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Abstract

Recently, it has become evident that submodularity naturally captures widely
occurring concepts in machine learning, signal processing and computer vision.
Consequently, there is need for efficient optimization procedures for submodu-
lar functions, especially for minimization problems. While general submodular
minimization is challenging, we propose a new method that exploits existing de-
composability of submodular functions. In contrast to previous approaches, our
method is neither approximate, nor impractical, nor does it need any cumbersome
parameter tuning. Moreover, it is easy to implement and parallelize. A key com-
ponent of our method is a formulation of the discrete submodular minimization
problem as a continuous best approximation problem that is solved through a
sequence of reflections, and its solution can be easily thresholded to obtain an
optimal discrete solution. This method solves both the continuous and discrete
formulations of the problem, and therefore has applications in learning, inference,
and reconstruction. In our experiments, we illustrate the benefits of our method on
two image segmentation tasks.

1 Introduction

Submodularity is a rich combinatorial concept that expresses widely occurring phenomena such as
diminishing marginal costs and preferences for grouping. A set function F : 2V → R on a set V is
submodular if for all subsets S, T ⊆ V , we have F (S ∪ T ) + F (S ∩ T ) ≤ F (S) + F (T ).

Submodular functions underlie the goals of numerous problems in machine learning, computer vision
and signal processing [1]. Several problems in these areas can be phrased as submodular optimization
tasks: notable examples include graph cut-based image segmentation [7], sensor placement [30], or
document summarization [31]. A longer list of examples may be found in [1].

The theoretical complexity of submodular optimization is well-understood: unconstrained mini-
mization of submodular set functions is polynomial-time [19] while submodular maximization is
NP-hard. Algorithmically, however, the picture is different. Generic submodular maximization admits
efficient algorithms that can attain approximate optima with global guarantees; these algorithms are
typically based on local search techniques [16, 35]. In contrast, although polynomial-time solvable,
submodular function minimization (SFM) which seeks to solve

min
S⊆V

F (S), (1)

poses substantial algorithmic difficulties. This is partly due to the fact that one is commonly interested
in an exact solution (or an arbitrarily close approximation thereof), and “polynomial-time” is not
necessarily equivalent to “practically fast”.

Submodular minimization algorithms may be obtained from two main perspectives: combinatorial
and continuous. Combinatorial algorithms for SFM typically use close connections to matroid and
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maximum flow methods; the currently theoretically fastest combinatorial algorithm for SFM scales
as O(n6 + n5τ), where τ is the time to evaluate the function oracle [37] (for an overview of other
algorithms, see e.g., [33]). These combinatorial algorithms are typically nontrivial to implement.

Continuous methods offer an alternative by instead minimizing a convex extension. This idea exploits
the fundamental connection between a submodular function F and its Lovász extension f [32], which
is continuous and convex. The SFM problem (1) is then equivalent to

min
x∈[0,1]n

f(x). (2)

The Lovász extension f is nonsmooth, so we might have to resort to subgradient methods. While
a fundamental result of Edmonds [15] demonstrates that a subgradient of f can be computed in
O(n log n) time, subgradient methods can be sensitive to choices of the step size, and can be slow.
They theoreticaly converge at a rate of O(1/

√
t) (after t iterations). The “smoothing technique” of

[36] does not in general apply here because computing a smoothed gradient is equivalent to solving
the submodular minimization problem. We discuss this issue further in Section 2.

An alternative to minimizing the Lovász extension directly on [0, 1]n is to consider a slightly modified
convex problem. Specifically, the exact solution of the discrete problem minS⊆V F (S) and of its
nonsmooth convex relaxation minx∈[0,1]n f(x) may be found as a level set S0 = {k | x∗k > 0} of
the unique point x∗ that minimizes the strongly convex function [1, 10]:

f(x) + 1
2‖x‖

2. (3)

We will refer to the minimization of (3) as the proximal problem due to its close similarity to proximity
operators used in convex optimization [12]. When F is a cut function, (3) becomes a total variation
problem (see, e.g., [9] and references therein) that also occurs in other regularization problems [1].
Two noteworthy points about (3) are: (i) addition of the strongly convex component 1

2‖x‖
2; (ii) the

ensuing removal of the box-constraints x ∈ [0, 1]n. These changes allow us to consider a convex
dual which is amenable to smooth optimization techniques.

Typical approaches to generic SFM include Frank-Wolfe methods [17] that have cheap iterations
and O(1/t) convergence, but can be quite slow in practice (Section 5); or the minimum-norm-
point/Fujishige-Wolfe algorithm [20] that has expensive iterations but finite convergence. Other
recent methods are approximate [24]. In contrast to several iterative methods based on convex
relaxations, we seek to obtain exact discrete solutions.

To the best of our knowledge, all generic algorithms that use only submodularity are several orders
of magnitude slower than specialized algorithms when they exist (e.g., for graph cuts). However,
the submodular function is not always generic and given via a black-box, but has known structure.
Following [28, 29, 38, 41], we make the assumption that F (S) =

∑r
i=1 Fi(S) is a sum of sufficiently

“simple” functions (see Sec. 3). This structure allows the use of (parallelizable) dual decomposition
techniques for the problem in Eq. (2), with [11, 38] or without [29] Nesterov’s smoothing technique,
or with direct smoothing [41] techniques. But existing approaches typically have two drawbacks: (1)
they use smoothing or step-size parameters whose selection may be critical and quite tedious; and (2)
they still exhibit slow convergence (see Section 5).

These drawbacks arise from working with formulation (2). Our main insight is that, despite seemingly
counter-intuitive, the proximal problem (3) offers a much more user-friendly tool for solving (1)
than its natural convex counterpart (2), both in implementation and running time. We approach
problem (3) via its dual. This allows decomposition techniques which combine well with orthogonal
projection and reflection methods that (a) exhibit faster convergence, (b) are easily parallelizable, (c)
require no extra hyperparameters, and (d) are extremely easy to implement.

The main three algorithms that we consider are: (i) dual block-coordinate descent (equivalently,
primal-dual proximal-Dykstra), which was already shown to be extremely efficient for total variation
problems [2] that are special cases of Problem (3); (ii) Douglas-Rachford splitting using the careful
variant of [4], which for our formulation (Section 4.2) requires no hyper-parameters; and (iii)
accelerated projected gradient [5]. We will see these alternative algorithms can offer speedups beyond
known efficiencies. Our observations have two implications: first, from the viewpoint of solving
Problem (3), they offers speedups for often occurring denoising and reconstruction problems that
employ total variation. Second, our experiments suggest that projection and reflection methods can
work very well for solving the combinatorial problem (1).
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In summary, we make the following contributions: (1) In Section 3, we cast the problem of minimizing
decomposable submodular functions as an orthogonal projection problem and show how existing
optimization techniques may be brought to bear on this problem, to obtain fast, easy-to-code and
easily parallelizable algorithms. In addition, we show examples of classes of functions amenable
to our approach. In particular, for simple functions, i.e., those for which minimizing F (S)− a(S)
is easy for all vectors1 a ∈ Rn, the problem in Eq. (3) may be solved in O(log 1

ε ) calls to such
minimization routines, to reach a precision ε (Section 2,3). (2) In Section 5, we demonstrate the
empirical gains of using accelerated proximal methods, Douglas-Rachford and block coordinate
descent methods over existing approaches: fewer hyperparameters and faster convergence.

2 Review of relevant results from submodular analysis
The relevant concepts we review here are the Lovász extension, base polytopes of submodular
functions, and relationships between proximal and discrete problems. For more details, see [1, 19].

Lovász extension and convexity. The power set 2V may be naturally identified with the ver-
tices of the hypercube, i.e., {0, 1}n. The Lovász extension f of any set function is defined
by linear interpolation, so that for any S ⊂ V , F (S) = f(1S). It may be computed in
closed form once the components of x are sorted: if xσ(1) > · · · > xσ(n), then f(x) =∑n
k=1 xσ(k)

[
F ({σ(1), . . . , σ(k)})− F ({σ(1), . . . , σ(k − 1)})

]
[32]. For the graph cut function, f

is the total variation.

In this paper, we are going to use two important results: (a) if the set function F is submodular, then
its Lovász extension f is convex, and (b) minimizing the set function F is equivalent to minimizing
f(x) with respect to x ∈ [0, 1]n. Given x ∈ [0, 1]n, all of its level sets may be considered and the
function may be evaluated (at most n times) to obtain a set S. Moreover, for a submodular function,
the Lovász extension happens to be the support function of the base polytope B(F ) defined as

B(F ) = {y ∈ Rn | ∀S ⊂ V, y(S) 6 F (S) and y(V ) = F (V )},
that is f(x) = maxy∈B(F ) y

>x [15]. A maximizer of y>x (and hence the value of f(x)), may be
computed by the “greedy algorithm”, which first sorts the components of w in decreasing order
xσ(1) > · · · > xσ(n), and then compute yσ(k) = F ({σ(1), . . . , σ(k)})− F ({σ(1), . . . , σ(k − 1)}).
In other words, a linear function can be maximized over B(F ) in time O(n log n+ nτ) (note that
the term nτ may be improved in many special cases). This is crucial for exploiting convex duality.

Dual of discrete problem. We may derive a dual problem to the discrete problem in Eq. (1) and
the convex nonsmooth problem in Eq. (2), as follows:

min
S⊆V

F (S) = min
x∈[0,1]n

f(x) = min
x∈[0,1]n

max
y∈B(F )

y>x = max
y∈B(F )

min
x∈[0,1]n

y>x = max
y∈B(F )

(y)−(V ), (4)

where (y)− = min{y, 0} applied elementwise. This allows to obtain dual certificates of optimality
from any y ∈ B(F ) and x ∈ [0, 1]n.

Proximal problem. The optimization problem (3), i.e., minx∈Rn f(x) + 1
2‖x‖

2, has intricate
relations to the SFM problem [10]. Given the unique optimal solution x∗ of (3), the maximal (resp.
minimal) optimizer of the SFM problem is the set S∗ of nonnegative (resp. positive) elements of x∗.
More precisely, solving (3) is equivalent to minimizing F (S) + µ|S| for all µ ∈ R. A solution
Sµ ⊆ V is obtained from a solution x∗ as S∗µ = {i | x∗i > µ}. Conversely, x∗ may be obtained
from all S∗µ as x∗k = sup{µ ∈ R | k ∈ S∗µ} for all k ∈ V . Moreover, if x is an ε-optimal solution
of Eq. (3), then we may construct

√
εn-optimal solutions for all Sµ [1; Prop. 10.5]. In practice, the

duality gap of the discrete problem is usually much lower than that of the proximal version of the
same problem, as we will see in Section 5. Note that the problem in Eq. (3) provides much more
information than Eq. (2), as all µ-parameterized discrete problems are solved.

The dual problem of Problem (3) reads as follows:

min
x∈Rn

f(x)+ 1
2‖x‖

2
2 = min

x∈Rn
max
y∈B(F )

y>x+ 1
2‖x‖

2
2 = max

y∈B(F )
min
x∈Rn

y>x+ 1
2‖x‖

2
2 = max

y∈B(F )
− 1

2‖y‖
2
2,

where primal and dual variables are linked as x = −y. Observe that this dual problem is equivalent
to finding the orthogonal projection of 0 onto B(F ).

1Every vector a ∈ Rn may be viewed as a modular (linear) set function: a(S) ,
∑

i∈S a(i).
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Divide-and-conquer strategies for the proximal problems. Given a solution x∗ of the proximal
problem, we have seen how to get S∗µ for any µ by simply thresholding x∗ at µ. Conversely, one can
recover x∗ exactly from at most n well-chosen values of µ. A known divide-and-conquer strategy
[19, 21] hinges upon the fact that for any µ, one can easily see which components of x∗ are greater
or smaller than µ by computing S∗µ. The resulting algorithm makes O(n) calls to the submodular
function oracle. In [25], we extend an alternative approach by Tarjan et al. [42] for cuts to general
submodular functions and obtain a solution to (3) up to precision ε in O(min{n, log 1

ε}) iterations.
This result is particularly useful if our function F is a sum of functions for each of which by itself
the SFM problem is easy. Beyond squared `2-norms, our algorithm equally applies to computing all
minimizers of f(x) +

∑p
j=1 hj(xj) for arbitrary smooth strictly convex functions hj , j = 1, . . . , n.

3 Decomposition of submodular functions
Following [28, 29, 38, 41], we assume that our function F may be decomposed as the sum F (S) =∑r
j=1 Fj(S) of r “simple” functions. In this paper, by “simple” we mean functions G for which

G(S)− a(S) can be minimized efficiently for all vectors a ∈ Rn (more precisely, we require that
S 7→ G(S ∪T )− a(S) can be minimized efficiently over all subsets of V \T , for any T ⊆ V and a).
Efficiency may arise from the functional form of G, or from the fact that G has small support. For
such functions, Problems (1) and (3) become

min
S⊆V

∑r

j=1
Fj(S) = min

x∈[0,1]n

∑r

j=1
fj(x) min

x∈Rn

∑r

j=1
fj(x) + 1

2‖x‖
2
2. (5)

The key to the algorithms presented here is to be able to minimize 1
2‖x−z‖

2
2 +fj(x), or equivalently,

to orthogonally project z onto B(Fj): min 1
2‖y − z‖

2
2 subject to y ∈ B(Fj).

We next sketch some examples of functions F and their decompositions into simple functions Fj . As
shown at the end of Section 2, projecting ontoB(Fj) is easy as soon as the corresponding submodular
minimization problems are easy. Here we outline some cases for which specialized fast algorithms
are known.

Graph cuts. A widely used class of submodular functions are graph cuts. Graphs may be decom-
posed into substructures such as trees, simple paths or single edges. Message passing algorithms
apply to trees, while the proximal problem for paths is very efficiently solved by [2]. For single edges,
it is solvable in closed form. Tree decompositions are common in graphical models, whereas path
decompositions are frequently used for TV problems [2].
Concave functions. Another important class of submodular functions is that of concave functions of
cardinality, i.e., Fj(S) = h(|S|) for a concave function h. Problem (3) for such functions may be
solved in O(n log n) time (see [18] and our appendix in [25]). Functions of this class have been used
in [24, 27, 41]. Such functions also include covering functions [41].
Hierarchical functions. Here, the ground set corresponds to the leaves of a rooted, undirected tree.
Each node has a weight, and the cost of a set of nodes S ⊆ V is the sum of the weights of all nodes
in the smallest subtree (including the root) that spans S. This class of functions too admits to solve
the proximal problem in O(n log n) time [22, 23, 26].
Small support. Any general, potentially slower algorithm such as the minimum-norm-point algo-
rithm can be applied if the support of each Fj is only a small subset of the ground set.

3.1 Dual decomposition of the nonsmooth problem

We first review existing dual decomposition techniques for the nonsmooth problem (1). We always
assume that F =

∑r
j=1 Fj , and define Hr :=

∏r
j=1 Rn ' Rn×r. We follow [29] to derive a dual

formulation (see appendix in [25]):
Lemma 1. The dual of Problem (1) may be written in terms of variables λ1, . . . , λr ∈ Rn as

max
∑r

j=1
gj(λj) s.t. λ ∈

{
(λ1, . . . , λr) ∈ Hr |

∑r

j=1
λj = 0

}
(6)

where gj(λj) = minS⊂V Fj(S)− λj(S) is a nonsmooth concave function.

The dual is the maximization of a nonsmooth concave function over a convex set, onto which it is
easy to project: the projection of a vector y has j-th block equal to yj − 1

r

∑r
k=1 yk. Moreover, in

our setup, functions gj and their subgradients may be computed efficiently through SFM.
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We consider several existing alternatives for the minimization of f(x) on x ∈ [0, 1]n, most of which
use Lemma 1. Computing subgradients for any fj means calling the greedy algorithm, which runs in
time O(n log n). All of the following algorithms require the tuning of an appropriate step size.

Primal subgradient descent (primal-sgd): Agnostic to any decomposition properties, we may
apply a standard simple subgradient method to f . A subgradient of f may be obtained from the
subgradients of the components fj . This algorithm converges at rate O(1/

√
t).

Dual subgradient descent (dual-sgd) [29]: Applying a subgradient method to the nonsmooth dual
in Lemma 1 leads to a convergence rate of O(1/

√
t). Computing a subgradient requires minimizing

the submodular functions Fj individually. In simulations, following [29], we consider a step-size
rule similar to Polyak’s rule (dual-sgd-P) [6], as well as a decaying step-size (dual-sgd-F), and use
discrete optimization for all Fj .
Primal smoothing (primal-smooth) [41]: The nonsmooth primal may be smoothed in several ways
by smoothing the fj individually; one example is f̃εj (xj) = maxyj∈B(Fj) y

>
j xj − ε

2‖yj‖
2. This

leads to a function that is (1/ε)-smooth. Computing f̃εj means solving the proximal problem for Fj .
The convergence rate is O(1/t), but, apart from step size which may be set relatively easily, the
smoothing constant ε needs to be defined.
Dual smoothing (dual-smooth): Instead of the primal, the dual (6) may be smoothed, e.g., by
entropy [8, 38] applied to each gj as g̃εj (λj) = minx∈[0,1]n fj(x) + εh(x) where h(x) is a negative
entropy. Again, the convergence rate is O(1/t) but there are two free parameters (in particular the
smoothing constant ε which is hard to tune). This method too requires solving proximal problems for
all Fj in each iteration.

Dual smoothing with entropy also admits coordinate descent methods [34] that exploit the decompo-
sition, but we do not compare to those here.

3.2 Dual decomposition methods for proximal problems

We may also consider Eq. (3) and first derive a dual problem using the same technique as in
Section 3.1. Lemma 2 (proved in the appendix in [25]) formally presents our dual formulation as a
best approximation problem. The primal variable can be recovered as x = −

∑
j yj .

Lemma 2. The dual of Eq. (3) may be written as the best approximation problem

min
λ,y

‖y − λ‖22 s.t. λ ∈
{

(λ1, . . . , λr) ∈ Hr |
∑r

j=1
λj = 0

}
, y ∈

∏r

j=1
B(Fj). (7)

We can actually eliminate the λj and obtain the simpler looking dual problem

max
y
−1

2

∥∥∥∑r

j=1
yj

∥∥∥2
2

s.t. yj ∈ B(Fj), j ∈ {1, . . . , r} (8)

Such a dual was also used in [40]. In Section 5, we will see the effect of solving one of these duals or
the other. For the simpler dual (8) the case r = 2 is of special interest; it reads

max
y1∈B(F1), y2∈B(F2)

−1

2
‖y1 + y2‖22 ⇐⇒ min

y1∈B(F1),−y2∈−B(F2)
‖y1 − (−y2)‖2. (9)

We write problem (9) in this suggestive form to highlight its key geometric structure: it is, like (7),
a best approximation problem: i.e., the problem of finding the closest point between the polytopes
B(F1) and −B(F2). Notice, however, that (7) is very different from (9)—the former operates in a
product space while the latter does not, a difference that can have impact in practice (see Section 5).
We are now ready to present algorithms that exploit our dual formulations.

4 Algorithms
We describe a few competing methods for solving our smooth dual formulations. We describe the
details for the special 2-block case (9); the same arguments apply to the block dual from Lemma 2.

4.1 Block coordinate descent or proximal-Dykstra

Perhaps the simplest approach to solving (9) (viewed as a minimization problem) is to use a block
coordinate descent (BCD) procedure, which in this case performs the alternating projections:
yk+1
1 ← argminy1∈B(F1) ‖y1 − (−yk2 )‖22; yk+1

2 ← argminy2∈B(F2) ‖y2 − (−yk+1
1 )‖2. (10)
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The iterations for solving (8) are analogous. This BCD method (applied to (9)) is equivalent to
applying the so-called proximal-Dykstra method [12] to the primal problem. This may be seen by
comparing the iterates. Notice that the BCD iteration (10) is nothing but alternating projections onto
the convex polyhedra B(F1) and B(F2). There exists a large body of literature studying method of
alternating projections—we refer the interested reader to the monograph [13] for further details.

However, despite its attractive simplicity, it is known that BCD (in its alternating projections form),
can converge arbitrarily slowly [4] depending on the relative orientation of the convex sets onto which
one projects. Thus, we turn to a potentially more effective method.

4.2 Douglas-Rachford splitting

The Douglas-Rachford (DR) splitting method [14] includes algorithms like ADMM as a special
case [12]. It avoids the slowdowns alluded to above by replacing alternating projections with
alternating “reflections”. Formally, DR applies to convex problems of the form [3, 12]

minx φ1(x) + φ2(x), (11)

subject to the qualification ri(domφ1) ∩ ri(domφ2) 6= ∅. To solve (11), DR starts with some z0,
and performs the three-step iteration (for k ≥ 0):

1. xk = proxφ2
(zk); 2. vk = proxφ1

(2xk − zk); 3. zk+1 = zk + γk(vk − zk), (12)

where γk ∈ [0, 2] is a sequence of scalars that satisfy
∑
k γk(2 − γk) = ∞. The sequence {xk}

produced by iteration (12) can be shown to converge to a solution of (11) [3; Thm. 25.6].

Introducing the reflection operator
Rφ := 2 proxφ− I,

and setting γk = 1, the DR iteration (12) may be written in a more symmetric form as

xk = proxφ2
(zk), zk+1 = 1

2 [Rφ1Rφ2 + I]zk, k ≥ 0. (13)

Applying DR to the duals (7) or (9), requires first putting them in the form (11), either by introducing
extra variables or by going back to the primal, which is unnecessary. This is where the special
structure of our dual problem proves crucial, a recognition that is subtle yet remarkably important.

Instead of applying DR to (9), consider the closely related problem

miny δ1(y) + δ−2 (y), (14)

where δ1, δ−2 are indicator functions for B(F1) and −B(F2), respectively. Applying DR directly
to (14) does not work because usually ri(dom δ1) ∩ ri(dom δ2) = ∅. Indeed, applying DR to (14)
generates iterates that diverge to infinity [4; Thm. 3.13(ii)]. Fortunately, even though the DR iterates
for (14) may diverge, Bauschke et al. [4] show how to extract convergent sequences from these
iterates, which actually solve the corresponding best approximation problem; for us this is nothing
but the dual (9) that we wanted to solve in the first place. Theorem 3, which is a simplified version
of [4; Thm. 3.13], formalizes the above discussion.

Theorem 3. [4] Let A and B be nonempty polyhedral convex sets. Let ΠA (ΠB) denote orthogonal
projection onto A (B), and let RA := 2ΠA − I (similarly RB) be the corresponding reflection
operator. Let {zk} be the sequence generated by the DR method (13) applied to (14). If A ∩ B 6= ∅,
then {zk}k≥0 converges weakly to a fixed-point of the operator T := 1

2 [RARB + I]; otherwise
‖zk‖2 →∞. The sequences {xk} and {ΠAΠBzk} are bounded; the weak cluster points of either of
the two sequences

{(ΠARBzk, xk)}k≥0 {(ΠAxk, xk)}k≥0, (15)

are solutions best approximation problem mina,b ‖a− b‖ such that a ∈ A and b ∈ B.

The key consequence of Theorem 3 is that we can apply DR with impunity to (14), and extract from
its iterates the optimal solution to problem (9) (from which recovering the primal is trivial). The most
important feature of solving the dual (9) in this way is that absolutely no stepsize tuning is required,
making the method very practical and user friendly.
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pBCD, iter 1 pBCD, iter 7 DR, iter 1 DR, iter 4

smooth gap νs = 3.4 · 106 νs = 4.4 · 105 νs = 4.17 · 105 νs = 8.05 · 104
discrete gap νd = 4.6 · 103 νd = 5.5 · 102 νd = 6.6 · 103 νd = 5.9 · 10−1

Figure 1: Segmentation results for the slowest and fastest projection method, with smooth (νs) and discrete
(νd) duality gaps. Note how the background noise disappears only for small duality gaps.

5 Experiments
We empirically compare the proposed projection methods2 to the (smoothed) subgradient methods
discussed in Section 3.1. For solving the proximal problem, we apply block coordinate descent (BCD)
and Douglas-Rachford (DR) to Problem (8) if applicable, and also to (7) (BCD-para, DR-para). In
addition, we use acceleration to solve (8) or (9) [5]. The main iteration cost of all methods except
for the primal subgradient method is the orthogonal projection onto polytopes B(Fj). The primal
subgradient method uses the greedy algorithm in each iteration, which runs in O(n log n). However,
as we will see, its convergence is so slow to counteract any benefit that may arise from not using
projections. We do not include Frank-Wolfe methods here, since FW is equivalent to a subgradient
descent on the primal and converges correspondingly slowly.

As benchmark problems, we use (i) graph cut problems for segmentation, or MAP inference in a
4-neighborhood grid-structured MRF, and (ii) concave functions similar to [41], but together with
graph cut functions. The functions in (i) decompose as sums over vertical and horizontal paths. All
horizontal paths are independent and can be solved together in parallel, and similarly all vertical
paths. The functions in (ii) are constructed by extracting regions Rj via superpixels and, for each
Rj , defining the function Fj(S) = |S||Rj \ S|. We use 200 and 500 regions. The problems
have size 640 × 427. Hence, for (i) we have r = 640 + 427 (but solve it as r = 2) and for (ii)
r = 640 + 427 + 500 (solved as r = 3). More details and experimental results may be found in [25].

Two functions (r = 2). Figure 2 shows the duality gaps for the discrete and smooth (where
applicable) problems for two instances of segmentation problems. The algorithms working with
the proximal problems are much faster than the ones directly solving the nonsmooth problem. In
particular DR converges extremely fast, faster even than BCD which is known to be a state-of-the-art
algorithms for this problem [2]. This, in itself, is a new insight for solving TV. If we aim for parallel
methods, then again DR outperforms BCD. Figure 3 (right) shows the speedup gained from parallel
processing. Using 8 cores, we obtain a 5-fold speed-up. We also see that the discrete gap shrinks
faster than the smooth gap, i.e., the optimal discrete solution does not require to solve the smooth
problem to extremely high accuracy. Figure 1 illustrates example results for different gaps.

More functions (r > 2). Figure 3 shows example results for four problems of sums of concave and
cut functions. Here, we can only run DR-para. Overall, BCD, DR-para and the accelerated gradient
method perform very well.

In summary, our experiments suggest that projection methods can be extremely useful for solving
the combinatorial submodular minimization problem. Of the tested methods, DR, cyclic BCD and
accelerated gradient perform very well. For parallelism, applying DR on (9) converges much faster
than BCD on the same problem. Moreover, in terms of running times, running the DR method with a
mixed Matlab/C implementation until convergence on a single core is only 3-8 times slower than the
optimized efficient C code of [7], and only 2-4 times on 2 cores. These numbers should be read while
considering that, unlike [7], the projection methods naturally lead to parallel implementations, and
are able to integrate a large variety of functions.

6 Conclusion
We have presented a novel approach to submodular function minimization based on the equivalence
with a best approximation problem. The use of reflection methods avoids any hyperparameters
and reduce the number of iterations significantly, suggesting the suitability of reflection methods

2Code and data corresponding to this paper are available at https://sites.google.com/site/mloptstat/drsubmod
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Figure 2: Comparison of convergence behaviors. Left: discrete duality gaps for various optimization
schemes for the nonsmooth problem, from 1 to 1000 iterations. Middle: discrete duality gaps for
various optimization schemes for the smooth problem, from 1 to 100 iterations. Right: corresponding
continuous duality gaps. From top to bottom: two different images.
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Figure 3: Left two plots: convergence behavior for graph cut plus concave functions. Right: Speedup
due to parallel processing.

for combinatorial problems. Given the natural parallelization abilities of our approach, it would
be interesting to perform detailed empirical comparisons with existing parallel implementations of
graph cuts (e.g., [39]). Moreover, a generalization beyond submodular functions of the relationships
between combinatorial optimization problems and convex problems would enable the application of
our framework to other common situations such as multiple labels (see, e.g., [29]).
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