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Abstract

Determinantal point processes (DPPs) are random point processes well-suited for
modeling repulsion. In machine learning, the focus of DPP-based models has been
on diverse subset selection from a discrete and finite base set. This discrete setting
admits an efficient sampling algorithm based on the eigendecomposition of the
defining kernel matrix. Recently, there has been growing interest in using DPPs
defined on continuous spaces. While the discrete-DPP sampler extends formally to
the continuous case, computationally, the steps required are not tractable in general.
In this paper, we present two efficient DPP sampling schemes that apply to a wide
range of kernel functions: one based on low rank approximations via Nyström
and random Fourier feature techniques and another based on Gibbs sampling. We
demonstrate the utility of continuous DPPs in repulsive mixture modeling and
synthesizing human poses spanning activity spaces.

1 Introduction
Samples from a determinantal point process (DPP) [15] are sets of points that tend to be spread out.
More specifically, given Ω ⊆ Rd and a positive semidefinite kernel function L : Ω × Ω 7→ R, the
probability density of a point configuration A ⊂ Ω under a DPP with kernel L is given by

PL(A) ∝ det(LA) , (1)

where LA is the |A| × |A| matrix with entries L(x,y) for each x,y ∈ A. The tendency for repulsion
is captured by the determinant since it depends on the volume spanned by the selected points in the
associated Hilbert space of L. Intuitively, points similar according to L or points that are nearly
linearly dependent are less likely to be selected.

Building on the foundational work in [5] for the case where Ω is discrete and finite, DPPs have been
used in machine learning as a model for subset selection in which diverse sets are preferred [2, 3,
9, 12, 13]. These methods build on the tractability of sampling based on the algorithm of Hough et
al. [10], which relies on the eigendecomposition of the kernel matrix to recursively sample points
based on their projections onto the subspace spanned by the selected eigenvectors.

Repulsive point processes, like hard core processes [7, 16], many based on thinned Poisson processes
and Gibbs/Markov distributions, have a long history in the spatial statistics community, where
considering continuous Ω is key. Many naturally occurring phenomena exhibit diversity—trees tend
to grow in the least occupied space [17], ant hill locations are over-dispersed relative to uniform
placement [4] and the spatial distribution of nerve fibers is indicative of neuropathy, with hard-core
processes providing a critical tool [25]. Repulsive processes on continuous spaces have garnered
interest in machine learning as well, especially relating to generative mixture modeling [18, 29].

The computationally attractive properties of DPPs make them appealing to consider in these appli-
cations. On the surface, it seems that the eigendecomposition and projection algorithm of [10] for
discrete DPPs would naturally extend to the continuous case. While this is true in a formal sense as L
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becomes an operator instead of a matrix, the key steps such as the eigendecomposition of the kernel
and projection of points on subspaces spanned by eigenfunctions are computationally infeasible
except in a few very limited cases where approximations can be made [14]. The absence of a tractable
DPP sampling algorithm for general kernels in continuous spaces has hindered progress in developing
DPP-based models for repulsion.

In this paper, we propose an efficient algorithm to sample from DPPs in continuous spaces using
low-rank approximations of the kernel function. We investigate two such schemes: Nyström and
random Fourier features. Our approach utilizes a dual representation of the DPP, a technique that has
proven useful in the discrete Ω setting as well [11]. For k-DPPs, which only place positive probability
on sets of cardinality k [13], we also devise a Gibbs sampler that iteratively samples points in the
k-set conditioned on all k − 1 other points. The derivation relies on representing the conditional
DPPs using the Schur complement of the kernel. Our methods allow us to handle a broad range of
typical kernels and continuous subspaces, provided certain simple integrals of the kernel function
can be computed efficiently. Decomposing our kernel into quality and similarity terms as in [13],
this includes, but is not limited to, all cases where the (i) spectral density of the quality and (ii)
characteristic function of the similarity kernel can be computed efficiently. Our methods scale well
with dimension, in particular with complexity growing linearly in d.

In Sec. 2, we review sampling algorithms for discrete DPPs and the challenges associated with
sampling from continuous DPPs. We then propose continuous DPP sampling algorithms based on
low-rank kernel approximations in Sec. 3 and Gibbs sampling in Sec. 4. An empirical analysis of the
two schemes is provided in Sec. 5. Finally, we apply our methods to repulsive mixture modeling and
human pose synthesis in Sec. 6 and 7.

2 Sampling from a DPP

When Ω is discrete with cardinality N , an efficient algorithm for sampling from a DPP is given
in [10]. The algorithm, which is detailed in the supplement, uses an eigendecomposition of the
kernel matrix L =

∑N
n=1 λnvnv

>
n and recursively samples points xi as follows, resulting in a set

A ∼ DPP(L) with A = {xi}:

Phase 1 Select eigenvector vn with probability λn

λn+1 . Let V be the selected eigenvectors (k = |V |).

Phase 2 For i = 1, . . . , k, sample points xi ∈ Ω sequentially with probability based on the projection
of xi onto the subspace spanned by V . Once xi is sampled, update V by excluding the
subspace spanned by the projection of xi onto V .

When Ω is discrete, both steps are straightforward since the first phase involves eigendecomposing a
kernel matrix and the second phase involves sampling from discrete probability distributions based
on inner products between points and eigenvectors. Extending this algorithm to a continuous space
was considered by [14], but for a very limited set of kernels L and spaces Ω. For general L and Ω,
we face difficulties in both phases. Extending Phase 1 to a continuous space requires knowledge of
the eigendecomposition of the kernel function. When Ω is a compact rectangle in Rd, [14] suggest
approximating the eigendecomposition using an orthonormal Fourier basis.

Even if we are able to obtain the eigendecomposition of the kernel function (either directly or via
approximations as considered in [14] and Sec. 3), we still need to implement Phase 2 of the sampling
algorithm. Whereas the discrete case only requires sampling from a discrete probability function,
here we have to sample from a probability density. When Ω is compact, [14] suggest using a rejection
sampler with a uniform proposal on Ω. The authors note that the acceptance rate of this rejection
sampler decreases with the number of points sampled, making the method inefficient in sampling large
sets from a DPP. In most other cases, implementing Phase 2 even via rejection sampling is infeasible
since the target density is in general non-standard with unknown normalization. Furthermore, a
generic proposal distribution can yield extremely low acceptance rates.

In summary, current algorithms can sample approximately from a continuous DPP only for translation-
invariant kernels defined on a compact space. In Sec. 3, we propose a sampling algorithm that allows
us to sample approximately from DPPs for a wide range of kernels L and spaces Ω.
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3 Sampling from a low-rank continuous DPP
Again considering Ω discrete with cardinality N , the sampling algorithm of Sec. 2 has complexity
dominated by the eigendecomposition, O(N3). If the kernel matrix L is low-rank, i.e. L = B>B,
with B a D×N matrix and D � N , [11] showed that the complexity of sampling can be reduced to
O(ND2 +D3). The basic idea is to exploit the fact that L and the dual kernel matrix C = BB>,
which is D ×D, share the same nonzero eigenvalues, and for each eigenvector vk of L, Bvk is the
corresponding eigenvector of C. See the supplement for algorithmic details.

While the dependence on N in the dual is sharply reduced, in continuous spaces, N is infinite. In
order to extend the algorithm, we must find efficient ways to compute C for Phase 1 and manipulate
eigenfunctions implicitly for the projections in Phase 2. Generically, consider sampling from a DPP
on a continuous space Ω with kernel L(x,y) =

∑∞
n=1 λnφn(x)φn(y),where λn and φn(x) are

eigenvalues and eigenfunctions, and φn(y) is the complex conjugate of φn(y). Assume that we can
approximate L by a low-dimensional (generally complex-valued) mapping, B(x) : Ω 7→ CD:

L̃(x,y) = B(x)∗B(y) ,where B(x) = [B1(x), . . . , BD(x)]>. (2)
Here, A∗ denotes complex conjugate transpose of A. We consider two efficient low-rank approxima-
tion schemes in Sec. 3.1 and 3.2. Using such a low-rank representation, we propose an analog of
the dual sampling algorithm for continuous spaces, described in Algorithm 1. A similar algorithm
provides samples from a k-DPP, which only gives positive probability to sets of a fixed cardinality
k [13]. The only change required is to the for-loop in Phase 1 to select exactly k eigenvectors using
an efficient O(Dk) recursion. See the supplement for details.

Algorithm 1 Dual sampler for a low-rank continuous DPP

Input: L̃(x,y) = B(x)∗B(y),
a rank-D DPP kernel

PHASE 1
Compute C =

∫
Ω
B(x)B(x)∗dx

Compute eigendecomp. C =
∑D
k=1 λkvkv

∗
k

J ← ∅
for k = 1, . . . , D do
J ← J ∪ {k} with probability λk

λk+1

V ← { vk√
v∗kCvk

}k∈J

PHASE 2
X ← ∅
while |V | > 0 do

Sample x̂ from f(x) = 1
|V |

∑
v∈V |v∗B(x)|2

X ← X ∪ {x̂}
Let v0 be a vector in V such that v∗0B(x̂) 6= 0

Update V ← {v − v∗B(x̂)
v∗0B(x̂)v0 | v ∈ V − {v0}}

Orthonormalize V w.r.t. 〈v1,v2〉 = v∗1Cv2

Output: X

In this dual view, we still have the same two-phase structure, and must address two key challenges:

Phase 1 Assuming a low-rank kernel function decomposition as in Eq. (2), we need to able to
compute the dual kernel matrix, given by an integral:

C =

∫
Ω

B(x)B(x)∗dx . (3)

Phase 2 In general, sampling directly from the density f(x) is difficult; instead, we can compute the
cumulative distribution function (CDF) and sample x using the inverse CDF method [21]:

F (x̂ = (x̂1, . . . , x̂d)) =

d∏
l=1

∫ x̂l

−∞
f(x)1{xl∈Ω}dxl. (4)

Assuming (i) the kernel function L̃ is finite-rank and (ii) the terms C and f(x) are computable,
Algorithm 1 provides exact samples from a DPP with kernel L̃. In what follows, approximations only
arise from approximating general kernels L with low-rank kernels L̃. If given a finite-rank kernel L
to begin with, the sampling procedure is exact.

One could imagine approximating L as in Eq. (2) by simply truncating the eigendecomposition
(either directly or using numerical approximations). However, this simple approximation for known
decompositions does not necessarily yield a tractable sampler, because the products of eigenfunctions
required in Eq. (3) might not be efficiently integrable. For our approximation algorithm to work, not
only do we need methods that approximate the kernel function well, but also that enable us to solve
Eq. (3) and (4) directly for many different kernel functions. We consider two such approaches that
enable an efficient sampler for a wide range of kernels: Nyström and random Fourier features.
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3.1 Sampling from RFF-approximated DPP
Random Fourier features (RFF) [19] is an approach for approximating shift-invariant kernels,
k(x,y) = k(x − y), using randomly selected frequencies. The frequencies are sampled inde-
pendently from the Fourier transform of the kernel function, ωj ∼ F(k(x− y)), and letting:

k̃(x− y) =
1

D

D∑
j=1

exp{iω>j (x− y)} , x,y ∈ Ω . (5)

To apply RFFs, we factor L into a quality function q and similarity kernel k (i.e., q(x) =
√
L(x,x)):

L(x,y) = q(x)k(x,y)q(y) , x,y ∈ Ω where k(x,x) = 1. (6)

The RFF approximation can be applied to cases where the similarity function has a known char-
acteristic function, e.g., Gaussian, Laplacian and Cauchy. Using Eq. (5), we can approximate the
similarity kernel function to obtain a low-rank kernel and dual matrix:

L̃RFF (x,y) =
1

D

D∑
j=1

q(x) exp{iω>j (x− y)}q(y), CRFFjk =
1

D

∫
Ω

q2(x) exp{i(ωj − ωk)>x}dx.

The CDF of the sampling distribution f(x) in Algorithm 1 is given by:

FRFF (x̂) =
1

|V |
∑
v∈V

D∑
j=1

D∑
k=1

vjv
∗
k

d∏
l=1

∫ x̂l

−∞
q2(x) exp{i(ωj − ωk)>x}1{xl∈Ω}dxl. (7)

where vj denotes the jth element of vector v. Note that equations CRFF and FRFF can be computed
for many different combinations of Ω and q(x). In fact, this method works for any combination
of (i) translation-invariant similarity kernel k with known characteristic function and (ii) quality
function q with known spectral density. The resulting kernel L need not be translation invariant. In
the supplement, we illustrate this method by considering a common and important example where
Ω = Rd, q(x) is Gaussian, and k(x,y) is any kernel with known Fourier transform.
3.2 Sampling from a Nyström-approximated DPP
Another approach to kernel approximation is the Nyström method [27]. In particular, given z1, . . . , zD
landmarks sampled from Ω, we can approximate the kernel function and dual matrix as,

L̃Nys(x,y) =

D∑
j=1

D∑
k=1

W 2
jkL(x, zj)L(zk,y), CNysjk =

D∑
n=1

D∑
m=1

WjnWmk

∫
Ω

L(zn,x)L(x, zm)dx,

where Wjk = L(zj , zk)−1/2. Denoting wj(v) =
∑D
n=1Wjnvn, the CDF of f(x) in Alg. 1 is:

FNys(x̂) =
1

|V |
∑
v∈V

D∑
j=1

D∑
k=1

wj(v)wk(v)

d∏
l=1

∫ x̂l

−∞
L(x, zj)L(zk,x)1{xl∈Ω}dxl. (8)

As with the RFF case, we consider a decomposition L(x,y) = q(x)k(x,y)q(y). Here, there are no
translation-invariant requirements, even for the similarity kernel k. In the supplement, we provide the
important example where Ω = Rd and both q(x) and k(x,y) are Gaussians and also when k(x,y) is
polynomial, a case that cannot be handled by RFF since it is not translationally invariant.

4 Gibbs sampling
For k-DPPs, we can consider a Gibbs sampling scheme. In the supplement, we derive that the full
conditional for the inclusion of point xk given the inclusion of the k−1 other points is a 1-DPP with a
modified kernel, which we know how to sample from. Let the kernel function be represented as before:
L(x,y) = q(x)k(x,y)q(y). Denoting J\k = {xj}j 6=k and M\k = L−1

J\k
the full conditional can

be simplified using Schur’s determinantal equality [22]:

p(xk|{xj}j 6=k) ∝ L(xk,xk)−
∑
i,j 6=k

M
\k
ij L(xi,xk)L(xj ,xk). (9)
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Figure 1: Estimates of total variational distance for Nyström and RFF approximation methods to a DPP with
Gaussian quality and similarity with covariances Γ = diag(ρ2, . . . , ρ2) and Σ = diag(σ2, . . . , σ2), respectively.
(a)-(c) For dimensions d=1, 5 and 10, each plot considers ρ2 = 1 and varies σ2. (d) Eigenvalues for the Gaussian
kernels with σ2 = ρ2 = 1 and varying dimension d.

In general, sampling directly from this full conditional is difficult. However, for a wide range of
kernel functions, including those which can be handled by the Nyström approximation in Sec. 3.2,
the CDF can be computed analytically and xk can be sampled using the inverse CDF method:

F (x̂l|{xj}j 6=k) =

∫ x̂l

−∞ L(xl,xl)−
∑
i,j 6=kM

\k
ij L(xi,xl)L(xj ,xl)1{xl∈Ω}dxl∫

Ω
L(x,x)−

∑
i,j 6=kM

\k
ij L(xi,x)L(xj ,x)dx

(10)

In the supplement, we illustrate this method by considering the case where Ω = Rd and q(x) and
k(x,y) are Gaussians. We use this same Schur complement scheme for sampling from the full
conditionals in the mixture model application of Sec. 6. A key advantage of this scheme for several
types of kernels is that the complexity of sampling scales linearly with the number of dimensions d
making it suitable in handling high-dimensional spaces.

As with any Gibbs sampling scheme, the mixing rate is dependent on the correlations between
variables. In cases where the kernel introduces low repulsion we expect the Gibbs sampler to mix well,
while in a high repulsion setting the sampler can mix slowly due to the strong dependencies between
points and fact that we are only doing one-point-at-a-time moves. We explore the dependence of
convergence on repulsion strength in the supplementary materials. Regardless, this sampler provides
a nice tool in the k-DPP setting. Asymptotically, theory suggests that we get exact (though correlated)
samples from the k-DPP. To extend this approach to standard DPPs, we can first sample k (this
assumes knowledge of the eigenvalues of L) and then apply the above method to get a sample. This is
fairly inefficient if many samples are needed. A more involved but potentially efficient approach is to
consider a birth-death sampling scheme where the size of the set can grow/shrink by 1 at every step.

5 Empirical analysis
To evaluate the performance of the RFF and Nyström approximations, we compute the total variational
distance ‖PL − PL̃‖1 = 1

2

∑
X |PL(X)− PL̃(X)|, where PL(X) denotes the probability of set X

under a DPP with kernel L, as given by Eq. (1). We restrict our analysis to the case where the quality
function and similarity kernel are Gaussians with isotropic covariances Γ = diag(ρ2, . . . , ρ2) and Σ =
diag(σ2, . . . , σ2), respectively, enabling our analysis based on the easily computed eigenvalues [8].
We also focus on sampling from k-DPPs for which the size of the set X is always k. Details are in
the supplement.

Fig. 1 displays estimates of the total variational distance for the RFF and Nyström approximations
when ρ2 = 1, varying σ2 (the repulsion strength) and the dimension d. Note that the RFF method
performs slightly worse as σ2 increases and is rather invariant to d while the Nyström method
performs much better for increasing σ2 but worse for increasing d.

While this phenomenon seems perplexing at first, a study of the eigenvalues of the Gaussian kernel
across dimensions sheds light on the rationale (see Fig. 1). Note that for fixed σ2 and ρ2, the decay
of eigenvalues is slower in higher dimensions. It has been previously demonstrated that the Nyström
method performs favorably in kernel learning tasks compared to RFF in cases where there is a
large eigengap in the kernel matrix [28]. The plot of the eigenvalues seems to indicate the same
phenomenon here. Furthermore, this result is consistent with the comparison of RFF to Nyström in
approximating DPPs in the discrete Ω case provided in [3].

This behavior can also be explained by looking at the theory behind these two approximations.
For the RFF, while the kernel approximation is guaranteed to be an unbiased estimate of the true
kernel element-wise, the variance is fairly high [19]. In our case, we note that the RFF estimates of
minors are biased because of non-linearity in matrix entries, overestimating probabilities for point
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configurations that are more spread out, which leads to samples that are overly-dispersed. For the
Nyström method, on the other hand, the quality of the approximation depends on how well the
landmarks cover Ω. In our experiments the landmarks are sampled i.i.d. from q(x). When either the
similarity bandwidth σ2 is small or the dimension d is high, the effective distance between points
increases, thereby decreasing the accuracy of the approximation. Theoretical bounds for the Nyström
DPP approximation in the case when Ω is finite are provided in [3]. We believe the same result holds
for continuous Ω by extending the eigenvalues and spectral norm of the kernel matrix to operator
eigenvalues and operator norms, respectively.

In summary, for moderate values of σ2 it is generally good to use the Nyström approximation for
low-dimensional settings and RFF for high-dimensional settings.

6 Repulsive priors for mixture models
Mixture models are used in a wide range of applications from clustering to density estimation.
A common issue with such models, especially in density estimation tasks, is the introduction of
redundant, overlapping components that increase the complexity and reduce interpretability of the
resulting model. This phenomenon is especially prominent when the number of samples is small. In
a Bayesian setting, a common fix to this problem is to consider a sparse Dirichlet prior on the mixture
weights, which penalizes the addition of non-zero-weight components. However, such approaches
run the risk of inaccuracies in the parameter estimates [18]. Instead, [18] show that sampling the
location parameters using repulsive priors leads to better separated clusters while maintaining the
accuracy of the density estimate. They propose a class of repulsive priors that rely on explicitly
defining a distance metric and the manner in which small distances are penalized. The resulting
posterior computations can be fairly complex.

The theoretical properties of DPPs make them an appealing choice as a repulsive prior. In fact, [29]
considered using DPPs as repulsive priors in latent variable models. However, in the absence of
a feasible continuous DPP sampling algorithm, their method was restricted to performing MAP
inference. Here we propose a fully generative probabilistic mixture model using a DPP prior for the
location parameters, with a K-component model using a K-DPP.

In the common case of mixtures of Gaussians (MoG), our posterior computations can be performed
using Gibbs sampling with nearly the same simplicity of the standard case where the location
parameters µk are assumed to be i.i.d.. In particular, with the exception of updating the location
parameters {µ1, . . . , µK}, our sampling steps are identical to standard MoG Gibbs updates in the
uncollapsed setting. For the location parameters, instead of sampling each µk independently from its
conditional posterior, our full conditional depends upon the other locations µ\k as well. Details are
in the supplement, where we show that this full conditional has an interpretation as a single draw
from a tilted 1-DPP. As such, we can employ the Gibbs sampling scheme of Sec. 4.

We assess the clustering and density estimation performance of the DPP-based model on both
synthetic and real datasets. In each case, we run 10,000 Gibbs iterations, discard 5,000 as burn-in
and thin the chain by 10. Hyperparameter settings are in the supplement. We randomly permute the
labels in each iteration to ensure balanced label switching. Draws are post-processed following the
algorithm of [23] to address the label switching issue.

Synthetic data To assess the role of the prior in a density estimation task, we generated a small
sample of 100 observations from a mixture of two Gaussians. We consider two cases, the first with
well-separated components and the second with poorly-separated components. We compare a mixture
model with locations sampled i.i.d. (IID) to our DPP repulsive prior (DPP). In both cases, we set
an upper bound of six mixture components. In Fig. 2, we see that both IID and DPP provide very
similar density estimates. However, IID uses many large-mass components to describe the density.
As a measure of simplicity of the resulting density description, we compute the average entropy of the
posterior mixture membership distribution, which is a reasonable metric given the similarity of the
overall densities. Lower entropy indicates a more concise representation in an information-theoretic
sense. We also assess the accuracy of the density estimate by computing both (i) Hamming distance
error relative to true cluster labels and (ii) held-out log-likelihood on 100 observations. The results are
summarized in Table 1. We see that DPP results in (i) significantly lower entropy, (ii) lower overall
clustering error, and (iii) statistically indistinguishable held-out log-likelihood. These results signify
that we have a sparser representation with well-separated (interpretable) clusters while maintaining
the accuracy of the density estimate.
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Figure 2: For each synthetic and real dataset: (top) histogram of data overlaid with actual Gaussian mixture
generating the synthetic data, and posterior mean mixture model for (middle) IID and (bottom) DPP. Red
dashed lines indicate resulting density estimate.

Table 1: For IID and DPP on synthetic datasets: mean (stdev) for mixture membership entropy, cluster
assignment error rate and held-out log-likelihood of 100 observations under the posterior mean density estimate.

DATASET ENTROPY CLUSTERING ERROR HELDOUT LOG-LIKE.
IID DPP IID DPP IID DPP

Well-separated 1.11 (0.3) 0.88 (0.2) 0.19 (0.1) 0.19 (0.1) -169 (6) -171(8)
Poorly-separated 1.46 (0.2) 0.92 (0.3) 0.47 (0.1) 0.39 (0.1) -211(10) -207(9)

Real data We also tested our DPP model on three real density estimation tasks considered in [20]:
82 measurements of velocity of galaxies diverging from our own (galaxy), acidity measurement of 155
lakes in Wisconsin (acidity), and the distribution of enzymatic activity in the blood of 245 individuals
(enzyme). We once again judge the complexity of the density estimates using the posterior mixture
membership entropy as a proxy. To assess the accuracy of the density estimates, we performed 5-fold
cross validation to estimate the predictive held-out log-likelihood. As with the synthetic data, we
find that DPP visually results in better separated clusters (Fig. 2). The DPP entropy measure is also
significantly lower for data that are not well separated (acidity and galaxy) while the differences in
predictive log-likelihood estimates are not statistically significant (Table 2).

Finally, we consider a classification task based on the iris dataset: 150 observations from three iris
species with four length measurements. For this dataset, there has been significant debate on the
optimal number of clusters. While there are three species in the data, it is known that two have
very low separation. Based on loss minimization, [24, 26] concluded that the optimal number of
clusters was two. Table 2 compares the classification error using DPP and IID when we assume
for evaluation the real data has three or two classes (by collapsing two low-separation classes) , but
consider a model with a maximum of six components. While both methods perform similarly for
three classes, DPP has significantly lower classification error under the assumption of two classes,
since DPP places large posterior mass on only two mixture components. This result hints at the
possibility of using the DPP mixture model as a model selection method.

7 Generating diverse sample perturbations

We consider another possible application of continuous-space sampling. In many applications of
inverse reinforcement learning or inverse optimal control, the learner is presented with control
trajectories executed by an expert and tries to estimate a reward function that would approximately
reproduce such policies [1]. In order to estimate the reward function, the learner needs to compare
the rewards of a large set of trajectories (or all, if possible), which becomes intractable in high-
dimensional spaces with complex non-linear dynamics. A typical approximation is to use a set of
perturbed expert trajectories as a comparison set, where a good set of trajectories should cover as
large a part of the space as possible.
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Table 2: For IID and DPP, mean (stdev) of (left) mixture membership entropy and held-out log-likelihood for
three density estimation tasks and (right) classification error under 2 vs. 2 of true classes for the iris data.
DATA ENTROPY HELDOUT LL.

IID DPP IID DPP
Galaxy 0.89 (0.2) 0.74 (0.2) -20(2) -21(2)
Acidity 1.32 (0.1) 0.98 (0.1) -49 (2) -48(3)
Enzyme 1.01 (0.1) 0.96 (0.1) -55(2) -55(3)

DATA CLASS ERROR
IID DPP

Iris (3 cls) 0.43 (0.02) 0.43 (0.02)
Iris (2 cls) 0.23 (0.03) 0.15 (0.03)
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Figure 3: Left: Diverse set of human poses relative to an original pose by sampling from an RFF (top) and
Nyström (bottom) approximations with kernel based on MoCap of the activity dance. Right: Fraction of data
having a DPP/i.i.d. sample within an ε neighborhood.

We propose using DPPs to sample a large-coverage set of trajectories, in particular focusing on a
human motion application where we assume a set of motion capture (MoCap) training data taken
from the CMU database [6]. Here, our dimension d is 62, corresponding to a set of joint angle
measurements. For a given activity, such as dancing, we aim to select a reference pose and synthesize
a set of diverse, perturbed poses. To achieve this, we build a kernel with Gaussian quality and
similarity using covariances estimated from the training data associated with the activity. The
Gaussian quality is centered about the selected reference pose and we synthesize new poses by
sampling from our continuous DPP using the low-rank approximation scheme. In Fig. 3, we show
an example of such DPP-synthesized poses. For the activity dance, to quantitatively assess our
performance in covering the activity space, we compute a coverage rate metric based on a random
sample of 50 poses from a DPP. For each training MoCap frame, we compute whether the frame has
a neighbor in the DPP sample within an ε neighborhood. We compare our coverage to that of i.i.d.
sampling from a multivariate Gaussian chosen to have variance matching our DPP sample. Despite
favoring the i.i.d. case by inflating the variance to match the diverse DPP sample, the DPP poses still
provide better average coverage over 100 runs. See Fig. 3 (right) for an assessment of the coverage
metric. A visualization of the samples is in the supplement. Note that the i.i.d. case requires on
average ε = 253 to cover all data whereas the DPP only requires ε = 82. By ε = 40, we cover over
90% of the data on average. Capturing the rare poses is extremely challenging with i.i.d. sampling,
but the diversity encouraged by the DPP overcomes this issue.

8 Conclusion
Motivated by the recent successes of DPP-based subset modeling in finite-set applications and the
growing interest in repulsive processes on continuous spaces, we considered methods by which
continuous-DPP sampling can be straightforwardly and efficiently approximated for a wide range of
kernels. Our low-rank approach harnessed approximations provided by Nyström and random Fourier
feature methods and then utilized a continuous dual DPP representation. The resulting approximate
sampler garners the same efficiencies that led to the success of the DPP in the discrete case. One can
use this method as a proposal distribution and correct for the approximations via Metropolis-Hastings,
for example. For k-DPPs, we devised an exact Gibbs sampler that utilized the Schur complement
representation. Finally, we demonstrated that continuous-DPP sampling is useful both for repulsive
mixture modeling (which utilizes the Gibbs sampling scheme) and in synthesizing diverse human
poses (which we demonstrated with the low-rank approximation method). As we saw in the MoCap
example, we can handle high-dimensional spaces d, with our computations scaling just linearly with
d. We believe this work opens up opportunities to use DPPs as parts of many models.
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G. Wendelschafer-Crabb. Second-order spatial analysis of epidermal nerve fibers. Statistics in
Medicine, 30(23):2827–2841, 2011.

[26] J. Wang. Consistent selection of the number of clusters via crossvalidation. Biometrika, 97(4):
893–904, 2010.

[27] C.K.I. Williams and M. Seeger. Using the Nyström method to speed up kernel machines. NIPS,
2000.

[28] T. Yang, Y.-F. Li, M. Mahdavi, R. Jin, and Z.-H. Zhou. Nyström method vs random fourier
features: A theoretical and empirical comparison. NIPS, 2012.

[29] J. Zou and R.P. Adams. Priors for diversity in generative latent variable models. In NIPS, 2012.

9


