Embed and Project:
Discrete Sampling with Universal Hashing

Stefano Ermon, Carla P. Gomes Ashish Sabharwal Bart Selman
Dept. of Computer Science IBM Watson Research Ctr. Dept. of Computer Science
Cornell University Yorktown Heights Cornell University
Ithaca NY 14853, U.S.A. NY 10598, U.S.A. Ithaca NY 14853, U.S.A.
Abstract

We consider the problem of sampling from a probability disttion defined over
a high-dimensional discrete set, specified for instance gaphical model. We
propose a sampling algorithm, called PAWS, based on embgdd set into

a higher-dimensional space which is then randomly projeciging universal
hash functions to a lower-dimensional subspace and explmiag combinatorial
search methods. Our scheme can leverage fast combinaiptialization tools

as a blackbox and, unlike MCMC methods, samples producedummanteed to
be within an (arbitrarily small) constant factor of the truebability distribution.

We demonstrate that by using state-of-the-art combiredtedgarch tools, PAWS
can efficiently sample from Ising grids with strong intefans and from software
verification instances, while MCMC and variational methéakin both cases.

1 Introduction

Sampling techniques are one of the most widely used appesachapproximate probabilistic rea-
soning for high-dimensional probability distributions erk exact inference is intractable. In fact,
many statistics of interest can be estimated from samplages based on a sufficiently large num-
ber of samples. Since this can be used to approximate #Pletmpference problems, sampling is
also believed to be computationally hard in the worst casg][1

Sampling from a succinctly specified combinatorial spadeleved to much harder thaearching
the space. Intuitively, not only do we need to be able to fireharof interest (e.g., modes of the
underlying distribution) but also to balance their relatimportance. Typically, this is achieved
using Markov Chain Monte Carlo (MCMC) methods. MCMC techrgq are a specialized form
of local searchthat only allows moves that maintain detailed balance, tuaanteeing the right
occupation probability once the chain hasxed However, in the context of hard combinatorial
spaces with complex internal structure, mixing times aterobxponential. An alternative is to
use complete or systematic search techniques such as BaxaddBound for integer programming,
DPLL for SATisfiability testing, and constraint and ansveet-programming (CP & ASP), which
are preferred in many application areas, and have witnes$einendous success in the past few
decades. It is therefore a natural question whether onearastract sampling techniques based on
these more powerfldomplete search methodsther than local search.

Prior work in cryptography by Bellare et al.l [3] showed thiatsi possible to uniformly sample
witnesses of an NP language leveraging universal hashidmscand using only a small number
of queries to an NP-oracle. This is significant because sssmmn be used to approximate #P-
complete (counting) problems [2], a complexity class weleeto be much harder than NP. Practical
algorithms based on these ideas were later developed [d-r&aruniformly sample solutions of
propositional SATisfiability instances, using a SAT solaesran NP-oracle. However, unlike SAT,

most models used in Machine Learning, physics, and statiastieweighted(represented, e.g., as
graphical models) and cannot be handled using these te@miq

We fill this gap by extending this approach, based on hasbasgd projections and NP-oracle
queries, to the weighted sampling case. Our algorithmedd&AWS, uses a form of approximation
by quantization|[7] and an embedding technique inspiredlicg sampling [[3], before applying
projections. This parallels recent wotk [9] that extendiilar ideas for unweighted counting to
the weighted counting world, addressing the problem ofrdiscintegration. Although in theory
one could use that technique to produce samples by estgnatiios of discrete integrals|[1) 2],
the general sampling-by-counting reduction requiresgelaumber of such estimates (proportional
to the number of variables) for each sample. Further, theracg guarantees on the sampling
probability quickly become loose when taking ratios of msties. In contrast, PAWS is a more
direct and practical sampling approach, providing bettetueacy guarantees while requiring a much
smaller number of NP-oracle queries per sample.

Answering NP-oracle queries, of course, requires expdaldimhe in the worst case, in accordance
with the hardness of sampling. We rely on the fact that coatbital search tools, however, are
often extremely fast in practice, and any complete solverhgaused as a black box in our sampling
scheme. Another key advantage is that when combinatodatseucceeds, our analysis provides a
certificate that, with high probability, any samples proeiwill be distributed within an (arbitrarily
small) constant factor of the desired probability disttibn. In contrast, with MCMC methods it
is generally hard to assess whether the chain has mixed. \peiesily demonstrate that PAWS
outperforms MCMC as well as variational methods on hardtsstitt Ising Models and on a real-
world test case generation problem for software verificatio

2 Setup and Problem Definition

We are given a probability distributignover a (high-dimensional) discrete s€f where the proba-
bility of each itemz € X is proportional to a weight functiom : X — R, with R* being the set
of non-negative real numbers. Specifically, givea X, its probabilityp(z) is given by

p) =2 7= 3w

zeX

where Z is a normalization constant known as tpartition function We assumev is specified
compactly, e.g., as the product of factors or in a conjueatiormal form. As our driving example,
we consider the case of undirected discrete graphical raddi®] withn = |V| random variables
{z;,7 € V'} where each; takes values in a finite s&f;. We consider a factor graph representation
for a joint probability distribution over elements (configurationyx € X = X7 x -+ x X!

a€l

This is a compact representation fatz) based on the weight function(z) = [],c7 Ya({z}a),
defined as the product of potentials or factgrs : {z}, — RT, whereZ is an index set and
{z}, C V the subset of variables factgg, depends on. For simplicity of exposition, without loss
of generality, we will focus on the case of binary variablebereX = {0, 1}".

We consider the fundamental problem of (approximatsiipling from p(z), i.e., designing a
randomized algorithm that takesas input and outputs elements X according to the probability
distributionp. This is a hard computational problem in the worst case. ¢h fais more general
than NP-complete decision problems (e.g., sampling swigtof a SATisfiability instance specified
as a factor graph entails finding at least one solution, oilddexthere is none). Further, samples
can be used to approximate #P-complete problems [2], suebtimsating a marginal probability.

3 Sampling by Embed, Project, and Search

Conceptually, our sampling strategy has three steps, idescin Section§ 311, 3.2, afd B.3, resp.
(1) From the input distributiop we construct a new distributiopl that is “close” top but more

discrete. Specificallyy’ is based on a new weight functian that takes values only in a discrete
set of geometrically increasing weights. (2) Frpmwe define auniform probability distribution
p”" over a carefully constructed higher-dimensioratbeddingof X = {0,1}™. The previous
discretization step allows us to specjf{ in a compact form, and sampling frop¥ can be seen
to be precisely equivalent to sampling frgrh (3) Finally, we indirectly sample from the desired
distributionp by sampling uniformly from p”, by randomly projecting the embedding onto a lower-
dimensional subspace using universal hash functions amdsimarching for feasible states.

The first and third steps involve a bounded loss of accurahigiwwe can trade off with computa-
tional efficiency by setting hyper-parameters of the alfponi A key advantage is thatir technique
reduces the weighted sampling problem to that of solving\WAB query (i.e., finding the most likely
state) and a polynomial number of feasibility queries (fiading any state with non-zero probabil-
ity) for the original graphical model augmented (through an efdivey) with additional variables
and carefully constructed factors. In practice, we use abteatorial optimization package, which
requires exponential time in the worst case (consisteifittivé hardness of sampling) but is often fast
in practice. Our analysis shows that whenever the undeylygmbinatorial search and optimization
gueries succeed, the samples producedaaganteed with high probability, to be coming from an
approximately accurate distribution.

3.1 Weight Discretization

We use a geometric discretization of the weights into “btgkeé.e., a uniform discretization of the
log-probability. As we will see@(n) buckets are sufficient to preserve accuracy.

Definition 1. Let M = max, w(z), r > 1, ¢ > 0, and/ = [log,(2"/€)]. Partition the con-
figurations into the following weight based disjoimickets B; = {z | w(z) € (&, %]},i =
0,...,0—1andB; = {z | w(z) € [0, 27]}. Thediscretized weight function’ : {0,1}" — R+ is
defined as followsw’(z) = 2 if z € B; for i < £ andw’(z) = 0if z € B,. The corresponding
discretized probability distributiop’(x) = w’(x)/Z’ whereZ’ is the normalization constant.
Lemmal. Letp = r?/(1 —¢). Forall z € U.Z} B, p(x) andp’ (z) are within a factor ofp of each
other. Furthermorey ;. p(z) < e.

Proof. Sincew maps to non-negative values, we hae> M. Further,

1 1 M |BeleM _eM
2 pe) =7) wlw) < ZIBlg = 5r g < 7 <
z€By T€By

This proves the second part of the claim. For the first patg timt by constructiory’ < Z and

¢ -1
7 — Z Z w'(z) > Z Z %w(w) = 71 (Z— Z w(x)) >(1-¢€)Z.

i=0 z€B; i=0 z€B; zeB,

ThusZ andZ’ are within a factor of- /(1 —¢) of each other. For alt such thatv(z) ¢ B,,, recalling
thatr > 1 > 1 — e and thatw(z) /r < w'(z) < rw(z), we have

1 w(z) w(x) w(x) , w'(xz) rw(z) r? w(x)
- < < < = = < < = .
pp(m) S7 S Sy VW= s sy =)

This finishes the proof that{x) andp’(x) are within a factor op of each other. O

Remark 1. If the weightsw defined by the original graphical model are represented ite foreci-
sion (e.g., there arg®* possible weights in double precision floating point), foemwb > 1 there

is a possibly large buinite value of¢ (such that//r¢ is smaller than the smallest representable
weight) such that3, is empty and the discretization errois effectively zero.

3.2 Embed: From Weighted to Uniform Sampling

We now show how to reduce the problem of sampling from therdisadistributionp’ (weighted
sampling) to the problem of uniformly sampling, without dosf accuracy, from a higher-
dimensional discrete setinto whigh= {0, 1}"™ is embedded. This is inspired by slice sampling [8],
and can be intuitively understood asdiscretecounterpart where we uniformly sample poifitsy)
from a discrete representation of the area underghes (x) probability density function of’ .

Definition 2. Letw : X — RT, M = max, w(z), andr = 2°/(2® — 1). Then the embedding
S(w,£,b) of X in X x {0,1}(*~1? is defined as:

b
_ M . M
k=1

Where\/Z:1 y¥ may alternatively be thought of as the linear const@:rﬁ:1 y¥ > 1. Further, let
p’" denote a uniform probability distribution ové&{w, ¢,b) andn’ = n + (¢ — 1)b.

Given a compact representationwefwithin a combinatorial search or optimization framewote t
setS(w, ¢, b) can often be easily encoded using the disjunctive constramthey variables.

Lemma 2. Let (z,y) = (v, yi,v%, - ¥, ud, -+ 95, ,yt .-+ ,y’_,) be a sample fromp”,
i.e., a uniformly sampled element fra$itw, ¢, b). Thenz is distributed according t@'.

Informally, givenz € B; andz’ € B;,1 withi + 1 < [— 1, there are precisely = 2°/(2° — 1)
times more valid configurations:, y) than(z’, y’). Thusz is sampled- times more often tham’.
A formal proof may be found in the Appendix.

3.3 Project and Search: Uniform Sampling with Hash Functiors and an NP-oracle

In principle, using the technique of Bellare et al. [3] arfewise independent hash functions we can
sample purelyniformlyfrom S(w, ¢, b) using an NP oracle to answer feasibility queries. However,
such hash functions involve constructions that are diffimulmplement and reason about in exist-
ing combinatorial search methods. Instead, we use a mootiqgaiaalgorithm based on pairwise
independent hash functions that can be implemented ysirity constraintgmodular arithmetic)
and still provides accuracy guarantees. The approach istm [S], but we include an algorithmic
way to estimate the number of parity constraints to be useslab use the pivot technique from
[6] but extend that work in two ways: we introduce a parametésimilar to [5]) that allows us to
trade off uniformity against runtime and also proviggper bound®n the sampling probabilities.

We refer to our algorithm as PArity-basedWeightedSam@iéw(S) and provide its pseudocode as
Algorithm[dl. The idea is tprojectby randomly constraining the configuration space using alyam
of universal hash functionsearchfor up to P “surviving” configurations, and then, if fewer than
survive, perform rejection sampling to choose one of thetre fumbelk of constraints or factors
(encoding a randomly chosen hash function) to add is deteaidirst; this is where we depart from
both Gomes et al. [5], who do not provide a way to compttand Chakraborty et al.|[6], who do
not fix k& or provide upper bounds. Then we repeatedly addch constraints, check whether fewer
than P configurations survive, and if so output one configurationsetm using rejection sampling.
Intuitively, we need the hashed space to contain no morefhswiutions because that is a base case
where we know how to produce uniform samples via enumeratid® a guess (accurate with high
probability) of the number of constraints that is likely educe (by hashing) the original problem
to a situation where enumeration is feasible. If too manyoorfew configurations survive, the
algorithm fails and is run again. The small failure probiilaccounting for a potentially poor
choice of random hash functions, can be bounded irrespeatithe underlying graphical model.

A combinatorialoptimizationprocedure is used once in order to determine the maximumhiveig
M through MAP inferenceM is used in the discretization step. Subsequently, sefeaalbility
gueriesare issued to the underlying combinatorial search proeeduorder to, e.g., count the
number of surviving configurations and produce one as a sampl

We briefly review the construction and properties of unigéhash functions [11, 12].

Definition 3. # = {h : {0,1}" — {0,1}™} is afamily of pairwise independent hash functions
if the following two conditions hold when a functiol is chosen uniformly at random frofH: 1)

Vo € {0,1}", the random variablé (x) is uniformly distributed in{0,1}™; 2) Va1, 22 € {0,1}"

x1 # 9, the random variableH (z,) and H (x2) are independent.

Proposition 1. LetA € {0,1}"*", ¢ € {0,1}™. The familyH = {ha .(z) : {0,1}" — {0,1}™}
whereh 4 .(z) = Az + ¢ mod 2 is a family of pairwise independent hash functions.

Further,H is also known to be a family of three-wise independent hashtions [5].

Algorithm 1 Algorithm PAWS for sampling configurationsaccording taw

1: procedure COMPUTEK(n/, §, P, S)
2: T <+ 24[ln(n'/8)]; k<« —1; count<+ 0

3 repeat

4: k< k+1; count<+ 0

5: fort=1,---,7Tdo

6: Sample hash functioh’; . : {0, 1} — {0, 1}"

7 LetS™" £ {(x,y) € S, Wy o(x,y) = 0}

8 if |S¥*| < P then I search for > P different elenents =/
9: count < count + 1
10: end for

11: until count > [T/2] ork = n'
12: return k
13: end procedure

14: procedure PAWS@ : {0,1}" — R, £, 5,6, P, a)

15: M + max, w(x) /+ conpute with one MAP inference query on w */
16: S+ S(w,4,b); n' +n+bl—1) /+ as in Definition[2 */

17: i < COMPUTEK(n', 6,7, P, S) + «

18: Sample hash frb, . : {0,1}" — {0, 1}, i.e., uniformly choose! € {0,1}*", ¢ € {0, 1}
19: LetS® & {(z,9) € S, hi\,c(m,y) =0}

20: Check iflS?| > P by searching for at leag? different elements

21 if |S*| > Por|S'| = 0then

22: return L [+ failure */
23: else

24: Fix an arbitrary ordering a$* I+ for rejection sanpling */
25: Uniformly samplep from {0,1,..., P — 1}

26: if p <|S*| then

27: Selecp-th elementz, y) of S*; retun =

28: else

29: return L [+ failure =/

30: end procedure

Lemmd 3 (see Appendix for a proof) shows that the subroutine®TEK in Algorithm[I] outputs
with high probability a value close tg(|S(w, ¢,b)|/P). The idea is similar to an unweighted
version of the WISH algorithm [9] but with tighter guaranteesl using more feasibility queries.

Lemma 3. LetS = S(w, £,b) C {0,1}", 5 > 0, andy > 0. Further, letP > min{2, 2712 /(27 —
1%}, Z = |S|, kb = log(Z/P), andk be the output of procedut@oMPUTEK (r/, §, P, S). Then,
Plkh —v<k<kp+1++9]>1-5§andCoMPUTEK usesO(n'In (n'/4)) feasibility queries.

Lemma 4. LetS = S(w,(,b) C {0,1}",6 > 0, P > 2, andy = log (P + 2v/P + 1 +2)/P).
Foranya € Z, a > 7, letc(e, P) = 1 —277%/(1 — 5 — 27=*)2. Then with probability
at least1 — ¢ the following holds: PAWS(w, ¢, b, §, P, a)) outputs a sample with probability
at leastc(a, P)2~(vte+D) L and, conditioned on outputting a sample, every elenieny) €
S(w, £,b) is selected (Line 27) with probability, (x,y) within a constant factor(«, P) of the
uniform probabilityp” (z,y) = 1/|S].

Proof Sketch.For lack of space, we defer details to the Appendix. Briefig,grobabilityP[oc € S7]
thato = (z,y) survives is2~* by the properties of the hash functions in Definitidn 3, ane th
probability of being selected by rejection samplind j§P — 1). Conditioned onv surviving, the
mean and variance of the size of the surviving |§¥t are independent of because of 3-wise
independence. Whelty, — v < k < k} + 1+~ andi = k + o, a > v, on averageS’| < P and
the size is concentrated around the mean. Using Chebycinegjsiality, one can upper bound by
1 — ¢(a, P) the probabilityP[S; > P | o € S that the algorithm fails becausg;| is too large.
Note that the bound is independentooénd lets us bound the probability(o) thato is output:

2772 27— 2772 271'
P =(1- < po(0) < : 2
clar. P) o ((1_})_2%)2)]3_1_pk<a)_P_1 @)

Fromi = k+a < k} + 1+~ + a and summing the lower bound pf(c) over allo, we obtain the
desired lower bound on the success probability. Note thetngt, o', ps(c) andps(o’) are within

a constant factoe(«, P) of each other from{2). Therefore, the probabilitiggs) (for variouso)
thato is output conditioned on outputting a sample are also wigh@onstant factor of each other.
From the normalizatiof} | p/,(c) = 1, one gets the desired result thatx, y) is within a constant
factorc(a, P) of the uniform probabilityy” (x, y) = 1/|S|. O

3.4 Main Results: Sampling with Accuracy Guarantees

Combining pieces from the previous three sections, we Havéotlowing main result:

Theorem 1. Letw : {0,1}" = R*, e > 0,b> 1,6 > 0,andP > 2. Fix«a € Z as in Lemm&H},
r=2Y/(2"-1),¢ = [log,(2"/€)], p = 72/ (1—¢), bucketB, as in Definitior 1, andk = 1/c(a, P).
Then)", 5, p(z) < e and with probability at least1 — §)c(a, P)2~ o) B PAWS(w, £, b,
d, P, o) succeeds and outputs a sampléom {0, 1}™ \ B,. Upon success, eache {0,1}" \ B,
is output with probability’, (o) within a constant factopx of the desired probability(c) oc w(o).

Proof. Success probability follows from Lemrha 4. Foe {0,1}" \ B, combining Lemmasi{]2,
[we obtain

s = Y ens Y Ay = s

K
P y:(z,y)€S(w,l,b) y|(z,y)€S(w,L,b)

< > () =kp () < prpla)
y:(z,y) €S (w,E,b)

where the first inequality accounts for discretization efrom p(z) to p’(z) (Lemma[l), equality
follows from Lemmad®, and the sampling error betwgé€randp’, is bounded by Lemn{d 4. The rest
is proved in Lemmals] L] 2. O

Remark 2. By appropriately setting the hyper-parameteend/ we can make the discretization
errorsp ande arbitrarily small. Although this does not change the numiferequired feasibility
gueries, it can significantly increase the runtime of coratmirial search because of the increased
search space siz8(w, ¢, b)|. Practically, one should set these parameters as largesible while
ensuring combinatorial searches can be completed witkiavhilable time budget. Increasing pa-
rameterP improves the accuracy as well, but also increases the nuohbeaisibility queries issued,
which is proportional taP (but does not affect the structure of the search space). |&8imiby
increasingx we can makex arbitrarily small. However, the probability of successud tlgorithm
decreases exponentially asis increased. We will demonstrate in the next section thataatp
cal tradeoff between computational complexity and acgucan be achieved for reasonably sized
problems of interest.

Corollary 2. Letw,b,¢, ¢, 0, P,«, and B, be as in Theorei 1, ang (o) be the output distribution
of PAWS(w, £, b, 6, P, a). Letg : {0,1}" — R andn, = max,ep, |¢(z)| < ||¢]|. Then,
1
p?]Ep/s (9] —eng < Eplg] < prEy [¢] + eng

whereE,, [¢] can be approximated with a sample average using samplesipeacby PAWS.

4 Experiments

We evaluate PAWS on synthetic Ising Models and on a real-wedticase generation problem for
software verification. All experiments used Intel Xeon 58M@Hz machines with 48GB RAM.

4.1 Ising Grids Models

We first consider thenarginal computatiortask for synthetic grid-structured Ising models with
random interactions (attractive and mixed). Specificalig corresponding graphical model has
binary variablest;,i = 1,--- ,n, with single node potentialg;(z;) = exp(f;z;) and pairwise

1 @ 1ir SIEIC K X X X
0.9 & ® & 09
o)
o8l X o Gibbs 08 o Gibbs
K% * Belief Propagation X% = Belief Propagation
g 0.7 + WISH g o7 + WISH
S ¢ PAWS b=1 S ¢+ PAWS b=1
Sos + PAWS b=2 x 508 + PAWS b=2
£ o £
Eo] 0.5 Eo) 05
2 2
@ 04 . @ 04
£ 9 =
O 03 } » 03
I . w
0z 2 . o2 vl & SR T S
i O x o + +
01 ? xg 008 01 Wty L+
x, ® ‘ e ‘) ° @

L L L L L L
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1 0.16 0.17 0175 0.18 0.185 0.19

True marginals
(a) Mixed @ = 4.0,f = 0.6)

True marginals
(b) Attractive v = 3.0,f = 0.45)

Figure 1: Estimated marginals vs. true marginalsson 8 Ising Grid models. Closeness to the 45
degree line indicates accuracy. PAWS is run wite {1,2}, P = 4,a = 1, and/ = 25 (mixed
case) o = 40 (attractive case).

interactionsy;; (x;, ;) = exp(w;;z;x;), wheref; €r [—f, f] andw;; €r [—w,w] in themixed
case, whilew;; € [0, w] in theattractivecase.

Our implementation of PAWS uses the open source solver ToRIBES] to computeM =
max, w(z) and as an oracle to check the existence of at I&aslifferent solutions. We aug-
mented ToulBar2 with the IBM ILOG CPLEX CP Optimizer 12.3 [I#hsed on techniques bor-
rowed from [15] to efficiently reason about parity consttaitthe hash functions) using Gauss-
Jordan elimination. We run the subroutine@ruTeK in Algorithm [I only once at the beginning,
and then generate all the samples with the same valué.afe 17). The comparison is with Gibbs
sampling, Belief Propagation, and the recent WISH algorif8m Ground truth is obtained using
the Junction Tree method |16].

In Figure[1, we show a scatter plot of the estimated vs. trugima probabilities for two Ising
grids with mixed and attractive interactions, respectivetpresentative of the general behavior in
the large-weights regime. Each sampling method is run fanitutes. Marginals computed with
Gibbs sampling (run for about)? iterations) are clearly very inaccurate (far from the 45rdeg
line), an indication that the Markov Chain had not mixed agffect of the relatively large weights
that tend to create barriers between modes which are hardverse. In contrast, samples from
PAWS provide much more accurate marginals, in part becauk®eg not rely on local search and
hence is not directly affected by the energy landscape (e#pect to the Hamming metric). Further,
we see that we can improve the accuracy by increasing thedmgoameteb. These results highlight
the practical value of having accuracy guarantees on thityjofithe samples after finite amounts
of time vs. MCMC-style guarantees that hold only after a ptdly exponential mixing time.

Belief Propagation can be seen from Figure 1 to be quite imate in this large-weights regime. Fi-
nally, we also compare to the recent WISH algorithm [9] whisksusimilar hash-based techniques
to estimate the partition function of graphical models. c8iproducing samples with the general
sampling-by-counting reductionl [1, 2] or estimating eadrgmal as the ratio of two partition func-
tions (with and without a variable clamped) would be too e&gdee (requiring: + 1 calls to WISH)
we heuristically run it once and use the solutions of themiz@tion instances it solves in the inner
loop as samples. We see in Figlie 1 that while samples prddiyc#/ISH can sometimes produce
fairly accurate marginal estimates, these estimates sarbal far from the true value because of an
inherent bias introduced by theg max operator.

4.2 Test Case Generation for Software Verification

Hardware and software verification tools are becoming esirgly important in industrial system
design. For example, IBM estimates $100 million savings tve past 10 years from hardware ver-
ification tools alonel[17]. Given that complete formal vesdfiion is often infeasible, the paradigm
of choice has become that of randomly generating “intargstest cases to stress the code or chip

|

Instance Vars Factors Time (s) MSE{0~?) -~~~ Semple Frequency
bench1039 330 785 1710 5.76
bench431 173 410 34.97 4.35 g
bench1l5 189 458 52.75 20.74 g1
bench97 170 401 67.03 45.57
bench590 244 527 593.71 8.11

benchl05 243 524 842.35 8.56 e e w

(a) Marginals: runtime and mean squared error (b) True vs. observed sampling frequencies.

Figure 2: Experiments on software verification benchmark.

with the hope of uncovering bugs. Typically, a model basethand constraintss used to specify
consistent input/output pairs, or valid program executiages. In addition, in some systems, do-
main knowledge can be specified by experts in the forsodif constraintsfor instance to introduce
a preference for test cases where operands are zero andrbugsra likely [17].

For our experiments, we focus on software (SW) verificaticingl an industrial benchmark [18]
produced by Microsoft's SAGE system [19, 20]. Each instagefines a uniform probability distri-
bution over certain valid traces of a computer program. Wdifpahis benchmark by introducing
soft constraints defining a weighted distribution overdialaces, indicating traces that meet certain
criteria should be sampled more often. Specifically, follmpNaveh et al[[17] we introduce a pref-
erence towards traces where certain registers are zerowdigét is chosen to be a power of two,
so that there is no loss of accuracy due to discretizatiamgusie previous construction with= 1.

These instances are very difficult for MCMC methods becafifeegpresence of very large regions
of zero probability that cannot be traversed and thus caakittee ergodicity assumption. Indeed we
observed that Gibbs sampling often fails to find a non-zeobalility state, and when it finds one
it gets stuck there, because there might not be a non-zebalpitity path from one feasible state
to another. In contrast, our sampling strategy is not adfié@nd does not require any ergodicity
assumption. Table_Pa summarizes the results obtained thengropositional satisfiability (SAT)
solver CryptoMiniSAT [21] as the feasibility query oracler PAWS. CryptoMiniSAT has built-in
support for parity constraintdz = ¢ mod 2. We report the time to collect000 samples and
the Mean Squared Error (MSE) of the marginals estimatedyusiese samples. We report results
only on the subset of instances where we could enumerateaalilfie states using the exact model
counter Relsal [22] in order to obtain ground truth margirfat MSE computation. We see that
PAWS scales to fairly large instances with hundreds of véegbnd gives accurate estimates of
the marginals. Figufe 2b shows the theoretical vs. obsesagtpling frequencies (based 5000
samples) for a small instance with0 feasible states (execution traces), where we see that thetou
distributionp’, is indeed very close to the target distributjan

5 Conclusions

We introduced a new approach, called PAWS, to the fundampragblem of sampling from a dis-
crete probability distribution specified, up to a normdii@a constant, by a weight function, e.g., by
a discrete graphical model. While traditional sampling rodthare based on the MCMC paradigm
and hence on some form of local search, PAWS can leverage rdea@@ed combinatorial search
and optimization tools as a black box. A significant advaatager MCMC methods is that PAWS
comes with a strong accuracy guarantee: whenever combalasearch succeeds, our analysis
provides a certificate that, with high probability, the séspare produced from an approximately
correct distribution. In contrast, accuracy guaranteesfoMC methods hold only in the limit, with
unknown and potentially exponential mixing times. Furtliee hyper-parameters of PAWS can be
tuned to trade off runtime with accuracy. Our experimenthalestrate that PAWS outperforms
competing sampling methods on challenging domains for MCMC

References
[1] N.N. Madras. Lectures on Monte Carlo MethodsAmerican Mathematical Society, 2002.
ISBN 0821829785.

[2] M. Jerrum and A. Sinclair. The Markov chain Monte Carlothue: an approach to approxi-
mate counting and integratiodpproximation algorithms for NP-hard problemsages 482—
520, 1997.

[3] Mihir Bellare, Oded Goldreich, and Erez Petrank. Unifogeneration of NP-witnesses using
an NP-oraclelnformation and Computatiqgri63(2):510-526, 2000.

[4] Stefano Ermon, Carla P. Gomes, and Bart Selman. Unifaiutisn sampling using a con-
straint solver as an oracle. WAI, pages 255-264, 2012.

[5] C.P. Gomes, A. Sabharwal, and B. Selman. Near-uniformpdiag of combinatorial spaces
using XOR constraints. INIPS-2006pages 481-488, 2006.

[6] S. Chakraborty, K. Meel, and M. Vardi. A scalable and heamiform generator of SAT
withesses. IICAV-20132013.

[7] Vibhav Gogate and Pedro Domingos. Approximation by dization. InUAI, pages 247-255,
2011.

[8] Radford M Neal. Slice samplingAnnals of statisticspages 705-741, 2003.

[9] Stefano Ermon, Carla Gomes, Ashish Sabharwal, and Bdm&. Taming the curse of di-
mensionality: Discrete integration by hashing and optatian. InICML, 2013.

[10] M.J. Wainwright and M.I. Jordan. Graphical models, exential families, and variational
inference.Foundations and Trends in Machine Learnjrig1-2):1-305, 2008.

[11] S. Vadhan. Pseudorandomned$®undations and Trends in Theoretical Computer Science
2011.

[12] O. Goldreich. Randomized methods in computatioecture Notes2011.

[13] D. Allouche, S. de Givry, and T. Schiex. Toulbar2, anmpgeurce exact cost function network
solver. Technical report, INRIA, 2010.

[14] IBM ILOG. IBM ILOG CPLEX Optimization Studio 12.3, 2011

[15] Carla P. Gomes, Willem Jan van Hoeve, Ashish Sabhamawal Bart Selman. Counting CSP
solutions using generalized XOR constraintsARAI, 2007.

[16] Steffen L Lauritzen and David J Spiegelhalter. Locahputations with probabilities on graph-
ical structures and their application to expert systedosirnal of the Royal Statistical Society.
Series B (Methodologicalpages 157-224, 1988.

[17] Yehuda Naveh, Michal Rimon, Itai Jaeger, Yoav Katz, Miel Vinov, Eitan s Marcu, and Gil
Shurek. Constraint-based random stimuli generation foivkare verification.Al magazine
28(3):13, 2007.

[18] Clark Barrett, Aaron Stump, and Cesare Tinelli. TheiSiatility Modulo Theories Library
(SMT-LIB). ww. SMT- LI B. or g, 2010.

[19] Patrice Godefroid, Michael Y Levin, David Molnar, et ahutomated whitebox fuzz testing.
In NDSS 2008.

[20] Patrice Godefroid, Michael Y. Levin, and David Moln&age: Whitebox fuzzing for security
testing.Queue 10(1):20:20-20:27, January 2012. ISSN 1542-7730.

[21] M. Soos, K. Nohl, and C. Castelluccia. Extending SATvea$ to cryptographic problems. In
SAT-2009Springer, 2009.

[22] Robert J Bayardo and Joseph Daniel Pehoushek. Coumtitgls using connected compo-
nents. INAAAI-2000 pages 157-162, 2000.

