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Abstract

We consider the problem of sampling from a probability distribution defined over
a high-dimensional discrete set, specified for instance by agraphical model. We
propose a sampling algorithm, called PAWS, based on embedding the set into
a higher-dimensional space which is then randomly projected using universal
hash functions to a lower-dimensional subspace and explored using combinatorial
search methods. Our scheme can leverage fast combinatorialoptimization tools
as a blackbox and, unlike MCMC methods, samples produced areguaranteed to
be within an (arbitrarily small) constant factor of the trueprobability distribution.
We demonstrate that by using state-of-the-art combinatorial search tools, PAWS
can efficiently sample from Ising grids with strong interactions and from software
verification instances, while MCMC and variational methodsfail in both cases.

1 Introduction

Sampling techniques are one of the most widely used approaches to approximate probabilistic rea-
soning for high-dimensional probability distributions where exact inference is intractable. In fact,
many statistics of interest can be estimated from sample averages based on a sufficiently large num-
ber of samples. Since this can be used to approximate #P-complete inference problems, sampling is
also believed to be computationally hard in the worst case [1, 2].

Sampling from a succinctly specified combinatorial space isbelieved to much harder thansearching
the space. Intuitively, not only do we need to be able to find areas of interest (e.g., modes of the
underlying distribution) but also to balance their relative importance. Typically, this is achieved
using Markov Chain Monte Carlo (MCMC) methods. MCMC techniques are a specialized form
of local searchthat only allows moves that maintain detailed balance, thusguaranteeing the right
occupation probability once the chain hasmixed. However, in the context of hard combinatorial
spaces with complex internal structure, mixing times are often exponential. An alternative is to
use complete or systematic search techniques such as Branchand Bound for integer programming,
DPLL for SATisfiability testing, and constraint and answer-set programming (CP & ASP), which
are preferred in many application areas, and have witnesseda tremendous success in the past few
decades. It is therefore a natural question whether one can construct sampling techniques based on
these more powerfulcomplete search methodsrather than local search.

Prior work in cryptography by Bellare et al. [3] showed that it is possible to uniformly sample
witnesses of an NP language leveraging universal hash functions and using only a small number
of queries to an NP-oracle. This is significant because samples can be used to approximate #P-
complete (counting) problems [2], a complexity class believed to be much harder than NP. Practical
algorithms based on these ideas were later developed [4–6] to near-uniformly sample solutions of
propositional SATisfiability instances, using a SAT solveras an NP-oracle. However, unlike SAT,
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most models used in Machine Learning, physics, and statistics areweighted(represented, e.g., as
graphical models) and cannot be handled using these techniques.

We fill this gap by extending this approach, based on hashing-based projections and NP-oracle
queries, to the weighted sampling case. Our algorithm, called PAWS, uses a form of approximation
by quantization [7] and an embedding technique inspired by slice sampling [8], before applying
projections. This parallels recent work [9] that extended similar ideas for unweighted counting to
the weighted counting world, addressing the problem of discrete integration. Although in theory
one could use that technique to produce samples by estimating ratios of discrete integrals [1, 2],
the general sampling-by-counting reduction requires a large number of such estimates (proportional
to the number of variables) for each sample. Further, the accuracy guarantees on the sampling
probability quickly become loose when taking ratios of estimates. In contrast, PAWS is a more
direct and practical sampling approach, providing better accuracy guarantees while requiring a much
smaller number of NP-oracle queries per sample.

Answering NP-oracle queries, of course, requires exponential time in the worst case, in accordance
with the hardness of sampling. We rely on the fact that combinatorial search tools, however, are
often extremely fast in practice, and any complete solver can be used as a black box in our sampling
scheme. Another key advantage is that when combinatorial search succeeds, our analysis provides a
certificate that, with high probability, any samples produced will be distributed within an (arbitrarily
small) constant factor of the desired probability distribution. In contrast, with MCMC methods it
is generally hard to assess whether the chain has mixed. We empirically demonstrate that PAWS
outperforms MCMC as well as variational methods on hard synthetic Ising Models and on a real-
world test case generation problem for software verification.

2 Setup and Problem Definition

We are given a probability distributionp over a (high-dimensional) discrete setX , where the proba-
bility of each itemx ∈ X is proportional to a weight functionw : X → R

+, with R
+ being the set

of non-negative real numbers. Specifically, givenx ∈ X , its probabilityp(x) is given by

p(x) =
w(x)

Z
, Z =

∑

x∈X

w(x)

whereZ is a normalization constant known as thepartition function. We assumew is specified
compactly, e.g., as the product of factors or in a conjunctive normal form. As our driving example,
we consider the case of undirected discrete graphical models [10] with n = |V | random variables
{xi, i ∈ V } where eachxi takes values in a finite setXi. We consider a factor graph representation
for a joint probability distribution over elements (orconfigurations) x ∈ X = X1 × · · · × Xn:

p(x) =
w(x)

Z
=

1

Z

∏

α∈I

ψα({x}α). (1)

This is a compact representation forp(x) based on the weight functionw(x) =
∏

α∈I ψα({x}α),
defined as the product of potentials or factorsψα : {x}α 7→ R

+, whereI is an index set and
{x}α ⊆ V the subset of variables factorψα depends on. For simplicity of exposition, without loss
of generality, we will focus on the case of binary variables,whereX = {0, 1}n.

We consider the fundamental problem of (approximately)sampling from p(x), i.e., designing a
randomized algorithm that takesw as input and outputs elementsx ∈ X according to the probability
distributionp. This is a hard computational problem in the worst case. In fact, it is more general
than NP-complete decision problems (e.g., sampling solutions of a SATisfiability instance specified
as a factor graph entails finding at least one solution, or deciding there is none). Further, samples
can be used to approximate #P-complete problems [2], such asestimating a marginal probability.

3 Sampling by Embed, Project, and Search

Conceptually, our sampling strategy has three steps, described in Sections 3.1, 3.2, and 3.3, resp.
(1) From the input distributionp we construct a new distributionp′ that is “close” top but more
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discrete. Specifically,p′ is based on a new weight functionw′ that takes values only in a discrete
set of geometrically increasing weights. (2) Fromp′, we define auniform probability distribution
p′′ over a carefully constructed higher-dimensionalembedding of X = {0, 1}n. The previous
discretization step allows us to specifyp′′ in a compact form, and sampling fromp′′ can be seen
to be precisely equivalent to sampling fromp′. (3) Finally, we indirectly sample from the desired
distributionp by sampling uniformly from p′′, by randomly projecting the embedding onto a lower-
dimensional subspace using universal hash functions and then searching for feasible states.

The first and third steps involve a bounded loss of accuracy, which we can trade off with computa-
tional efficiency by setting hyper-parameters of the algorithm. A key advantage is thatour technique
reduces the weighted sampling problem to that of solving oneMAP query (i.e., finding the most likely
state) and a polynomial number of feasibility queries (i.e., finding any state with non-zero probabil-
ity) for the original graphical model augmented (through an embedding) with additional variables
and carefully constructed factors. In practice, we use a combinatorial optimization package, which
requires exponential time in the worst case (consistent with the hardness of sampling) but is often fast
in practice. Our analysis shows that whenever the underlying combinatorial search and optimization
queries succeed, the samples produced areguaranteed, with high probability, to be coming from an
approximately accurate distribution.

3.1 Weight Discretization

We use a geometric discretization of the weights into “buckets”, i.e., a uniform discretization of the
log-probability. As we will see,Θ(n) buckets are sufficient to preserve accuracy.
Definition 1. Let M = maxx w(x), r > 1, ǫ > 0, andℓ = ⌈logr(2n/ǫ)⌉. Partition the con-
figurations into the following weight based disjointbuckets: Bi = {x | w(x) ∈

(

M
ri+1 ,

M
ri

]

}, i =
0, . . . , ℓ− 1 andBℓ = {x | w(x) ∈ [0, M

rℓ
]}. Thediscretized weight functionw′ : {0, 1}n → R

+ is
defined as follows:w′(x) = M

ri+1 if x ∈ Bi for i < ℓ andw′(x) = 0 if x ∈ Bℓ. The corresponding
discretized probability distributionp′(x) = w′(x)/Z ′ whereZ ′ is the normalization constant.

Lemma 1. Letρ = r2/(1− ǫ). For all x ∈ ∪l−1
i=0Bℓ, p(x) andp′(x) are within a factor ofρ of each

other. Furthermore,
∑

x∈Bℓ
p(x) ≤ ǫ.

Proof. Sincew maps to non-negative values, we haveZ ≥M . Further,
∑

x∈Bℓ

p(x) =
1

Z

∑

x∈Bℓ

w(x) ≤ 1

Z
|Bℓ|

M

rℓ
=

|Bℓ|
2n

ǫM

Z
≤ ǫM

Z
≤ ǫ.

This proves the second part of the claim. For the first part, note that by construction,Z ′ ≤ Z and

Z ′ =
ℓ
∑

i=0

∑

x∈Bi

w′(x) ≥
ℓ−1
∑

i=0

∑

x∈Bi

1

r
w(x) =

1

r

(

Z −
∑

x∈Bℓ

w(x)

)

≥ (1− ǫ)Z.

ThusZ andZ ′ are within a factor ofr/(1−ǫ) of each other. For allx such thatw(x) /∈ Bn, recalling
thatr > 1 > 1− ǫ and thatw(x)/r ≤ w′(x) ≤ rw(x), we have

1

ρ
p(x) ≤ w(x)

rZ
≤ w(x)

rZ ′
≤ w′(x)

Z ′
= p′(x) =

w′(x)

Z ′
≤ rw(x)

Z ′
≤ r2

1− ǫ

w(x)

Z
= ρp(x).

This finishes the proof thatp(x) andp′(x) are within a factor ofρ of each other.

Remark 1. If the weightsw defined by the original graphical model are represented in finite preci-
sion (e.g., there are264 possible weights in double precision floating point), for every b ≥ 1 there
is a possibly large butfinite value ofℓ (such thatM/rℓ is smaller than the smallest representable
weight) such thatBℓ is empty and the discretization errorǫ is effectively zero.

3.2 Embed: From Weighted to Uniform Sampling

We now show how to reduce the problem of sampling from the discrete distributionp′ (weighted
sampling) to the problem of uniformly sampling, without loss of accuracy, from a higher-
dimensional discrete set into whichX = {0, 1}n is embedded. This is inspired by slice sampling [8],
and can be intuitively understood as itsdiscretecounterpart where we uniformly sample points(x, y)
from a discrete representation of the area under the (y vs.x) probability density function ofp′ .
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Definition 2. Let w : X → R
+,M = maxx w(x), andr = 2b/(2b − 1). Then the embedding

S(w, ℓ, b) of X in X × {0, 1}(ℓ−1)b is defined as:

S(w, ℓ, b) =
{

(

x, y11 , y
2
1 , . . . , y

b−1
ℓ−1 , y

b
ℓ−1

)

∣

∣

∣
w(x) ≤ M

ri
⇒

b
∨

k=1

yki , 1 ≤ i ≤ ℓ− 1;w(x) >
M

rℓ

}

.

where
∨b

k=1 y
k
i may alternatively be thought of as the linear constraint

∑b
k=1 y

k
i ≥ 1. Further, let

p′′ denote a uniform probability distribution overS(w, ℓ, b) andn′ = n+ (ℓ− 1)b.

Given a compact representation ofw within a combinatorial search or optimization framework, the
setS(w, ℓ, b) can often be easily encoded using the disjunctive constraints on they variables.

Lemma 2. Let (x, y) = (x, y11 , y
2
1 , · · · , yb1, y12 , · · · , yb2, · · · , y1ℓ−1 · · · , ybℓ−1) be a sample fromp′′,

i.e., a uniformly sampled element fromS(w, ℓ, b). Thenx is distributed according top′.

Informally, givenx ∈ Bi andx′ ∈ Bi+1 with i + 1 ≤ l − 1, there are preciselyr = 2b/(2b − 1)
times more valid configurations(x, y) than(x′, y′). Thusx is sampledr times more often thanx′.
A formal proof may be found in the Appendix.

3.3 Project and Search: Uniform Sampling with Hash Functions and an NP-oracle

In principle, using the technique of Bellare et al. [3] andn′-wise independent hash functions we can
sample purelyuniformlyfrom S(w, ℓ, b) using an NP oracle to answer feasibility queries. However,
such hash functions involve constructions that are difficult to implement and reason about in exist-
ing combinatorial search methods. Instead, we use a more practical algorithm based on pairwise
independent hash functions that can be implemented usingparity constraints(modular arithmetic)
and still provides accuracy guarantees. The approach is similar to [5], but we include an algorithmic
way to estimate the number of parity constraints to be used. We also use the pivot technique from
[6] but extend that work in two ways: we introduce a parameterα (similar to [5]) that allows us to
trade off uniformity against runtime and also provideupper boundson the sampling probabilities.

We refer to our algorithm as PArity-basedWeightedSampler (PAWS) and provide its pseudocode as
Algorithm 1. The idea is toprojectby randomly constraining the configuration space using a family
of universal hash functions,searchfor up toP “surviving” configurations, and then, if fewer thanP
survive, perform rejection sampling to choose one of them. The numberk of constraints or factors
(encoding a randomly chosen hash function) to add is determined first; this is where we depart from
both Gomes et al. [5], who do not provide a way to computek, and Chakraborty et al. [6], who do
not fix k or provide upper bounds. Then we repeatedly addk such constraints, check whether fewer
thanP configurations survive, and if so output one configuration chosen using rejection sampling.
Intuitively, we need the hashed space to contain no more thanP solutions because that is a base case
where we know how to produce uniform samples via enumeration. k is a guess (accurate with high
probability) of the number of constraints that is likely to reduce (by hashing) the original problem
to a situation where enumeration is feasible. If too many or too few configurations survive, the
algorithm fails and is run again. The small failure probability, accounting for a potentially poor
choice of random hash functions, can be bounded irrespective of the underlying graphical model.

A combinatorialoptimizationprocedure is used once in order to determine the maximum weight
M through MAP inference.M is used in the discretization step. Subsequently, severalfeasibility
queriesare issued to the underlying combinatorial search procedure in order to, e.g., count the
number of surviving configurations and produce one as a sample.

We briefly review the construction and properties of universal hash functions [11, 12].

Definition 3. H = {h : {0, 1}n → {0, 1}m} is a family of pairwise independent hash functions
if the following two conditions hold when a functionH is chosen uniformly at random fromH: 1)
∀x ∈ {0, 1}n, the random variableH(x) is uniformly distributed in{0, 1}m; 2) ∀x1, x2 ∈ {0, 1}n
x1 6= x2, the random variablesH(x1) andH(x2) are independent.

Proposition 1. LetA ∈ {0, 1}m×n, c ∈ {0, 1}m. The familyH = {hA,c(x) : {0, 1}n → {0, 1}m}
wherehA,c(x) = Ax+ c mod 2 is a family of pairwise independent hash functions.

Further,H is also known to be a family of three-wise independent hash functions [5].

4



Algorithm 1 Algorithm PAWS for sampling configurationsσ according tow

1: procedure COMPUTEK(n′, δ, P , S)
2: T ← 24 ⌈ln (n′/δ)⌉ ; k ← −1 ; count ← 0
3: repeat
4: k ← k + 1 ; count ← 0
5: for t = 1, · · · , T do
6: Sample hash functionhk

A,c : {0, 1}n
′

→ {0, 1}k

7: LetSk,t , {(x, y) ∈ S, hk
A,c(x, y) = 0}

8: if |Sk,t| < P then /* search for ≥ P different elements */
9: count ← count + 1

10: end for
11: until count ≥ ⌈T/2⌉ or k = n′

12: return k
13: end procedure

14: procedure PAWS(w : {0, 1}n → R
+, ℓ, b, δ, P , α)

15: M ← maxx w(x) /* compute with one MAP inference query on w */
16: S ← S(w, ℓ, b); n′ ← n+ b(ℓ− 1) /* as in Definition 2 */
17: i← COMPUTEK(n′, δ, γ, P , S) + α

18: Sample hash fn.hi
A,c : {0, 1}n

′

→ {0, 1}i, i.e., uniformly chooseA ∈ {0, 1}i×n′

, c ∈ {0, 1}i

19: LetSi , {(x, y) ∈ S, hi
A,c(x, y) = 0}

20: Check if|Si| ≥ P by searching for at leastP different elements
21: if |Si| ≥ P or |Si| = 0 then
22: return ⊥ /* failure */
23: else
24: Fix an arbitrary ordering ofSi /* for rejection sampling */
25: Uniformly samplep from {0, 1, . . . , P − 1}
26: if p ≤ |Si| then
27: Selectp-th element(x, y) of Si ; return x
28: else
29: return ⊥ /* failure */
30: end procedure

Lemma 3 (see Appendix for a proof) shows that the subroutine COMPUTEK in Algorithm 1 outputs
with high probability a value close tolog(|S(w, ℓ, b)|/P ). The idea is similar to an unweighted
version of the WISH algorithm [9] but with tighter guaranteesand using more feasibility queries.

Lemma 3. LetS = S(w, ℓ, b) ⊆ {0, 1}n′

, δ > 0, andγ > 0. Further, letP ≥ min{2, 2γ+2/(2γ −
1)2}, Z = |S|, k∗P = log(Z/P ), andk be the output of procedureCOMPUTEK(n′, δ, P,S). Then,
P[k∗P − γ ≤ k ≤ k∗P + 1 + γ] ≥ 1− δ andCOMPUTEK usesO(n′ ln (n′/δ)) feasibility queries.

Lemma 4. LetS = S(w, ℓ, b) ⊆ {0, 1}n′

, δ > 0, P ≥ 2, andγ = log
(

(P + 2
√
P + 1 + 2)/P

)

.
For any α ∈ Z, α > γ, let c(α, P ) = 1 − 2γ−α/(1 − 1

P
− 2γ−α)2. Then with probability

at least1 − δ the following holds: PAWS(w, ℓ, b, δ, P , α) outputs a sample with probability
at leastc(α, P )2−(γ+α+1) P

P−1 and, conditioned on outputting a sample, every element(x, y) ∈
S(w, ℓ, b) is selected (Line 27) with probabilityp′s(x, y) within a constant factorc(α, P ) of the
uniform probabilityp′′(x, y) = 1/|S|.

Proof Sketch.For lack of space, we defer details to the Appendix. Briefly, the probabilityP[σ ∈ Si]
that σ = (x, y) survives is2−i by the properties of the hash functions in Definition 3, and the
probability of being selected by rejection sampling is1/(P − 1). Conditioned onσ surviving, the
mean and variance of the size of the surviving set|Si| are independent ofσ because of 3-wise
independence. Whenk∗P − γ ≤ k ≤ k∗P + 1 + γ andi = k + α, α > γ, on average|Si| < P and
the size is concentrated around the mean. Using Chebychev’sinequality, one can upper bound by
1 − c(α, P ) the probabilityP[Si ≥ P | σ ∈ Si] that the algorithm fails because|Si| is too large.
Note that the bound is independent ofσ and lets us bound the probabilityps(σ) thatσ is output:

c(α, P )
2−i

P − 1
=

(

1− 2γ−α

(1− 1
P
− 2γ−α)2

)

2−i

P − 1
≤ ps(σ) ≤

2−i

P − 1
. (2)
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Fromi = k+α ≤ k∗P +1+ γ+α and summing the lower bound ofps(σ) over allσ, we obtain the
desired lower bound on the success probability. Note that givenσ, σ′, ps(σ) andps(σ′) are within
a constant factorc(α, P ) of each other from (2). Therefore, the probabilitiesp′s(σ) (for variousσ)
thatσ is output conditioned on outputting a sample are also withina constant factor of each other.
From the normalization

∑

σ p
′
s(σ) = 1, one gets the desired result thatp′s(x, y) is within a constant

factorc(α, P ) of the uniform probabilityp′′(x, y) = 1/|S|.

3.4 Main Results: Sampling with Accuracy Guarantees

Combining pieces from the previous three sections, we have the following main result:

Theorem 1. Letw : {0, 1}n → R
+, ǫ > 0, b ≥ 1, δ > 0, andP ≥ 2. Fix α ∈ Z as in Lemma 4,

r = 2b/(2b−1), ℓ = ⌈logr(2n/ǫ)⌉, ρ = r2/(1−ǫ), bucketBℓ as in Definition 1, andκ = 1/c(α, P ).
Then

∑

x∈Bℓ
p(x) ≤ ǫ and with probability at least(1− δ)c(α, P )2−(γ+α+1) P

P−1 , PAWS(w, ℓ, b,
δ, P , α) succeeds and outputs a sampleσ from{0, 1}n \ Bℓ. Upon success, eachσ ∈ {0, 1}n \ Bℓ

is output with probabilityp′s(σ) within a constant factorρκ of the desired probabilityp(σ) ∝ w(σ).

Proof. Success probability follows from Lemma 4. Forx ∈ {0, 1}n \ Bℓ, combining Lemmas 1, 2,
4 we obtain

1

ρκ
p(x) ≤ 1

κ
p′(x) =

∑

y:(x,y)∈S(w,ℓ,b)

1

κ
p′′(x, y) ≤

∑

y|(x,y)∈S(w,ℓ,b)

p′s(x, y) = p′s(x)

≤
∑

y:(x,y)∈S(w,ℓ,b)

κp′′(x, y) = κp′(x) ≤ ρκp(x)

where the first inequality accounts for discretization error from p(x) to p′(x) (Lemma 1), equality
follows from Lemma 2, and the sampling error betweenp′′ andp′s is bounded by Lemma 4. The rest
is proved in Lemmas 1, 2.

Remark 2. By appropriately setting the hyper-parametersb andℓ we can make the discretization
errorsρ andǫ arbitrarily small. Although this does not change the numberof required feasibility
queries, it can significantly increase the runtime of combinatorial search because of the increased
search space size|S(w, ℓ, b)|. Practically, one should set these parameters as large as possible, while
ensuring combinatorial searches can be completed within the available time budget. Increasing pa-
rameterP improves the accuracy as well, but also increases the numberof feasibility queries issued,
which is proportional toP (but does not affect the structure of the search space). Similarly, by
increasingα we can makeκ arbitrarily small. However, the probability of success of the algorithm
decreases exponentially asα is increased. We will demonstrate in the next section that a practi-
cal tradeoff between computational complexity and accuracy can be achieved for reasonably sized
problems of interest.

Corollary 2. Letw, b, ǫ, ℓ, δ, P, α, andBℓ be as in Theorem 1, andp′s(σ) be the output distribution
of PAWS(w, ℓ, b, δ, P , α). Letφ : {0, 1}n → R andηφ = maxx∈Bℓ

|φ(x)| ≤ ‖φ‖∞. Then,

1

ρκ
Ep′

s
[φ]− ǫηφ ≤ Ep[φ] ≤ ρκEp′

s
[φ] + ǫηφ

whereEp′

s
[φ] can be approximated with a sample average using samples produced by PAWS.

4 Experiments

We evaluate PAWS on synthetic Ising Models and on a real-worldtest case generation problem for
software verification. All experiments used Intel Xeon 56703GHz machines with 48GB RAM.

4.1 Ising Grids Models

We first consider themarginal computationtask for synthetic grid-structured Ising models with
random interactions (attractive and mixed). Specifically,the corresponding graphical model hasn
binary variablesxi, i = 1, · · · , n, with single node potentialsψi(xi) = exp(fixi) and pairwise

6



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

True marginals

E
st

im
at

ed
 m

ar
gi

na
ls

 

 

Gibbs
Belief Propagation
WISH
PAWS b=1
PAWS b=2

(a) Mixed (w = 4.0,f = 0.6)

0.16 0.165 0.17 0.175 0.18 0.185 0.19
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

True marginals

E
st

im
at

ed
 m

ar
gi

na
ls

 

 

Gibbs
Belief Propagation
WISH
PAWS b=1
PAWS b=2

(b) Attractive (w = 3.0,f = 0.45)

Figure 1: Estimated marginals vs. true marginals on8 × 8 Ising Grid models. Closeness to the 45
degree line indicates accuracy. PAWS is run withb ∈ {1, 2}, P = 4, α = 1, andℓ = 25 (mixed
case) orℓ = 40 (attractive case).

interactionsψij(xi, xj) = exp(wijxixj), wherefi ∈R [−f, f ] andwij ∈R [−w,w] in themixed
case, whilewij ∈R [0, w] in theattractivecase.

Our implementation of PAWS uses the open source solver ToulBar2 [13] to computeM =
maxx w(x) and as an oracle to check the existence of at leastP different solutions. We aug-
mented ToulBar2 with the IBM ILOG CPLEX CP Optimizer 12.3 [14] based on techniques bor-
rowed from [15] to efficiently reason about parity constraints (the hash functions) using Gauss-
Jordan elimination. We run the subroutine COMPUTEK in Algorithm 1 only once at the beginning,
and then generate all the samples with the same value ofi (Line 17). The comparison is with Gibbs
sampling, Belief Propagation, and the recent WISH algorithm[9]. Ground truth is obtained using
the Junction Tree method [16].

In Figure 1, we show a scatter plot of the estimated vs. true marginal probabilities for two Ising
grids with mixed and attractive interactions, respectively, representative of the general behavior in
the large-weights regime. Each sampling method is run for 10minutes. Marginals computed with
Gibbs sampling (run for about108 iterations) are clearly very inaccurate (far from the 45 degree
line), an indication that the Markov Chain had not mixed as aneffect of the relatively large weights
that tend to create barriers between modes which are hard to traverse. In contrast, samples from
PAWS provide much more accurate marginals, in part because itdoes not rely on local search and
hence is not directly affected by the energy landscape (withrespect to the Hamming metric). Further,
we see that we can improve the accuracy by increasing the hyper-parameterb. These results highlight
the practical value of having accuracy guarantees on the quality of the samples after finite amounts
of time vs. MCMC-style guarantees that hold only after a potentially exponential mixing time.

Belief Propagation can be seen from Figure 1 to be quite inaccurate in this large-weights regime. Fi-
nally, we also compare to the recent WISH algorithm [9] which uses similar hash-based techniques
to estimate the partition function of graphical models. Since producing samples with the general
sampling-by-counting reduction [1, 2] or estimating each marginal as the ratio of two partition func-
tions (with and without a variable clamped) would be too expensive (requiringn+1 calls to WISH)
we heuristically run it once and use the solutions of the optimization instances it solves in the inner
loop as samples. We see in Figure 1 that while samples produced by WISH can sometimes produce
fairly accurate marginal estimates, these estimates can also be far from the true value because of an
inherent bias introduced by theargmax operator.

4.2 Test Case Generation for Software Verification

Hardware and software verification tools are becoming increasingly important in industrial system
design. For example, IBM estimates $100 million savings over the past 10 years from hardware ver-
ification tools alone [17]. Given that complete formal verification is often infeasible, the paradigm
of choice has become that of randomly generating “interesting” test cases to stress the code or chip
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Instance Vars Factors Time (s) MSE (×10−5)

bench1039 330 785 1710 5.76

bench431 173 410 34.97 4.35

bench115 189 458 52.75 20.74

bench97 170 401 67.03 45.57

bench590 244 527 593.71 8.11

bench105 243 524 842.35 8.56

(a) Marginals: runtime and mean squared error
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Figure 2: Experiments on software verification benchmark.

with the hope of uncovering bugs. Typically, a model based onhard constraintsis used to specify
consistent input/output pairs, or valid program executiontraces. In addition, in some systems, do-
main knowledge can be specified by experts in the form ofsoft constraints, for instance to introduce
a preference for test cases where operands are zero and bugs are more likely [17].

For our experiments, we focus on software (SW) verification, using an industrial benchmark [18]
produced by Microsoft’s SAGE system [19, 20]. Each instancedefines a uniform probability distri-
bution over certain valid traces of a computer program. We modify this benchmark by introducing
soft constraints defining a weighted distribution over valid traces, indicating traces that meet certain
criteria should be sampled more often. Specifically, following Naveh et al. [17] we introduce a pref-
erence towards traces where certain registers are zero. Theweight is chosen to be a power of two,
so that there is no loss of accuracy due to discretization using the previous construction withb = 1.

These instances are very difficult for MCMC methods because of the presence of very large regions
of zero probability that cannot be traversed and thus can break the ergodicity assumption. Indeed we
observed that Gibbs sampling often fails to find a non-zero probability state, and when it finds one
it gets stuck there, because there might not be a non-zero probability path from one feasible state
to another. In contrast, our sampling strategy is not affected and does not require any ergodicity
assumption. Table 2a summarizes the results obtained usingthe propositional satisfiability (SAT)
solver CryptoMiniSAT [21] as the feasibility query oracle for PAWS. CryptoMiniSAT has built-in
support for parity constraintsAx = c mod 2. We report the time to collect1000 samples and
the Mean Squared Error (MSE) of the marginals estimated using these samples. We report results
only on the subset of instances where we could enumerate all feasible states using the exact model
counter Relsat [22] in order to obtain ground truth marginals for MSE computation. We see that
PAWS scales to fairly large instances with hundreds of variables and gives accurate estimates of
the marginals. Figure 2b shows the theoretical vs. observedsampling frequencies (based on50000
samples) for a small instance with810 feasible states (execution traces), where we see that the output
distributionp′s is indeed very close to the target distributionp.

5 Conclusions

We introduced a new approach, called PAWS, to the fundamentalproblem of sampling from a dis-
crete probability distribution specified, up to a normalization constant, by a weight function, e.g., by
a discrete graphical model. While traditional sampling methods are based on the MCMC paradigm
and hence on some form of local search, PAWS can leverage more advanced combinatorial search
and optimization tools as a black box. A significant advantage over MCMC methods is that PAWS
comes with a strong accuracy guarantee: whenever combinatorial search succeeds, our analysis
provides a certificate that, with high probability, the samples are produced from an approximately
correct distribution. In contrast, accuracy guarantees for MCMC methods hold only in the limit, with
unknown and potentially exponential mixing times. Further, the hyper-parameters of PAWS can be
tuned to trade off runtime with accuracy. Our experiments demonstrate that PAWS outperforms
competing sampling methods on challenging domains for MCMC.
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