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Abstract

Recently, it was shown that deep neural networks can perform very well if the
activities of hidden units are regularized during learning, e.g, by randomly drop-
ping out 50% of their activities. We describe a method called ‘standout’ in which
a binary belief network is overlaid on a neural network and is used to regularize
of its hidden units by selectively setting activities to zero. This ‘adaptive dropout
network’ can be trained jointly with the neural network by approximately com-
puting local expectations of binary dropout variables, computing derivatives using
back-propagation, and using stochastic gradient descent. Interestingly, experi-
ments show that the learnt dropout network parameters recapitulate the neural
network parameters, suggesting that a good dropout network regularizes activities
according to magnitude. When evaluated on the MNIST and NORB datasets, we
found that our method achieves lower classification error rates than other feature
learning methods, including standard dropout, denoising auto-encoders, and re-
stricted Boltzmann machines. For example, our method achieves 0.80% and 5.8%
errors on the MNIST and NORB test sets, which is better than state-of-the-art
results obtained using feature learning methods, including those that use convolu-
tional architectures.

1 Introduction
For decades, deep networks with broad hidden layers and full connectivity could not be trained to
produce useful results, because of overfitting, slow convergence and other issues. One approach
that has proven to be successful for unsupervised learning of both probabilistic generative models
and auto-encoders is to train a deep network layer by layer in a greedy fashion [7]. Each layer of
connections is learnt using contrastive divergence in a restricted Boltzmann machine (RBM) [6] or
backpropagation through a one-layer auto-encoder [1], and then the hidden activities are used to
train the next layer. When the parameters of a deep network are initialized in this way, further fine
tuning can be used to improve the model, e.g., for classification [2]. The unsupervised, pre-training
stage is a crucial component for achieving competitive overall performance on classification tasks,
e.g., Coates et al. [4] have achieved improved classification rates by using different unsupervised
learning algorithms.

Recently, a technique called dropout was shown to significantly improve the performance of deep
neural networks on various tasks [8], including vision problems [10]. Dropout randomly sets hidden
unit activities to zero with a probability of 0.5 during training. Each training example can thus
be viewed as providing gradients for a different, randomly sampled architecture, so that the final
neural network efficiently represents a huge ensemble of neural networks, with good generalization
capability. Experimental results on several tasks show that dropout frequently and significantly
improves the classification performance of deep architectures. Injecting noise for the purpose of
regularization has been studied previously, but in the context of adding noise to the inputs [3],[21]
and to network components [16].

Unfortunately, when dropout is used to discriminatively train a deep fully connected neural network
on input with high variation, e.g., in viewpoint and angle, little benefit is achieved (section 5.5),
unless spatial structure is built in.
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In this paper, we describe a generalization of dropout, where the dropout probability for each
hidden variable is computed using a binary belief network that shares parameters with the deep
network. Our method works well both for unsupervised and supervised learning of deep networks.
We present results on the MNIST and NORB datasets showing that our ‘standout’ technique can
learn better feature detectors for handwritten digit and object recognition tasks. Interestingly, we
also find that our method enables the successful training of deep auto-encoders from scratch, i.e.,
without layer-by-layer pre-training.

2 The model
The original dropout technique [8] uses a constant probability for omitting a unit, so a natural ques-
tion we considered is whether it may help to let this probability be different for different hidden
units. In particular, there may be hidden units that can individually make confident predictions for
the presence or absence of an important feature or combination of features. Dropout will ignore this
confidence and drop the unit out 50% of the time. Viewed another way, suppose after dropout is
applied, it is found that several hidden units are highly correlated in the pre-dropout activities. They
could be combined into a single hidden unit with a lower dropout probability, freeing up hidden
units for other purposes.

We denote the activity of unit j in a deep neural network by aj and assume that its inputs are
{ai : i < j}. In dropout, aj is randomly set to zero with probability 0.5. Letmj be a binary variable
that is used to mask, the activity aj , so that its value is

aj = mjg
(∑
i:i<j

wj,iai
)
, (1)

where wj,i is the weight from unit i to unit j and g(·) is the activation function and a0 = 1 accounts
for biases. Whereas in standard dropout, mj is Bernoulli with probability 0.5, here we use an
adaptive dropout probability that depends on input activities:

P (mj = 1|{ai : i < j}) = f
(∑
i:i<j

πj,iai
)
, (2)

where πj,i is the weight from unit i to unit j in the standout network or the adaptive dropout network;
f(·) is a sigmoidal function, f : R→ [0, 1]. We use the logistic function, f(z) = 1/(1+ exp(−z)).
The standout network is an adpative dropout network that can be viewed as a binary belief net-
work that overlays the neural network and stochastically adapts its architecture, depending on the
input. Unlike a traditional belief network, the distribution over the output variable is not obtained
by marginalizing over the hidden mask variables. Instead, the distribution over the hidden mask
variables should be viewed as specifying a Bayesian posterior distribution over models. Traditional
Bayesian inference generates a posterior distribution that does not depend on the input at test time,
whereas the posterior distribution described here does depend on the test input. At first, this may
seem inappropriate. However, if we could exactly compute the Bayesian posterior distribution over
neural networks (parameters and architectures), we would find strong correlations between compo-
nents, such as the connectivity and weight magnitudes in one layer and the connectivity and weight
magnitudes in the next layer. The standout network described above can be viewed as approximately
taking into account these dependencies through the use of a parametric family of distributions.

The standout method described here can be simplified to obtain other dropout techniques. The
original dropout method is obtained by clamping πj,i = 0 for 0 ≤ i < j. Another interesting
setting is obtained by clamping πj,i = 0 for 1 ≤ i < j, but learning the input-independent dropout
parameter πj,0 for each unit aj .

As in standard dropout, to process an input at test time, the stochastic feedforward process is replaced
by taking the expectation of equation 1:

E[aj ] = f
(∑
i:i<j

πj,iai
)
g
(∑
i:i<j

wj,iai
)
. (3)

We found that this method provides very similar results as randomly simulating the stochastic
process and computing the expected output of the neural network.

3 Learning
For a specific configuration m of the mask variables, let L(m,w) denote the likelihood of a training
set or a minibatch, where w is the set of neural network parameters. It may include a prior as well.
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The dependence of L on the input and output have been suppressed for notational simplicity. Given
the current dropout parameters, π, the standout network acts like a binary belief network that gen-
erates a distribution over the mask variables for the training set or minibatch, denoted P (m|π,w).
Again, we have suppressed the dependence on the input to the neural network. As described above,
this distribution should not be viewed as the distribution over hidden variables in a latent variable
model, but as an approximation to a Bayesian posterior distribution over model architectures.

The goal is to adjust π and w to make P (m|π,w) close to the true posterior over architectures
as given by L(m,w), while also adjusting L(m,w) so as maximize the data likelihood w.r.t. w.
Since both the approximate posterior P (m|π,w) and the likelihood L(m,w) depend on the neural
network parameters, we use a crude approximation that we found works well in practice. If the
approximate posterior were as close as possible to the true posterior, then the derivative of the free
energy F (P,L) w.r.t P would be zero and we can ignore terms of the form ∂P/∂w. So, we adjust
the neural network parameters using the approximate derivative,

−
∑
m

P (m|π,w) ∂
∂w

logL(m,w), (4)

which can be computed by sampling from P (m|π,w).
For a given setting of the neural network parameters, the standout network can in principal be ad-
justed to be closer to the Bayesian posterior by following the derivative of the free energy F (P,L)
w.r.t. π. This is difficult in practice, so we use an approximation where we assume the approximate
posterior is correct and sample a configuration ofm from it. Then, for each hidden unit, we consider
mj = 0 and mj = 1 and determine the partial contribution to the free energy. The standout network
parameters are adjusted for that hidden unit so as to decrease the partial contribution to the free
energy. Namely, the standout network updates are obtained by sampling the mask variables using
the current standout network, performing forward propagation in the neural network, and comput-
ing the data likelihood. The mask variables are sequentially perturbed by combining the standout
network probability for the mask variable with the data likelihood under the neural network, using
a partial forward propagation. The resulting mask variables are used as complete data for updating
the standout network.

The above learning technique is approximate, but works well in practice and achieves models that
outperform standard dropout and other feature learning techniques, as described below.
Algorithm 1: Standout learning algorithm: alg1 and alg2
Notation: H

(
·
)

is Heaviside step function ;
Input: w, π, α, β
alg1: initialize w, π randomly; alg2: initialize w randomly, set π = w;
while not stopping criteria do

for hidden unit j = 1, 2, ... do
P (mj = 1|{ai : i < j}) = f

(
α
∑

i:i<j πj,iai + β
)
;

mj ∼ P (mj = 1|{ai : i < j});
aj = mjg

(∑
i:i<j wj,iai

)
;

end
Update neural network parameter w using ∂

∂w
logL(m,w);

/* alg1 */
for hidden unit j = 1, 2, ... do

tj = H
(
L(m,w|mj = 1)− L(m,w|mj = 0)

)
end
Update standout network π using target t ;
/* alg2 */
Update standout network π using π ← w ;

end

3.1 Stochastic adaptive mixtures of local experts
A neural network of N hidden units can be viewed as 2N possible models given the standout mask
M . Each of the 2N models acts like a separate “expert” network that performs well for a subset
of the input space. Training all 2N models separately can easily over-fit to the data, but weight
sharing among the models can prevent over-fitting. Therefore, the standout network, much like a
gating network, also produces a distributed representation to stochastically choses which expert to
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Figure 1: Weights from hidden units that are least likely to be dropped out, for examples from each
of the 10 classes, for (top) auto-encoder and (bottom) discriminative neural networks trained using
standout.

Figure 2: First layer standout network filters and neural network filters learnt from MNIST data
using our method.

turn on for a given input. This means 2N models are chosen by N binary numbers in this distributed
representation.

The standout network partitions the input space into different regions that are suitable for each
expert. We can visualize the effect of the standout network by showing the units that output high
standout probability for one class but not others. The standout network learns that some hidden units
are important for one class and tend to keep those. These hidden units are then more likely to be
dropped out when the input comes from a different class.

4 Exploratory experiments
Here, we study different aspects of our method using MNIST digits (see below for more details).
We trained a shallow one hidden layer auto-encoder on MNIST using the approximate learning
algorithm. We can visualize the effect of the standout network by showing the units that output low
dropout probability for one class but not others. The standout network learns that some hidden units
are important for one class and tends to keep those. These hidden units are more likely to be dropped
when the input comes from a different class (see figure 1).

The first layer filters of both the standout network and the neural network are shown in figure 2.
We noticed that the weights in the two networks are very similar. Since the learning algorithm for
adjusting the dropout parameters is computationally burdensome (see above), we considered tying
the parameters w and π. To account for different scales and shifts, we set π = αw+β, where α and
β are learnt.

Concretely, we found empirically that the standout network parameters trained in this way are quite
similar (although not identical) to the neural network parameters, up to an affine transformation.
This motivated our second algorithm alg2 in psuedocode(1), where the neural network parameters
are trained as described in learning section 3, but the standout parameters are set to an affine trans-
formation of the neural network parameters with hyper-parameters alpha and beta. These hyper-
parameters are determined as explained below. We found that this technique works very well in
practice, for the MNIST and NORB datasets (see below). For example, for unsupervised learning
on MNIST using the architecture described below, we obtained 153 errors for tied parameters and
158 errors for separately learnt parameters. This tied parameter learning algorithm is used for the
experiments in the rest of the paper. In the above description of our method, we mentioned two
hyper-parameters that need to be considered: the scale parameter α and the bias parameter β. Here
we explore the choice of these parameters, by presenting some experimental results obtained by
training a dropout model as described below using MNIST handwritten digit images.

α controls the sensitivity of the dropout function to the weighted sum of inputs that is used to
determine the hidden activity. In particular, α scales the weighted sum of the activities from the
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layer before. In contrast, the bias β shifts the dropout probability to be high or low and ultimately
controls the sparsity of the hidden unit activities. A model with a more negative β will have most of
its hidden activities concentrated near zero.

Figure 3(a) illustrates how choices of α and β change the dependence of the dropout probability on
the input. It shows a histogram of hidden unit activities after training networks with different α’s
and β’s on MNIST images.

Figure 3: Histogram of hidden unit activities for various choices of hyper-parameters using the lo-
gistic dropout function, including those configurations that are equivalent to dropout and no dropout-
based regularization (AE). Histograms of hidden unit activities for various dropout functions. Vari-
ous standout function f(·)
We also consider different forms of the dropout function other than the logistic function, as shown
in figure 3(b). The effect of different functional forms can be observed in the histogram of the
activities after training on the MNIST images. The logistic dropout function creates a sparse
distribution of activation values, whereas the functions such as f(z) = 1−4(1−σ(z))σ(z) produce
a multi-modal distribution over the activation values.

5 Experimental results
We consider both unsupervised learning and discriminative learning tasks, and compare results ob-
tained using standout to those obtained using restricted Boltzmann machines (RBMs) and auto-
encoders trained using dropout, for unsupervised feature learning tasks. We also investigate clas-
sification performance by applying standout during discriminative training using the MNIST and
NORB [11] datasets.

In our experiments, we have made a few engineering choices that are consistent with previous publi-
cations in the area, so that our results are comparable to the literature. We used ReLU units, a linear
momentum schedule, and an exponentially decaying learning rate (c.f. Nair et al. 2009[13]; Hin-
ton et al. 2012 [8]). In addition, we used cross-validation to search over the learning rate (0.0001,
0.0003, 0.001, 0.003, 0.01, 0.03) and the values of alpha and beta (-2, -1.5, -1, -.5, 0, .5, 1, 1.5, 2)
and for the NORB dataset, the number of hidden units (1000, 2000, 4000, 6000).

5.1 Datasets
The MNIST handwritten digit dataset is generally considered as a well-studied problem, which
offers the ability to ensure that new algorithms produce sensible results when compared to the many
other techniques that have been benchmarked. It consists of ten classes of handwritten digits, ranging
from 0 to 9. There are, in total, 60,000 training images and 10,000 test images. Each image is 28×28
pixels in size. Following the common convention, we randomly separate the original training set
into 50,000 training cases and 10,000 cases used for validating the choice of hyper-parameters. We
concatenate all the pixels in an image in a raster scan fashion to create a 784-dimensional vector.
The task is to predict the 10 class labels from the 784-dimensional input vector.

The small NORB normalized-uniform dataset contains 24,300 training examples and 24,300 test
examples. It consists of 50 different objects from five different classes: cars, trucks, planes, animals,
and humans. Each data point is represented by a stereo image pair of size 96×96 pixels. The training
and test set used different object instances and images are created under different lighting conditions,
elevations and azimuths. In order to perform well in NORB, it demands learning algorithms to learn
features that can generalize to test set and be able to handle large input dimension. This makes
NORB significantly more challenging than the MNIST dataset. The objects in the NORB dataset
are 3D under difference out-of-plane rotation, and so on. Therefore, the models trained on NORB
have to learn and store implicit representations of 3D structure, lighting and so on. We formulate
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the data vector following Snoek et al.[17] by down-sampling from 96 × 96 to 32 × 32, so that the
final training data vector has 2048 dimensions. Data points are subtracted by the mean and divided
by the standard deviation along each input dimension across the whole training set to normalize the
contrast. The goal is to predict the five class labels for the previously unseen 24,300 test examples.
The training set is separated into 20,000 for training and 4,300 for validation.

5.2 Nonlinearity for feedforward network
We used the ReLU [13] activation function for all of the results reported here, both on unsupervised
and discriminative tasks. The ReLU function can be written as g(x) = max(0, x). We found that
its use significantly speeds up training by up to 10-fold, compared to the commonly used logistic
activation function. The speed-up we observed can be explained in two ways. First, computations
are saved when using max instead of the exponential function. Second, ReLUs do not suffer from
the vanishing gradient problem that logistic functions have for very large inputs.

5.3 Momentum
We optimized the model parameters using stochastic gradient descent with the Nesterov momentum
technique [19], which can effectively speed up learning when applied to large models compared to
standard momentum. When using Nesterov momentum, the cost function J and derivatives ∂J

∂θ are
evaluated at θ + vk, where vk = γvk−1 + η ∂J∂θ is the velocity and θ is the model parameter. γ < 1
is the momentum coefficient and η is the learning rate. Nesterov momentum takes into account
the velocity in parameter space when computing updates. Therefore, it further reduces oscillations
compared to standard momentum.

We schedule the momentum coefficient γ to further speed up the learning process. γ starts at 0.5 in
the first epoch and linearly increase to 0.99. The momentum stays at 0.99 during the major portion
of learning and then is linearly ramped down to 0.5 during the end of learning.

5.4 Computation time
We used the publicly available gnumpy library [20] to implement our models. The models mentioned
in this work are trained on a single Nvidia GTX 580 GPU. As in psuedocode(1), the first algorithm
is relatively slow, since the number of computations isO(n2) where n is the number of hidden units.
The second algorithm is much faster and takes O(kn) time, where k is the number of configurations
of the hyper-parameters alpha and beta that are searched over. In particular, for a 784-1000-784 auto-
encoder model with mini-batches of size 100 and 50,000 training cases on a GTX 580 GPU, learning
takes 1.66 seconds per epoch for standard dropout and 1.73 seconds for our second algorithm.

The computational cost of the improved representations produced by our algorithm is that a hyper-
parameter search is needed. We note that some other recently developed dropout-related methods,
such as maxout, also involve an additional computational factor.

5.5 Unsupervised feature learning
Having good features is crucial for obtaining competitive performance in classification and other
high level tasks. Learning algorithms that can take advantage of unlabeled data are appealing due
to increasing amount of unlabeled data. Furthermore, on more challenging datasets, such as NORB,
a fully connected discriminative neural network trained from scratch tends to perform poorly, even
with the help of dropout. (We trained a two hidden layer neural network on NORB to obtain 13%
error rate and saw no improvement by using dropout). Such disappointing performance motived us
to investigate unsupervised feature learning and pre-training strategies with our new method. Below,
we show that our method can extract useful features in a self-taught fashion. The features extracted
using our method not only outperform other common feature learning methods, but our method is
also quite computationally efficient compared to techniques like sparse coding.

We use the following procedures for feature learning. We first extract the features using one of the
unsupervised learning algorithms in figure (4). The usefulness of the extracted features are then
evaluated by training a linear classifier to predict the object class from the extracted features. This
process is similar to that employed in other feature learning research [14].

We trained a number of architectures on MNIST, including standard auto-encoders, dropout auto-
encoders and standout auto-encoders. As described previously, we compute the expected value of
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arch. act. func. err.
raw pixel 784 7.2%

RBM 784-1000
σ(·) 1.81%weight decay

DAE 784-1000-784 ReLU(·) 1.95%
dropout 784-1000-784

ReLU(·) 1.70%AE 50% hidden dropout
standout 784-1000-784

ReLU(·) 1.53%AE standout
(a) MNIST

arch. act. func. err.
raw pixel 8976 23.6%

RBM 2048-4000
σ(·) 10.6%weight decay

DAE 2048-4000-2048 ReLU(·) 9.5%
dropout 2048-4000-2048

ReLU(·) 10.1%AE 50% hidden dropout
dropout 2048-4000-2048

ReLU(·) 8.9%AE * 22% hidden dropout
standout 2048-4000-2048

ReLU(·) 7.3%AE standout
(b) NORB

Figure 4: Performance of unsupervised feature learning methods. The dropout probability in the
DAE * was optimized using [18]

each hidden activity and use that as the feature when training a classifier. We also examined RBM’s,
where we the soft probability for each hidden unit as a feature. Different classifiers can be used
and give similar performance; we used a linear SVM because it is fast and straightforward to apply.
However, on a subset of problems we tried logistic classifiers and they achieved indistinguishable
classification rates.

Results for the different architectures and learning methods are compared in table 4(a). The auto-
encoder trained using our proposed technique with α = 1 and β = 0 performed the best on MNIST.

We performed extensive experiments on the NORB dataset with larger models. The hyper-
parameters used for the best result are α = 1 and β = 1. Overall, we observed similar trends
to the ones we observed for MNIST. Our standout method consistently performs better than other
methods, as shown in table 4(b).

5.6 Discussion
The proposed standout method was able to outperform other feature learning methods in both
datasets with a noticeable margin. The stochasticity introduced by the standout network success-
fully removes hidden units that are unnecessary for good performance and that hinder performance.
By inspecting the weights from auto-encoders regularized by dropout and standout, we find that the
standout auto-encoder weights are sharper than those learnt using dropout, which may be consistent
with the improved performance on classification tasks.
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Figure 5: Classification error rate as a
function of number of hidden units on
NORB.

The effect of the number of hidden units was studied us-
ing networks with sizes 500, 1000, 1500, and up to 4500.
Figure 5 shows that all algorithms generally perform bet-
ter by increasing the number of hidden units. One notable
trend for dropout regularization is that it achieves sig-
nificantly better performance with large numbers of hid-
den units since all units have equal chance to be omitted.
In comparison, standout can achieve similar performance
with only half as many hidden units, because highly use-
ful hidden units will be kept more often while only the
less effective units will be dropped.

One question is whether it is the stochasticity of the standout network that helps, or just a dif-
ferent nonlinearity obtained by the expected activity in equation 3. To address this, we trained a
deterministic auto-encoder with hidden activation functions given by equation 3. The result of this
‘deterministic standout method’ is shown in figure 5 and it performs quite poorly.

It is believed that sparse features can help improve the performance of linear classifiers. We found
that auto-encoders trained using ReLU units and standout produce sparse features. We wondered
whether training a sparse auto-encoder with a sparsity level matching the one obtained by our method
would yield similar performance. We applied an L1 penalty on the hidden units and trained an
auto-encoder to match the sparsity obtained by our method (figure4). The final features extracted
using the sparse auto-encoder achieved 10.2% error on NORB, which is significantly worse than
our method. Further gains can be achieved by tuning hyper-parameters, but the hyper-parameters
for our method are easier to tune and, as shown above, have little effect on the final performance.
Moreover, the sparse features learnt using standout are also computationally efficient compared
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error rate
RBM + FT 1.24%
DAE + FT 1.3%
shallow dropout AE + FT 1.10%
deep dropout AE + FT 0.89%
standout shallow AE + FT 1.06%
standout deep AE + FT 0.80%

(a) MNIST fine-tuned

error rate
DBN [15] 8.3%
DBM [15] 7.2%
third order RBM [12] 6.5%
dropout shallow AE + FT 7.5%
dropout deep AE + FT 7.0%
standout shallow AE + FT 6.2%
standout deep AE + FT 5.8%

(b) NORB fine-tuned
Figure 6: Performance of fine-tuned classifiers, where FT is fine-tuning

to more sophisticated encoding algorithms, e.g., [5]. To find the code for data points with more
than 4000 dimensions and 4000 dictionary elements, the sparse coding algorithm quickly becomes
impractical.

Surprisingly, a shallow network with standout regularization (table 4(b)) outperforms some of the
much larger and deeper networks shown. Some of those deeper models have three or four times
more parameters than the shallow network we trained here. This particular result show that a simpler
model trained using our regularization technique can achieve higher performance compared to other,
more complicated methods.

5.7 Discriminative learning
In deep learning, a common practice is to use the encoder weights learnt by an unsupervised learning
method to initialize the early layers of a multilayer discriminative model. The backpropagation
algorithm is then used to learn the weights for the last hidden layer and also fine tune the weights
in the layers before. This procedure is often referred to as discriminative fine tuning. We initialized
neural networks using the models described above. The regularization method that we used for
unsupervised learning (RBM, dropout, standout) is also used for corresponding discriminative fine
tuning. For example, if a neural network is initialized using an auto-encoder trained with standout,
the neural network will also be fine tuned using standout for all its hidden units, with the same
standout function and hyper-parameters as the auto-encoder.

During discriminative fine tuning, we hold the weights fixed for all layers except the last one for the
first 10 epochs, and then the weights are updated jointly after that. As found by previous authors,
we find that classification performance is usually improved by the use of discriminative fine tuning.

Impressively, we found that a two-hidden-layer neural network with 1000 ReLU units in its first
and second hidden layers trained with standout is able to achieve 80 errors on MNIST data after
fine tuning (error rate of 0.80%). This performance is better than the current best non-convolutional
result [8] and the training procedure is simpler. On NORB dataset, we similarly achieved 6.2%
error rate by fine tuning the simple shallow auto-encoder from table(4(b)). Furthermore, a two-
hidden-layer neural network with 4000 ReLU units in both hidden layers that is pre-trained using
standout achieved 5.8% error rate after fine tuning. It is worth mentioning that a small weight decay
of 0.0005 is applied to this network during fine-tuning to further prevent overfitting. It outperforms
other models that do not exploit spatial structure. As far as we know, this result is better than
any previously published results without distortion or jitter. It even outperforms carefully designed
convolutional neural networks found in [9].

Figure 6 reports the classification accuracy obtained by different models, including state-of-the-art
deep networks.

6 Conclusions
Our results demonstrate that the proposed use of standout networks can significantly improve per-
formance of feature-learning methods. Further, our results provide additional support for the ‘reg-
ularization by noise’ hypothesis that has been used to regularize other deep architectures, including
RBMs and denoising auto-encoders, and in dropout.

An obvious missing piece in this research is a good theoretical understanding of why the standout
network provides better regularization compared to the fixed dropout probability of 0.5. While we
have motivated our approach as one of approximating the Bayesian posterior, further theoretical
justifications are needed.
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