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Abstract

In this paper, we propose a new computationally efficient framework for learn-
ing sparse models. We formulate a unified approach that contains as particular
cases models promoting sparse synthesis and analysis type of priors, and mixtures
thereof. The supervised training of the proposed model is formulated as a bilevel
optimization problem, in which the operators are optimized to achieve the best
possible performance on a specific task, e.g., reconstruction or classification. By
restricting the operators to be shift invariant, our approach can be thought as a
way of learning sparsity-promoting convolutional operators. Leveraging recent
ideas on fast trainable regressors designed to approximate exact sparse codes, we
propose a way of constructing feed-forward networks capable of approximating
the learned models at a fraction of the computational cost of exact solvers. In the
shift-invariant case, this leads to a principled way of constructing a form of task-
specific convolutional networks. We illustrate the proposed models on several
experiments in music analysis and image processing applications.

1 Introduction

Parsimony, preferring a simple explanation to a more complex one, is probably one of the most in-
tuitive principles widely adopted in the modeling of nature. The past two decades of research have
shown the power of parsimonious representation in a vast variety of applications from diverse do-
mains of science. Parsimony in the form of sparsity has been shown particularly useful in the fields
of signal and image processing and machine learning. Sparse models impose sparsity-promoting
priors on the signal, which can be roughly categorized as synthesis or analysis. Synthesis priors are
generative, asserting that the signal is approximated well as a superposition of a small number of
vectors from a (possibly redundant) synthesis dictionary. Analysis priors, on the other hand, assume
that the signal admits a sparse projection onto an analysis dictionary. Many classes of signals, in
particular, speech, music, and natural images, have been shown to be sparsely representable in over-
complete wavelet and Gabor frames, which have been successfully adopted as synthesis dictionaries
in numerous applications [14]. Analysis priors involving differential operators, of which total vari-
ation is a popular instance, have also been shown very successful in regularizing ill-posed image
restoration problems [19].
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Despite the spectacular success of these axiomatically constructed synthesis and analysis operators,
significant empirical evidence suggests that better performance is achieved when a data- or problem-
specific dictionary is used instead of a predefined one. Works [1, 16], followed by many others,
demonstrated that synthesis dictionaries can be constructed to best represent training data by solving
essentially a matrix factorization problem. Despite the lack of convexity, many efficient dictionary
learning procedures have been proposed.

This unsupervised or data-driven approach to synthesis dictionary learning is well-suited for recon-
struction tasks such as image restoration. For example, synthesis models with learned dictionaries,
have achieved excellent results in denoising [9, 13]. However, in discriminative tasks such as classi-
fication, good data reconstruction is not necessarily required or even desirable. Attempts to replicate
the success of sparse models in discriminative tasks led to the recent interest in supervised or a
task- rather than data-driven dictionary learning, which appeared to be a significantly more difficult
modeling and computational problem compared to its unsupervised counterpart [6].

Supervised learning also seems to be the only practical option for learning unstructured non-
generative analysis operators, for which no simple unsupervised alternatives exist. While the su-
pervised analysis operator learning has been mainly used as regularization on inverse problems,
e.g., denoising [5], we argue that it is often better suited for classification tasks than it synthesis
counterpart, since the feature learning and the reconstruction are separated. Recent works proposed
to address the supervised learning of `1 norm synthesis [12] and analysis [5, 17] priors via bilevel op-
timization [8], in which the minimization of a task-specific loss with respect to a dictionary depends
in turn on the minimizer of a representation pursuit problem using that dictionary.

For the synthesis case, the task-oriented bilevel optimization problem is smooth and can be effi-
ciently solved using stochastic gradient descent (SGD) [12]. However, [12] heavily relies on the
separability of the proximal operator of the `1 norm, and thus cannot be extended to the analysis
case, where the `1 term is not separable. The approach proposed in [17] formulates an analysis
model with a smoothed `1-type prior and uses implicit differentiation to obtain its gradients with re-
spect to the dictionary required for the solution of the bilevel problem. However, such approximate
priors are known to produce inferior results compared to their exact counterparts.
Main contributions. This paper focuses on supervised learning of synthesis and analysis priors,
making three main contributions:

First, we consider a more general sparse model encompassing analysis and synthesis priors as par-
ticular cases, and formulate its supervised learning as a bilevel optimization problem. We propose
a new analysis technique, for which the (almost everywhere) smoothness of the proposed bilevel
problem is shown, and its exact subgradients are derived. We also show that the model can be ex-
tended to include a sensing matrix and a non-Euclidean metric in the data term, both of which can
be learned as well. We relate the learning of the latter metric matrix to task-driven metric learning
techniques.

Second, we show a systematic way of constructing fast fixed-complexity approximations to the
solution of the proposed exact pursuit problem by unrolling few iterations of the exact iterative
solver into a feed-forward network, whose parameters are learned in the supervised regime. The
idea of deriving a fast approximation of sparse codes from an iterative algorithm has been recently
successfully advocated in [11] for the synthesis model. We present an extension of this line of
research to the various settings of analysis-flavored sparse models.

Third, we dedicate special attention to the shift-invariant particular case of our model. The fast
approximation in this case assumes the form of a convolutional neural network.

2 Analysis, synthesis, and mixed sparse models

We consider a generalization of the Lasso-type [21, 22] pursuit problem

min
y

1

2
‖M1x−M2y‖22 + λ1‖Ωy‖1 +

λ2

2
‖y‖22, (1)

where x ∈ Rn, y ∈ Rk, M1, M2 are m × n and m × k, respectively, Ω is r × k, and λ1, λ2 > 0
are parameters. Pursuit problem (1) encompasses many important particular cases that have been
extensively studied in the literature: By setting M1 = I, Ω = I, and M2 = D to be a column-
overcomplete dictionary (k > m), the standard sparse synthesis model is obtained, which attempts to
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input : Data x, matrices M1,M2,Ω, weights λ1, λ2, parameter ρ > 0.
output: Sparse code y.
Initialize µ0 = 0, z0 = 0
for j = 1, 2, . . . until convergence do

yj+1 = (MT
2 M2 + ρΩTΩ + λ2I)−1(MT

2 M1x + ρΩT(zj − µj))
zj+1 = σλ1

ρ
(Ωyj+1 + µj)

µj+1 = µj + Ωyj+1 − zj+1

end
Algorithm 1: Alternating direction method of multipliers (ADMM). Here, σt(z) = sign(z) ·
max{|z| − t, 0} denotes the element-wise soft thresholding (the proximal operator of `1).

represent the data vector x as a sparse linear combination of the atoms of D. The case where the data
are unavailable directly, but rather through a set of (usually fewer, m < n) linear measurements, is
handled by supplying x ∈ Rm and setting M2 = ΦD, with Φ being anm×n sensing matrix. Such
a case arises frequently in compressed sensing applications as well as in general inverse problems.

One the other hand, by setting M1,M2 = I, and Ω a row-overcomplete dictionary (r > k), the
standard sparse analysis model is obtained, which attempts to approximate the data vector x by
another vector y in the same space admitting a sparse projection on Ω. For example, by setting
Ω to be the matrix of discrete derivatives leads to total variation regularization, which has been
shown extremely successful in numerous signal processing applications. The analysis model can
also be extended by adding an m× k sensing operator M2 = Φ, assuming that x is given in the m-
dimensional measurement space. This leads to popular analysis formulations of image deblurring,
super-resolution, and other inverse problems.

Keeping both the analysis and the synthesis dictionaries and setting M2 = D, Ω = [Ω′D; I], leads
to the mixed model. Note that the reconstructed data vector is now obtained by x̂ = Dy with sparse
y; as a result, the `1 term is extended to make sparse the projection of x̂ on the analysis dictionary
Ω′, as well as impose sparsity of y. A sensing matrix can be incorporated in this setting as well,
by setting M1 = Φ and M2 = ΦD. Alternatively, we can interpret Φ as the projection matrix
parametrizing a ΦTΦ Mahalanobis metric, thus generalizing the traditional Euclidean data term.

A particularly important family of analysis operators is obtained when the operator is restricted to
be shift-invariant. In this case, the operator can be expressed as a convolution with a filter, γ ∗ y,
whose impulse response γ ∈ Rf is generally of a much smaller dimension than y. A straightforward
generalization would be to consider an analysis operator consisting of q filters,

Ω(γ1, . . . ,γq) =
[
Ω1(γ1); · · · ; Ωq(γq)

]
with Ωiy = γi ∗ y, 1 ≤ i ≤ q. (2)

This model includes as a particular case the isotropic total variation priors. In this case, q = 2 and
the filters correspond to the discrete horizontal and vertical derivatives. In general, the exact form of
the operator depends on the dimension of the convolution, and the type of boundary conditions.

On of the most attractive properties of pursuit problem (1) is convexity, which becomes strict for
λ2 > 0. While for Ω = I, (1) can be solved efficiently using the popular proximal methods [15]
(such as FISTA [2]), this is no more an option in the case of a non-trivial Ω, as ‖Ωy‖1 has no more
a closed-form proximal operator. A way to circumvent this difficulty is by introducing an auxiliary
variable z = Ωy and solving the constrained convex program

min
y,z

1

2
‖M1x−M2y‖22 + λ1‖z‖1 +

λ2

2
‖y‖22 s.t z = Ωy, (3)

with an unscaled `1 term. This leads to a family of the so-called split-Bregman methods; the ap-
plication of augmented Lagrangian techniques to solve (3) is known in the literature as alternating
direction method of multipliers (ADMM) [4], summarized in Algorithm 1. Particular instances
might be solved more efficiently with alternative algorithms (i.e. proximal splitting methods).

3 Bilevel sparse models

A central focus of this paper is to develop a framework for supervised learning of the parameters in
(1), collectively denoted by Θ = {M1,M2,D,Ω}, to achieve the best possible performance in a
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specific task such as reconstruction or classification. Supervised schemes arise very naturally when
dealing with analysis operators. In sharp contrast to the generative synthesis models, where data
reconstruction can be enforced unsupervisedly, there is no trivial way for unsupervised training of
analysis operators without restricting them to satisfy some external, frequently arbitrary, constraints.
Clearly, unconstrained minimization of (1) over Ω would lead to a trivial solution Ω = 0. The ideas
proposed in [12] fit very well here, and were in fact used in [5, 17] for learning of unstructured
analysis operators. However, in both cases the authors used a smoothed version of the `1 penalty,
which is known to produce inferior results. In this work we extend these ideas, without smoothing
the penalty. Formally, given an observed variable x ∈ Rn coming from a certain distribution PX ,
we aim at predicting a corresponding latent variable y ∈ Rk. The latter can be discrete, representing
a label in a classification task, or continuous like in regression or reconstruction problems. As noted
before, when λ2 > 0, problem (1) is strictly convex and, consequently, has a unique minimizer. The
solution of the pursuit problem defines, therefore, an unambiguous deterministic map from the space
of the observations to the space of the latent variables, which we denote by y∗Θ(x). The map depends
on the model parameters Θ. The goal of supervised learning is to select such Θ that minimize the
expectation over PX of some problem-specific loss function `. In practice, the distribution PX is
usually unknown, and the expected loss is substituted by an empirical loss computed on a training
set of pairs (x,y) ∈ (X ,Y). The task-driven model learning problem becomes [12]

min
Θ

1

|X |
∑

(x,y)∈(X ,Y)

`(y,x,y∗Θ(x)) + φ(Θ), (4)

where φ(Θ) denotes a regularizer on the model parameters added to stabilize the solution. Problem
(4) is a bilevel optimization problem [8], as we need to optimize the loss function `, which in turn
depends on the minimizer of (1).

As an example, let us examine the generic class of signal reconstruction problems, in which, as
explained in Section 2, the matrix M2 = Φ plays the role of a linear degradation (e.g., blur and sub-
sampling in case of image super-resolution problems), producing the degraded and, possibly, noisy
observation x = Φy+n from the latent clean signal y. The goal of the model learning problem is to
select the model parameters Θ yielding the most accurate inverse operator, y∗Θ(Φy) ≈ y. Assuming
a simple white Gaussian noise model, this can be achieved through the following loss

`(y,x,y∗) =
1

2
‖y − y∗‖22. (5)

While the supervised learning of analysis operator has been considered for solving denoising prob-
lems [5, 17], here we address more general scenarios. In particular, we argue that, when used along
with metric learning, it is often better suited for classification tasks than its synthesis counterpart,
because the non-generative nature of analysis models is more suitable for feature learning. For sim-
plicity, we consider the case of a linear binary classifier of the form sign(wTz + b) operating on
the “feature vector” z = Ωy∗Θ(x). Using a loss of the form `(y,x, z) = f(−y(wTz + b)), with
f being, e.g., the logistic regression function f(t) = log(1 + e−t), we train the model parame-
ters Θ simultaneously with the classifier parameters w, b. In this context, the learning of Θ can be
interpreted as feature learning.

The generalization to multi-class classification problems is straightforward, by using a matrix W
and a vector b instead of w and b. It is worthwhile noting that more stable classifiers are obtained
by adding a regularization of the form φ = ‖W‖2F to the learning problem (4).

Optimization. A local minimizer of the non-convex model learning problem (4) can be found via
stochastic optimization [8, 12, 17], by performing gradient descent steps on each of the variables in
Θ with the pair (x,y) each time drawn at random from the training set. Specifically, the parameters
at iteration i+ 1 are obtained by

Θi+1 ← Θi − ηi∇Θ`(x,y,y
∗
Θi(x)), (6)

where 0 ≤ ηi ≤ η is a decreasing sequence of step-sizes. Following [12], we use a step size of
the form ηi = min(η, ηi0/i) in all our experiments, which means that a fixed step size is used
during the first k0 iterations, after which it decays according to the 1/i annealing strategy. Note
that the learning requires the gradient ∇Θ`, which in turn relies on the gradient of y∗Θ(x) with re-
spect to Θ. Even though y∗Θ(x) is obtained by solving a non-smooth optimization problem, we will

4



show that it is almost everywhere differentiable, and one can compute its gradient with respect to
Θ = {M1,M2,D,Ω} explicitly and in closed form. In the next section, we briefly summarize the
derivation of the gradients for ∇M2

` and ∇Ω`, as these two are the most interesting cases. The
gradients needed for the remaining model settings described in Section 2 can be obtained straight-
forwardly from∇M2

` and ∇Ω`.

Gradient computation. To obtain the gradients of the cost function with respect to the matrices
M2 and Ω, we consider a version of (3) in which the equality constrained is relaxed by a penalty,

min
z,y

1

2
‖M1x−M2y‖22 +

t

2
‖Ωy − z‖22 + λ1‖z‖1 +

λ2

2
‖y‖22, (7)

with t > 0 being the penalty parameter. We denote by y∗t and z∗t the unique minimizers of this
strongly convex optimization problem with t, x, M1, M2 and Ω fixed. Naturally, y∗t and z∗t are
functions of x and Θ, the same way as y∗Θ(x). Throughout this section, we will omit this dependence
to simplify notation. The first-order optimality conditions of (8) lead to the equalities

MT
2 (M2y

∗
t −M1x) + tΩT(Ωy∗t − z∗t ) + λ2y

∗
t = 0, (8)

t(z∗t −Ωy∗t ) + λ1(sign(z∗t ) + α) = 0, (9)
where the sign of zero is defined as zero and α is a vector in Rr such that αΛ = 0 and |αΛc | ≤ 1.
Here, αΛ denotes the sub-vector of α whose rows are reduced to Λ, the set of non-zero coefficients
(active set) of z∗t .

It has been shown that the solution of the synthesis [12], analysis [23], and generalized Lasso [22]
regularization problems are all piecewise affine functions of the observations and the regularization
parameter. This means that the active set of the solution is constant on intervals of the regularization
parameter λ1. Moreover, the number of transition points (values of λ1 that for a given observation
x the active set of the solution changes) is finite and thus negligible. It can be shown that if λ1

is not a transition point of x, then a small perturbation in Ω, M1, or M2 leaves Λ and the sign
of the coefficients in the solution unchanged [12]. Applying this result to (8), we can state that
sign(z∗t ) = sign(Ωy∗t ).

Let IΛ be the projection onto Λ, and let PΛ = IT
ΛIΛ = diag{|sign(z∗)|} denote the matrix setting

to zero the rows corresponding to Λc. Multiplying the second optimality condition by PΛ, we have
z∗t = PΛz∗t = PΛΩy∗t − λ1

t sign(z∗t ), where we used the fact that PΛsign(z∗t ) = sign(z∗t ). We can
plug the latter result into (9), obtaining

y∗t = Qt(M
T
2 M1x− λ1Ω

Tsign(z∗t )), (10)

where Qt = (tΩTPΛcΩ + B)−1 and B = MT
2 M2 + λ2I. By using the first-order Taylor’s

expansion of (11), we can obtain an expression for the gradients of `(y∗t ) with respect to M2 and Ω,

∇Ω`(y
∗
t ) = −λ1sign(z∗t )β

T −PΛcΩ(ty∗tβ
T
t + tβty

∗
t

T), (11)

∇M2
`(y∗t ) = M2(y∗tβ

T
t + βty

∗
t

T), (12)
where βt = Qt∇y∗`(y∗t ).

Note that since the (unique) solution of (8) can be made arbitrarily close to the (unique) solution of
(1) by increasing t, we can obtain the exact gradients of y∗ by taking the limit t→∞ in the above
expressions. First, observe that

Qt = (tΩTPΛcΩ + B)−1 = (B(tB−1ΩTPΛcΩ + I))−1 = (tC + I)−1B−1,

where C = B−1ΩTPΛcΩ. Note that B is invertible if M2 is full-rank or if λ2 > 0. Let C =
UHU−1 be the eigen-decomposition of C, with H a diagonal matrix with the elements hi, 1 ≤ i ≤
n. Then, Qt = UHtU

−1B−1, where Ht is diagonal with 1/(thi + 1) on the diagonal. In the limit,
thi → 0 if hi = 0, and thi →∞ otherwise, yielding

Q = lim
t→∞

Qt = UH′U−1B−1 with H′ = diag{h′i}, h′i =

{
0 : hi 6= 0,
1 : hi = 0.

(13)

The optimum of (1) is given by y∗ = Q(MT
2 M1x − λ1Ω

Tsign(z∗)). Analogously, we take the
limit in the expressions describing the gradients in (12) and (13). We summarize our main result in
Proposition 1 below, for which we define

Q̃ = lim
t→∞

tQt = UH′′U−1B−1 with H′′ = diag{h′′i }, h′′i =

{
1
hi

: hi 6= 0,
0 : hi = 0.

(14)
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Figure 1: ADMM neural network encoder. The network comprises K identical layers parameterized by
the matrices A and B and the threshold vector t, and one output layer parameterized by the matrices U
and V. The initial values of the learned parameters are given by ADMM (see Algorithm 1) according to
U = (MT

2 M2+ρΩ
TΩ+λ2I)

−1MT
2 M1, V = ρ(MT

2 M2+ρΩ
TΩ+λ2I)

−1ΩT, A = ΩU, H = 2ΩV−I ,
G = 2I − ΩV, F = ΩV − I , and t = λ1

ρ
1.

Proposition 1. The functional y∗ = y∗Θ(x) in (1) is almost everywhere differentiable for λ2 > 0,
and its gradients satisfy

∇Ω`(y
∗) = −λ1sign(Ωy∗)βT −PΛcΩ(ỹ∗βT + β̃y∗T),

∇M1
`(y∗) = M2(y∗βT + βy∗T),

where the vectors β, β̃ and ỹ in Rk are defined as β = Q∇y∗`(x,Θ), β̃ = Q̃∇y∗`(x,Θ), and
ỹ∗ = Q̃(MT

2 M1x− λ1Ω
Tsign(z∗)), with Q and Q̃ given by (14) and (15) respectively.

In addition to being a useful analytic tool, the relationship between (1) and its relaxed version (8)
also has practical implications. Obtaining the exact gradients given in Proposition 1 requires com-
puting the eigendecomposition of C, which is in general computationally expensive. In practice,
we approximate the gradients using the expressions in (12) and (13) with a fixed sufficiently large
value of t. The supervised model learning framework can be straightforwardly specialized to the
shift-invariant case, in which filters γi in (2) are learned instead of a full matrix Ω. The gradients of
` with respect to the filter coefficients are obtained using Proposition 1 and the chain rule.

4 Fast approximation

The discussed sparse models rely on an iterative optimization scheme such as ADMM, required to
solve the pursuit problem (1). This has relatively high computational complexity and latency, which
is furthermore data-dependent. ADMM typically requires hundreds or thousands of iterations to
converge, greatly depending on the problem and the input. While the classical optimization the-
ory provides worst-case (data-independent) convergence rate bounds for many families of iterative
algorithms, very little is known about their behavior on specific data, coming, e.g., from a distri-
bution supported on a low-dimensional manifold – characteristics often exhibited by real data. The
common practice of sparse modeling concentrates on creating sophisticated data models, and then
relies on computational and analytic techniques that are totally agnostic of the data structure. Such
a discrepancy hides a (possibly dramatic) potential of computational improvement [11].

From the perspective of the pursuit process, the minimization of (1) is merely a proxy to obtaining
a highly non-linear map between the data vector x and the representation vector y (which can also
be the “feature” vector ΩDy or the reconstructed data vector Dy, depending on the application).
Adopting ADMM, such a map can be expressed by unrolling a sufficient numberK of iterations into
a feed-forward network comprising K (identical) layers depicted in Figure 1, where the parameters
A,B,U,V, and t, collectively denoted as Ψ, are prescribed by the ADMM iteration. Fixing K, we
obtain a fixed-complexity and latency encoder ŷK,Ψ(x), parameterized by Ψ.

Note that for a sufficiently large K, ŷK,Ψ(x) ≈ y∗(x), with the latter denoting the exact minimizer
of (1) given the input x. However, when complexity budget constraints require K to be truncated
at a small fixed number, the output of ŷK,Ψ is usually unsatisfactory, and the worst-case analysis
provided by the classical optimization theory is of little use. However, within the family of functions
{ŷK,Ψ : Ψ}, there might exist better parameters for which ŷ performs better on relevant input data.
Such parameters can be obtained via learning, as described in the sequel.

Similar ideas were first advocated by [11], who considered Lasso sparse synthesis models, and
showed that by unrolling iterative shrinkage thresholding algorithms (ISTA) into a neural network,
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and learning a new set of parameters, approximate solutions to the pursuit problem could be obtained
at a fraction of the cost of the exact solution, if the inputs were restricted to data coming from a
distribution similar to that used at training. This approach was later extended to more elaborated
structured sparse and low-rank models, with applications in audio separation and denoising [20].
Here is the first attempt to extend it to sparse analysis and mixed analysis-synthesis models.

The learning of the fast encoder is performed by plugging it into the training problem (4) in place
of the exact encoder. The minimization of a loss function `(Ψ) with respect to Ψ requires the
computation of the (sub)gradients d`(y)/dΨ, which is achieved by the back-propagation procedure
(essentially, an iterated application of the chain rule). Back-propagation starts with differentiating
`(Ψ) with respect to the output of the last network layer, and propagating the (sub)gradients down to
the input layer, multiplying them by the Jacobian matrices of the traversed layers. For completeness,
we summarize the procedure in the supplementary materials. There is no principled way of choosing
the number of layers K and in practice this is done via cross-validation. In Section 5 we discuss the
selection of K for a particular example.

In the particular setting of a shift-invariant analysis model, the described neural network encoder
assumes a structure resembling that of a convolutional network. The matrices A,B,U, and V
parameterizing the network in Figure 1 are replaced by a set of filter coefficients. The initial inverse
kernels of the form (ρΩTΩ+(1+λ2)I)−1 prescribed by ADMM are approximated by finite-support
filters, which are computed using a standard least squares procedure.

5 Experimental results and discussion

In what follows, we illustrate the proposed approaches on two experiments: single-image super-
resolution (demonstrating a reconstruction problem), and polyphonic music transcription (demon-
strating a classification problem). Additional figures are provided in the supplementary materials.

Single-image super-resolution. Single-image super-resolution is an inverse problem in which
a high-resolution image is reconstructed from its blurred and down-sampled version lacking the
high-frequency details. Low-resolution images were created by blurring the original ones with an
anti-aliasing filter, followed by down-sampling operator. In [25], it has been demonstrated that pre-
filtering a high resolution image with a Gaussian kernel with σ = 0.8s guarantees that the following
s × s sub-sampling generates an almost aliasing-free low resolution image. This models very well
practical image decimation schemes, since allowing a certain amount of aliasing improves the visual
perception. Super-resolution consists in inverting both the blurring and sub-sampling together as a
compound operator. Since the amount of aliasing is limited, a bi-cubic spline interpolation is more
accurate than lower ordered interpolations for restoring the images to their original size. As shown
in [26], up-sampling the low resolution image in this way, produces an image that is very close
to the pre-filtered high resolution counterpart. Then, the problem reduces to deconvolution with a
Gaussian kernel. In all our experiments we used the scaling factor s = 2. A shift-invariant analysis
model was tested in three configurations: a TV prior created using horizontal and vertical derivative
filters; a bank of 48 7× 7 non-constant DCT filters (referred to henceforth as A-DCT); and a combi-
nation of the former two settings tuned using the proposed supervised scheme with the loss function
(5). The training set consisted of random image patches from [24]. We also tested a convolutional
neural network approximation of the third model, trained under similar conditions. Pursuit problem
was solved using ADMM with ρ = 1, requiring about 100 iterations to converge. Table 1 reports
the obtained PSNR results on seven standard images used in super-resolution experiments. Visual
results are shown in the supplementary materials. We observe that on the average, the supervised
model outperforms A-DCT and TV by 1 − 3 dB PSNR. While performing slightly inferior to the
exact supervised model, the neural network approximation is about ten times faster.

Automatic polyphonic music transcription. The goal of automatic music transcription is to ob-
tain a musical score from an input audio signal. This task is particularly difficult when the audio
signal is polyphonic, i.e., contains multiple pitches present simultaneously. Like the majority of mu-
sic and speech analysis techniques, music transcription typically operates on the magnitude of the
audio time-frequency representation such as the short-time Fourier transform or constant-Q trans-
form (CQT) [7] (adopted here). Given a spectral frame x at some time, the transcription problem
consists of producing a binary label vector p ∈ {−1,+1}k, whose i-th element indicates the pres-
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method mean ±std. dev. man woman barbara boats lena house peppers
Bicubic 29.51± 4.39 28.52 38.22 24.02 27.38 30.77 29.75 27.95
TV 29.04± 3.51 30.23 33.39 24.25 29.44 31.75 29.91 24.31
A-DCT 31.06± 4.84 29.85 40.23 24.32 28.89 32.72 31.68 29.71
SI-ADMM 32.03± 4.84 31.05 40.62 24.55 30.06 34.06 32.91 30.93
SI-NN (K = 10) 31.53± 5.03 30.42 40.99 24.53 29.12 33.58 31.82 30.21

Table 1: PSNR in dB of different image super-resolution methods: bicubic interpolation (Bicubic), shift-
invariant analysis models with TV and DCT priors (TV and A-DCT), supervised shift-invariant analysis model
(SI-ADMM), and its fast approximation with K = 10 layers (SI-NN).
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Figure 2: Left: Accuracy of the proposed analysis model (Analysis-ADMM) and its fast approximation
(Analysis-NN) as the function of number of iterations or layers K. For reference, the accuracy of a non-
negative synthesis model as well as two leading methods [3, 18] is shown. Right: Precision-recall curve.

ence (+1) or absence (−1) of the i-th pitch at that time. We use k = 88 corresponding to the span
of the standard piano keyboard (MIDI pitches 21− 108).

We used an analysis model with a square dictionary Ω and a square metric matrix M1 = M2 to
produce the feature vector z = Ωy, which was then fed to a classifier of the form p = sign(Wz+b).
The parameters Ω, M2, W, and b were trained using the logistic loss on the MAPS Disklavier
dataset [10] containing examples of polyphonic piano recordings with time-aligned groundtruth.
The testing was performed on another annotated real piano dataset from [18]. Transcription was
performed frame-by-frame, and the output of the classifier was temporally filtered using a hidden
Markov model proposed in [3]. For comparison, we show the performance of a supervised non-
negative synthesis model and two leading methods [3, 18] evaluated in the same settings.

Performance was measured using the standard precision-recall curve depicted in Figure 2 (right);
in addition we used accuracy measure Acc = TP/(FP + FN + TP), where TP (true positives)
is the number of correctly predicted pitches, and FP (false positives) and FN (false negatives) are
the number of pitches incorrectly transcribed as ON or OFF, respectively. This measure is frequently
used in the music analysis literature [3, 18]. The supervised analysis model outperforms leading
pitch transcription methods. Figure 2 (left) shows that replacing the exact ADMM solver by a fast
approximation described in Section 4 achieves comparable performance, with significantly lower
complexity. In this example, ten layers are enough for having a good representation and the im-
provement obtained by adding layers begins to be very marginal around this point.

Conclusion. We presented a bilevel optimization framework for the supervised learning of a super-
set of sparse analysis and synthesis models. We also showed that in applications requiring low
complexity or latency, a fast approximation to the exact solution of the pursuit problem can be
achieved by a feed-forward architecture derived from truncated ADMM. The obtained fast regressor
can be initialized with the model parameters trained through the supervised bilevel framework, and
tuned similarly to the training and adaptation of neural networks. We observed that the structure
of the network becomes essentially a convolutional network in the case of shift-invariant models.
The generative setting of the proposed approaches was demonstrated on an image restoration exper-
iment, while the discriminative setting was tested in a polyphonic piano transcription experiment.
In the former we obtained a very good and fast solution while in the latter the results comparable or
superior to the state-of-the-art.
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