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Abstract

We consider how to transfer knowledge from previous tasks (MDPs) to a cur-
rent task in long-lived and bounded agents that must solve a sequence of tasks
over a finite lifetime. A novel aspect of our transfer approach is that we reuse
reward functions. While this may seem counterintuitive, we build on the insight
of recent work on the optimal rewards problem that guiding an agent’s behav-
ior with reward functions other than the task-specifying reward function can help
overcome computational bounds of the agent. Specifically, we use good guid-
ance reward functions learned on previous tasks in the sequence to incrementally
train a reward mapping function that maps task-specifying reward functions into
good initial guidance reward functions for subsequent tasks. We demonstrate that
our approach can substantially improve the agent’s performance relative to other
approaches, including an approach that transfers policies.

1 Introduction

We consider agents that live for a long time in a sequential decision-making environment. While
many different interpretations are possible for the notion of long-lived, here we consider agents
that have to solve a sequence of tasks over a continuous lifetime. Thus, our problem is closely
related to that of transfer learning in sequential decision-making, which can be thought of as a
problem faced by agents that have to solve a set of tasks. Transfer learning [18] has explored the
reuse across tasks of many different components of a reinforcement learning (RL) architecture,
including value functions [16, 5, 8], policies [9, 20], and models of the environment [1, 17]. Other
transfer approaches have considered parameter transfer [19], selective reuse of sample trajectories
from previous tasks [7], as well as reuse of learned abstract representations such as options [12, 6].

A novel aspect of our transfer approach in long-lived agents is that we will reuse reward functions.
At first blush, it may seem odd to consider using a reward function different from the one specifying
the current task in the sequence (indeed, in most RL research rewards are considered an immutable
part of the task description). But there is now considerable work on designing good reward functions,
including reward-shaping [10], inverse RL [11], optimal rewards [13] and preference-elicitation [3].
In this work, we specifically build on the insight of the optimal rewards problem (ORP; described in
more detail in the next section) that guiding an agent’s behavior with reward functions other than the
task-specifying reward function can help overcome computational bounds in the agent architecture.
We base our work on an algorithm from Sorg et.al. [14] that learns good guidance reward functions
incrementally in a single-task setting.

Our main contribution in this paper is a new approach to transfer in long-lived agents in which we
use good guidance reward functions learned on previous tasks in the sequence to incrementally train
a reward mapping function that maps task-specifying reward functions into good initial guidance
reward functions for subsequent tasks. We demonstrate that our approach can substantially improve
a long-lived agent’s performance relative to other approaches, first on an illustrative grid world
domain, and second on a networking domain from prior work [9] on the reuse of policies for transfer.



In the grid world domain only the task-specifying reward function changes with tasks, while in the
networking domain both the reward function and the state transition function change with tasks.

2 Background: Optimal Rewards for Bounded Agents in Single Tasks

We consider sequential decision-making environments formulated as controlled Markov processes
(CMPs); these are defined via a state space .S, an action space A, and a transition function 7" that
determines a distribution over next states given a current state and action. A task in such a CMP is
defined via a reward function R that maps state-action pairs to scalar values. The objective of the
agent in a task is to execute the optimal policy, i.e., to choose actions in such a way as to optimize
utility defined as the expected value of cumulative reward over some lifetime. A CMP and reward
function together define a Markov decision process or MDP; hence tasks in this paper are MDPs.

There are many approaches to planning an optimal policy in MDPs. Here we will use UCT [4] which
incrementally plans the action to take in the current state. It simulates a number of trajectories from
the current state up to some maximum depth, choosing actions at each point based on the sum of an
estimated action-value that encourages exploitation and a reward bonus that encourages exploration.
It has theoretical guarantees of convergence and works well in practice on a variety of large-scale
planning problems. We use UCT in this paper because it is one of the state of the art algorithms in
RL planning and because there exists a good optimal reward finding algorithm for it [14].

Optimal Rewards Problem (ORP). In almost all of RL research, the reward function is consid-
ered part of the task specification and thus unchangeable. The optimal reward framework of Singh
et al. [13] stems from the observation that a reward function plays two roles simultaneously in RL
problems. The first role is that of evaluation in that the task-specifying reward function is used by
the agent designer to evaluate the actual behavior of the agent. The second is that of guidance in that
the reward function is also used by the RL algorithm implemented by the agent to determine its be-
havior (e.g., via Q-learning [21] or UCT planning [4]). The optimal rewards problem separates these
two roles into two separate reward functions, the task-specifying objective reward function used to
evaluate performance, and an internal reward function used to guide agent behavior. Given a CMP
M, an objective reward function R°, an agent A parameterized by an internal reward function, and
a space of possible internal reward functions R, an optimal internal reward function R?" is defined
as follows (throughout superscript o will denoted objective evaluation quantities and superscript @
will denote internal quantities):

R = By a(re ,{U"h},
arggilg% h~(A(R%),M) (h)

where A(R?) is the agent with internal reward function R?, h ~ (A(R*), M) is a random history
(trajectory of alternating states and actions) obtained by the interaction of agent A(R’) with CMP
M, and U°(h) is the objective utility (as specified by R°) to the agent designer of interaction history
h. The optimal internal reward function will depend on the agent .A’s architecture and its limitations,
and this distinguishes ORP from other reward-design approaches such as inverse-RL. When would
the optimal internal reward function be different from the objective reward function? If an agent is
unbounded in its capabilities with respect to the CMP then the objective reward function is always an
optimal internal reward function. More crucially though, in the realistic setting of bounded agents,
optimal internal reward functions may be quite different from objective reward functions. Singh
et al.[13] and Sorg et al.[14] provide many examples and some theory of when a good choice of
internal reward can mitigate agent bounds, including bounds corresponding to limited lifetime to
learn [13], limited memory [14], and limited resources for planning (the specific bound of interest
in this paper).

PGRD: Solving the ORP on-line while planning. Computing R*" can be computationally non-
trivial. We will use Sorg et.al.’s [14, 15] policy gradient reward design (PGRD) method that is based
on the insight that any planning algorithm can be viewed as procedurally translating the internal
reward function R’ into behavior—that is, R’ are indirect parameters of the agent’s policy. PGRD
cheaply computes the gradient of the objective utility with respect to the R’ parameters through UCT
planning. Specifically, it takes a simulation model of the CMP and an objective reward function and
uses UCT to simultaneously plan actions with respect to the current internal reward function as well
as to update the internal reward function in the direction of the gradient of the objective utility for
use in the next planning step.
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Figure 1: The four agent types compared in this paper. In each figure, time flows from left to right. The
sequence of objective reward parameters and task durations for n tasks are shown in the environment portion
of each figure. In figures (b-d) the agent portion of the figure is further split into a critic-agent and an actor-
agent; figure (a) does not have this split because it is the conventional agent. The critic-agent translates the
objective reward parameters 6° into the internal reward parameters 6°. The actor-agent is a UCT agent in all
our implementations. The critic-agent component varies across the figures and is crucial to understanding the
differences among the agents (see text for detailed descriptions).

3 Four Agent Architectures for the Long-Lived Agent Problem

Long-Lived Agent’s Objective Utility. We will consider the case where objective rewards are
linear functions of objective reward features. Formally, the j*" task is defined by objective reward
function RY(s,a) = 09 -1°(s, a), where 07 is the parameter vector for the j th task, 1° are the task-
independent objective reward features of state and action, and ‘-’ denotes the inner-product. Note
that the features are constant across tasks while the parameters vary. The j** task lasts for t; time
steps. Given some agent .4 the expected objective utility achieved for a particular task sequence

{09, }szl, is Epwqa,0) Zjil {Ugf(hj)}, where for ease of exposition we denote the history

during task j simply as h;. In general, there may be a distribution over task sequences, and the
expected objective utility would then be a further expectation over such a distribution.

In some transfer or other long-lived agent research, the emphasis is on learning in that the agent is
assumed to lack complete knowledge of the CMP and the task specifications. Our emphasis here
is on planning in that the agent is assumed to know the CMP perfectly as well as the task specifi-
cations as they change. If the agent were unbounded in planning capacity, there would be nothing
interesting left to consider because the agent could simply find the optimal policy for each new task
and execute it. What makes our problem interesting therefore is that our UCT-based planning agent
is computationally limited: the depth and number of trajectories feasible are small enough (relative



to the size of the CMP) that it cannot find near-optimal actions. This sets up the potential for both
the use of the ORP and of transfer across tasks. Note that basic UCT does use a reward function but
does not use an initial value function or policy and hence changing a reward function is a natural
and consequential way to influence UCT. While non-trivial modifications of UCT could allow use of
value functions and/or policies, we do not consider them here. In addition, in our setting a model of
the CMP is available to the agent and so there is no scope for transfer by reuse of model knowledge.
Thus, our reuse of reward functions may well be the most consequential option available in UCT.

Next we discuss four different agent architectures represented graphically in Figure 1, starting with
a conventional agent that ignores both the potential of transfer and that of ORP, followed by three
different agents that do not to varying degrees.

Conventional Agent. Figure 1(a) shows the baseline conventional UCT-based agent that ignores
the possibility of transfer and treats each task separately. It also ignores ORP and treats each task’s
objective reward as the internal reward for UCT planning during that task.

The remaining three agents will all consider the ORP, and share the following details: The space of
internal reward functions R is the space of all linear functions of internal reward features 1" (s, a),
ie., R(s,a) = {0 -9%(s,a)}ygco, where © is the space of possible parameters ¢ (in this paper all
finite vectors). Note that the internal reward features v/ and the objective reward features 1/° do not
have to be identical.

Non-Transfer ORP Agent. Figure 1(b) shows the non-transfer agent that ignores the possibility of
transfer but exploits ORP. It initializes the internal reward function to the objective reward function
of each new task as it starts and then uses PGRD to adapt the internal reward function while acting
in that task. Nothing is transferred across task boundaries. This agent was designed to help separate
the contributions of ORP and transfer to performance gains.

Reward-Mapping-Transfer ORP Agent. Figure 1(c) shows the reward-mapping agent that in-
corporates our main new idea. It exploits both transfer and ORP via incrementally learning a reward
mapping function. A reward mapping function f maps objective reward function parameters to in-
ternal reward function parameters: V7, 9; =f (9;’) The reward mapping function is used to initialize
the internal reward function at the beginning of each new task. PGRD is used to continually adapt
the initialized internal reward function throughout each task.

The reward mapping function is incrementally trained as follows: when task j ends, the objective
reward function parameters 67 and the adapted internal reward function parameters é; are used as
an input-output pair to update the reward mapping function. In our work, we use nonparametric
kernel-regression to learn the reward mapping function. Pseudocode for a general reward mapping
agent is presented in Algorithm 1.

Sequential-Transfer ORP Agent. Figure 1(d) shows the sequential-transfer agent. It also exploits
both transfer and ORP. However, it does not use a reward mapping function but instead continu-
ally updates the internal reward function across task boundaries using PGRD. The internal reward
function at the end of a task becomes the initial internal reward function at the start of the next task
achieving a simple form of sequential transfer.

4 Empirical Evaluation

The four agent architectures are compared to demonstrate that the reward mapping approach can
substantially improve the bounded agent’s performance, first on an illustrative grid world domain,
and second on a networking routing domain from prior work [9] on the transfer of policies.

4.1 Food-and-Shelter Domain

The purpose of the experiments in this domain are (1) to systematically explore the relative benefits
of the use of ORP, and of transfer (with and without the use of the reward-mapping function), each
in isolation and together, (2) to explore the sensitivity and dependence of these relative benefits on
parameters of the long-lived setting such as mean duration of tasks, and (3) to visualize what is
learned by the reward mapping function.



Algorithm 1 General pseudocode for Reward Mapping Agent (Figure 1(c))

1: Input: {0;-’, i };?:1, where j is task indicator, ¢; is task duration, and 0;-’ are the objective reward

function parameters specifying task j.

2:
3: fort=1,2,3,...do
4: if a new task j starts then
5: obtain current objective reward parameters 67
6: compute: 6’ = f(69)
7: initialize the internal reward function using 9;
8: end if
9: ay := planning(sy; 9;'-) (select action using UCT guided by reward function 0;)
10: (St+1, Tt+1) = takeAction(st, at)
11: 6° := updateInternalRewardFunction(6?, sy, a;, s;41, 71+1) (via PGRD)
12:
13: if current task ends then .
14: obtain current internal reward parameters as 9;
15: update reward mapping function f using training pair (6°, é;)
16: end if
17: end for
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(a) Food-and-Shelter Domain. (b) Network Routing Domain.

Figure 2: Domains used in empirical evaluation; the network routing domain comes from [9].

The environment is a simple 3 by 3 maze with three left-to-right corridors. Thick black lines indicate
impassable walls. The position of the shelter and possible positions of food are shown in Figure 2.

Dynamics. The shelter breaks down with a probability of 0.1 at each time step. Once the shelter
is broken, it remains broken until repaired by the agent. Food appears at the rightmost column of
one of the three corridors and can be eaten by the agent when the agent is at the same location with
the food. When food is eaten, new food reappears in a different corridor. The agent can move in
four cardinal directions, and every movement action has a probability of 0.1 to result in movement
in a random direction; if the direction is blocked by a wall or the boundary, the action results in no
movement. The agent eats food and repairs shelter automatically whenever collocated with food and
shelter respectively. The discount factor v = 0.95.

State. A state is a tuple (I, f, h), where [ is the location of the agent, f is the location of the food,
and h indicates whether the shelter is broken.

Objective Reward Function. At each time step, the agent receives a positive reward of e (the eat-
bonus) for eating food and a negative reward of b (the broken-cost) if the shelter is broken. Thus,
the objective reward function’s parameters are 7 = (e;,b;), where e; € [0,1] and b; € [-1,0].
Different tasks will require the agent to behave in different ways. For example, if (e;, b;) = (1,0),
the agent should explore the maze to eat more food. If (e;,b;) = (0, -1), the agent should remain at
the shelter’s location in order to repair the shelter as it breaks.

Space of Internal Reward Functions. The internal reward function is R}(s) = R9(s) + 044" (s),

where R9(s) is the objective reward function, ¢’(s) = 1 — ﬁ(s) is the inverse recency feature
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Figure 3: (Left) Performance of four agents in food-and-shelter domain at three different mean task durations.
(Middle and Right) Comparing performance while accounting for computational overhead of learning and using
the reward mapping function. See text for details.

and n;(s) is the number of time steps since the agent’s last visit to the location in state s. Since
there is exactly one internal reward parameter, 6} is a scalar. A positive 6 encourages the agent to

visit locations not visited recently, and a negative 0;'» encourages the agent to visit locations visited
recently.

Results: Performance advantage of reward mapping. 100 sequences of 200 tasks were gener-
ated, with Poisson distributions for task durations, and with objective reward function parameters
sampled uniformly from their ranges. The agents used UCT with depth 2 and 500 trajectories; the
conventional agent is thereby bounded as evidenced in its poor performance (see Figure 3).

The left panel in Figure 3 shows average objective reward per Optimal Internal Reward for UCT
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function of the previous task can hurt performance in the se- Figure 4: Reward mapping function
quential transfer setting if the current task requires quite differ- Visualization: 7op: Optimal mapping,
ent behavior from the previous—but it can help if two succes- Boffom: Mapping found by the Re-
sive tasks are similar. Correcting the internal reward function ward Mapping agent after 50 tasks.
could cost a large number of steps. These effects are exacerbated by longer task durations because
the agent then has longer to adapt its internal reward function to each task. In general, as task
duration increases, the non-transfer agent improves but the sequential transfer agent worsens.

Results: Performance Comparison considering computational overhead. The above results
ignore the computational overhead incurred by learning and using the reward mapping function.
The two rightmost plots in the bottom row of Figure 3 show the average objective reward per time
step as a function of milliseconds per decision for the four agent architectures for a range of depth
{1,...,6}, and trajectory-count {200, 300, ...,600} parameters for UCT. The plots show that for



the entire range of time-per-decision, the best performing agents are reward-mapping agents—in
other words, it is not better to spend the overhead time of the reward-mapping on additional UCT
search. This can be seen by observing that the highest dot at any vertical column on the x-axis
belongs to the reward mapping agent. Thus, the overhead of the reward mapping function in the
reward mapping agent is insignificant relative to the computational cost of UCT (this last cost is all
the conventional agent incurs).

Results: Reward mapping visualization. Using a fixed set of tasks (as described above) with
mean duration of 500, we estimated the optimal internal reward parameter (the coefficient of the
inverse-recency feature) for UCT by a brute-force grid search. The optimal internal reward parame-
ter is visualized as a function of the two parameters of the objective reward function (broken cost and
eat bonus) in Figure 4, top. Negative coefficients (light color squares) for inverse-recency feature
discourage exploration while positive coefficients (dark color squares) encourage exploration. As
would be expected the top right corner (high penalty for broken shelter and low reward for eating)
discourages exploration while the bottom left corner (high reward for eating and low cost for broken
shelter) encourages exploration. Figure 4, bottom, visualizes the learned reward mapping function
after training on 50 tasks. There is a clearly similar pattern to the optimal mapping in the upper
graph, though it has not captured the finer details.

4.2 Network Routing Domain

The purposes of the following experiments are to (1) compare performance of our agents to a com-
peting policy transfer method [9] from a closely related setting on a networking application domain
defined by the competing method; (2) demonstrate that our reward mapping and other agents can be
extended to a multi-agent setting as required by this domain; and (3) demonstrate that the reward-
mapping approach can be extended to handle task changes that involve changes to the transition
function as well as objective reward.

The network routing domain [9] (see Figure 2(b)) is defined from the following components. (1) A
set of routers, or nodes. Every router has a queue to store packets. In our experiments, all queues
are of size three. (2) A set of links between two routers. All links are bidirectional and full-duplex,
and every link has a weight (uniformly sampled from {1,2,3}) to indicate the cost of transmitting a
packet. (3) A set of active packets. Every packet is a tuple (source, destination, alive-time), where
source is the node which generated the packet, destination is the node that the packet is sent to, and
alive-time is the time period that the packet has existed in the network. When a packet is delivered
to its destination node, the alive-time is the end-to-end delay. (4) A set of packet generators. Every
node has a packet generator that specifies a stochastic method to generate packets. (5) A set of
power consumption functions. Every node’s power consumption at time ¢ is the number of packets
in its queue multiplied by a scalar parameter sampled uniformly in the range [0, 0.5].

Actions, dynamics, and states. Every node makes its routing decision separately and has its own
action space (these determine which neighbor the first packet in the queue is sent to). If multiple
packets reach the same node simultaneously, they are inserted into the queue in random order. Pack-
ets that arrives after the queue is full cause network congestion and result in packet loss. The global
state at time ¢ consists of the contents of all queues at all nodes at ¢.

Transition function. In a departure from the original definition of the routing domain, we parameter-
ize the transition function to allow a comparison of agents’ performance when transition functions
change. Originally, the state transition function in the routing problem was determined by the fixed
network topology and by the parameters of the packet generators that determined among other things
the destination of packets. In our modification, nodes in the network are partitioned into three groups
(G1, G4, and G3) and the probabilities that the destination of a packet belongs to each group of nodes
(p©1, pY2, and p©3) are parameters we manipulate to change the state transition function.

Objective reward function. The objective reward function is a linear combination of three objective
reward features, the delay measured as the sum of the inverse end-to-end delay of all packets received
at all nodes at time ¢, the loss measured as the number of lost packets at time ¢, and power measured
as the sum of the power consumption of all nodes at time ¢. The weights of these three features are
the parameters of the objective reward function. The weight for the delay feature € (0, 1), while the
weights for both loss and power are € (—0.2,0); different choices of these weights correspond to
different objective reward functions.



Internal reward function.  The internal reward function for the agent at node £ is R; p(s,a0) =
RY(s,a)+0} ,1;.(s,a), where RY(s, a) is the objective reward function, 1/}, (s, a) is a binary feature
vector with one binary feature for each (packet destination, action) pair. It sets the bits corresponding
to the destination of the first packet in node k’s queue at state s and action a to 1; all other bits are
set to 0. The internal reward features are capable of representing arbitrary policies (and thus we also
implemented classical policy gradient with these features using OLPOMDP [2] but found it to be
far slower than the use of PGRD with UCT and hence don’t present those results here).

Extension of Reward Mapping Agent to handle transition function changes. The parameters
describing the transition function are concatenated with the parameters defining the objective reward
function and used as input to the reward mapping function (whose output remains the initial internal
reward function).

Handling Multi-Agency. Every nodes’ agent observes the full state of the environment. All agents
make decisions independently at each time step. Nodes do not know other nodes’ policies, but can
observe how the other nodes have acted in the past and use the empirical counts of past actions to
sample other nodes’ actions accordingly during UCT planning.

Competing policy transfer method. The competing
policy transfer agent from [9] reuses policy knowledge
across tasks based on a model-based average-reward
RL algorithm. Their method keeps a library of poli-
cies derived from previous tasks and for each new task
chooses an appropriate policy from the library and then
improves the initial policy with experience. Their pol-
icy selection criterion was designed for the case when
only the linear reward parameters change. However,
in our experiments, tasks could differ in three different
ways: (1) only reward functions change, (2) only tran-
sition functions change, and (3) both reward functions
and transition functions change. Their policy selection
criterion is applied to cases (1) and (3). For case (2),
when only transition functions change, their method is Figure 5: Performance on the network rout-
modified to select the library-policy whose transition g domain. (Left) tasks differ in objective re-

function parameters are closest to the new transition ard functions (R) only. (Middle) tasks differ
function parameters. in transition function (T) only. (Right) tasks

differ in both objective reward and transition
Results: Performance advantage of Reward Map- (R andT) functions. See text for details.
ping Agent. Three sets of 100 task sequences were generated, one in which the tasks differed
in objective reward function only, another in which they differed in state transition function only,
and third in which they differed in both. Figure 5 compares the average objective reward per time
step for all four agents defined above as well as the competing policy transfer agent on the three sets.
In all cases, the reward-mapping agent works best and the conventional agent worst. The competing
policy transfer agent is second best when only the reward-function changes—just the setting for
which it was designed.
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5 Conclusion and Discussion

Reward functions are a particularly consequential locus for knowledge transfer; reward functions
specify what the agent is to do but not how, and can thus transfer across changes in the environment
dynamics (transition function) unlike previously explored loci for knowledge transfer such as value
functions or policies or models. Building on work on the optimal reward problem for single task
settings, our main algorithmic contribution for our long-lived agent setting is to take good guid-
ance reward functions found for previous objective rewards and learn a mapping used to effectively
initialize the guidance reward function for subsequent tasks. We demonstrated that our reward map-
ping approach can outperform alternate approaches; current and future work is focused on greater
theoretical understanding of the general conditions under which this is true.
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