multiple linear regression model, with m linear regressions written
jointly as

Y =X0"+W, 7
where Y € R™*™ is the observation matrix: with each column corresponding to a separate linear
regression task, and ©* € RP*™ is the collated set of parameters. X € R"*P is the “observation”
matrix; while W € R™*™ is collated set of observation noise vectors. For this class of statistical
models, we will consider the instantiation of (1) with the loss function £ consisting of the squared

loss:
mlnl{—mY X( Z@ H|F+Z)\ Ral } (8)
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In contrast to the linear regression model in the previous section, the model (7) has a matrix-
structured parameter; nonetheless conditions (C3-C4) in Theorem 1 reduce to the following con-
ditions that are very similar to those in the previous section, with the Frobenius norm replacing the
{5 norm:

D3) LIXAallE = kel Aall® = 9aRE (Aa) forall Ay € Q.
D) 23, s(X A0, XA < 5 Y er Al + X aes haRE(Ad).

where the notation (A4, B)) denotes the trace inner product, trace(A" B) = >, > ; AijBij.

As in the previous linear regression example, we again impose the assumption (C-Linear) on the
population covariance matrix of a 3-Gaussian ensemble, but in this case with the notational change
of P, denoting the matrix corresponding to projection operator onto the row-spaces of matrices in
M. Thus, with the low-rank matrix structure discussed in Section 2, we would have P ', =UU T,
Under the (C-Linear) assumption, the following proposition then extends Proposition 2:

Proposition 3. Consider the problem (8) with the matrix parameter ©. Under the same assumptions

as in Proposition 2, we have with probability at least 1 — W’

—y S (X Aa, XA ZI\IA I3

a<f

Consider an instance of this multiple linear regression model with the superposition structure con-
sisting of row-sparse, column-sparse and elementwise sparse matrices: ©* = ©:4+0%+0%. In order
to obtain estimators for this model, we use the hybrid regularization function ) . ; Ao Ra(0a) =
A l|©rllra + Acl|Oclle,a + As||Os]|1 where || - ||, denotes the sum of £, norm of rows for a > 2,
and similarly || - ||c,q is the sum of ¢, norm of columns, and || - ||; is entrywise 1 norm for matrix.

Corollary 3. Consider the multiple linear regression model (7) where ©* is the sum of O with s,
nonzero rows, O} with s. nonzero columns, and ©% with s nonzero elements. Suppose that the design
matrix X is X-Gaussian ensemble with the properties of column normalization and oymax(X) < \/n.
Further, suppose that (6) holds and W is elementwise sub-Gaussian with parameter o. Then, if we
solve (8) with

1 1 1-1/a 1 1-1/a 1
A, = 8y 282 08 )\ngg{m +4/ ng}, andxczgg{p + Ogm}7




with probability at least 1 — c¢1 exp(—can)2) — ;—3 — %, the error of the estimate © is bounded as:

16— 0 < %fgmax{ s(logp—i—logm)’ EmiTle n /srlogp’ VEep e n /sclogm}'
K n vn n Vn n

6 Convergence Rates for Principal Component Analysis

In this section, we consider the robust/noisy principal component analysis problem, where we are
given n i.i.d. random vectors Z; € RP where Z; = U; +v;. U; ~ N(0, ©*) is the “uncorrupted” set
of observations, with a low-rank covariance matrix ©* = LLT, for some loading matrix L € RP*".
v; € RP is a noise/error vector; in standard factor analysis, v; is a spherical Gaussian noise vector:
v; ~ N(0, cr2IpX p) (or v; = 0); and the goal is to recover the loading matrix L from samples.

In PCA with sparse noise, v; ~ N(0,'*), where I'* is elementwise sparse. In this case, the covari-
ance matrix of Z; has the form > = ©* 4+ I'*, where ©* is low-rank, and I'* is sparse. We can thus
write the sample covariance model as: Y := % S ZiZF = 0 +T* + W, where W € RPXP
is a Wishart distributed random matrix. For this class of statistical models, we will consider the
following instantiation of (1):

min {I¥ = © = TI3 + MollOl: + ArlIl ©)

where || - |1 denotes the nuclear norm while || - ||; does the element-wise ¢; norm (we will use || - ||
for the spectral norm.).

In contrast to the previous two examples, (9) includes a trivial design matrix, X = I, which al-

3Ayy ¥y (M’n ) }

lows (D4) to hold under the simpler (C-linear) condition: where A is max., ,, {24— T )
Y2 T2 Y2

max { omax (Pt Pty ) max (Patg Pt ) Tmax Pty Pt ) omax (P P ) } < 16% (10)

Corollary 4. Consider the principal component analysis model where ©* has the rank r at most
and T'* has s nonzero entries. Suppose that (10) holds. Then, given the choice of

lo
—16\/||Z|2\/7 Ar = 32p(2)4/ Sp,

where p(¥) = max; X, the optimal error of (9) is bounded by

16 -0 < 4 max { VIS 2. 205y 2,

with probability at least 1 — ¢y exp(—cz log p).

Remarks. Agarwal et al. [1] also analyze this model, and propose to use the M-estimator in (9),
with the additional constraint of [[©|c < . Under a stricter “global” RSC condition, they

compute the error bound [|© — ©*||y = max{\/[Z]: T, p(X)y/ 1oL 4 2} where a is a

parameter between 1 and p. This bound is similar to that in Corollary 4, but with an additional

term %, so that it does not go to zero as a function of n. It also faces a trade-off: a smaller

value of « to reduce error bound would make the assumption on the maximum element of ©*
stronger as well. Our corollaries do not suffer these lacunae; see also our remarks in (R2) in
Theorem 1. [14] extended the result of [1] to the special case where ©* = O + O using the
notation of the previous section; the remarks above also apply here. Note that our work and [1]
derive Frobenius error bounds under restricted strong convexity conditions; other recent works
such as [7] also derive such Frobenius error bounds but under stronger conditions (see [1] for
details).
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