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Abstract

We study the problem of online learning Markov Decision Processes (MDPs)
when both the transition distributions and loss functions are chosen by an ad-
versary. We present an algorithm that, under a mixing assumption, achieves
O(
√
T log |Π| + log |Π|) regret with respect to a comparison set of policies Π.

The regret is independent of the size of the state and action spaces. When expec-
tations over sample paths can be computed efficiently and the comparison set Π
has polynomial size, this algorithm is efficient.
We also consider the episodic adversarial online shortest path problem. Here, in
each episode an adversary may choose a weighted directed acyclic graph with an
identified start and finish node. The goal of the learning algorithm is to choose a
path that minimizes the loss while traversing from the start to finish node. At the
end of each episode the loss function (given by weights on the edges) is revealed
to the learning algorithm. The goal is to minimize regret with respect to a fixed
policy for selecting paths. This problem is a special case of the online MDP
problem. It was shown that for randomly chosen graphs and adversarial losses,
the problem can be efficiently solved. We show that it also can be efficiently
solved for adversarial graphs and randomly chosen losses. When both graphs and
losses are adversarially chosen, we show that designing efficient algorithms for
the adversarial online shortest path problem (and hence for the adversarial MDP
problem) is as hard as learning parity with noise, a notoriously difficult problem
that has been used to design efficient cryptographic schemes. Finally, we present
an efficient algorithm whose regret scales linearly with the number of distinct
graphs.

1 Introduction

In many sequential decision problems, the transition dynamics can change with time. For example,
in steering a vehicle, the state of the vehicle is determined by the actions taken by the driver, but
also by external factors, such as terrain and weather conditions. As another example, the state of a
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robot that moves in a room is determined both by its actions and by how people in the room interact
with it. The robot might not have influence over these external factors, or it might be very difficult
to model them. Other examples occur in portfolio optimization, clinical trials, and two player games
such as poker.

We consider the problem of online learning Markov Decision Processes (MDPs) when the transition
probability distributions and loss functions are chosen adversarially and are allowed to change with
time. We study the following game between a learner and an adversary:

1. The (oblivious) adversary chooses a sequence of transition kernels mt and loss functions `t.

2. At time t:
(a) The learner observes the state xt in state space X and chooses an action at in the action

space A.
(b) The new state xt+1 ∈ X is drawn at random according to distribution mt(·|xt, at).
(c) The learner observes the transition kernel mt and the loss function `t, and suffers the loss

`t(xt, at).

To handle the case when the representation of mt or `t is very large, we assume that the learner has
a black-box access to mt and `t. The above game is played for a total of T rounds and the total
loss suffered by the learner is

∑T
t=1 `t(xt, at). In the absence of state variables, the MDP problem

reduces to a full information online learning problem (Cesa-Bianchi and Lugosi [1]). The difficulty
with MDP problems is that, unlike full information online learning problems, the choice of a policy
at each round changes the future states and losses.

A policy is a mapping π : X → ∆A, where ∆A denotes the set of distributions over A. To evaluate
the learner’s performance, we imagine a hypothetical game where at each round the action played is
chosen according to a fixed policy π, and the transition kernelsmt and loss functions `t are the same
as those chosen by the oblivious adversary. Let (xπt , a

π
t ) denote a sequence of state and action pairs

in this game. Then the loss of the policy π is
∑T
t=1 `t(x

π
t , a

π
t ). Define a set Π of policies that will be

used as a benchmark to evaluate the learner’s performance. The regret of a learner A with respect to
a policy π ∈ Π is defined as the random variable RT (A, π) =

∑T
t=1 `t(xt, at)−

∑T
t=1 `t(x

π
t , a

π
t ).

The goal in adversarial online learning is to design learning algorithms for which the regret with
respect to any policy grows sublinearly with T , the total number of rounds played. Algorithms with
such a guarantee, somewhat unfortunately, are typically termed no-regret algorithms.

We also study a special case of this problem: the episodic online adversarial shortest path problem.
Here, in each episode the adversary chooses a layered directed acyclic graph with a unique start and
finish node. The adversary also chooses a loss function, i.e., a weight for every edge in the graph.
The goal of the learning algorithm is to choose a path from start to finish that minimizes the total
loss. The loss along any path is simply the sum of the weights on the edges. At the end of the round
the graph and the loss function are revealed to the learner. The goal, as in the case of the online
MDP problem, is to minimize regret with respect to a class of policies for choosing the path. Note
that the online shortest path problem is a special case of the online MDP problem; the states are the
nodes in the graph and the transition dynamics is specified by the edges.

1.1 Related Work

Burnetas and Katehakis [2], Jaksch et al. [3], and Bartlett and Tewari [4] propose efficient algorithms
for finite MDP problems with stochastic transitions and loss functions. These results are extended
to MDPs with large state and action spaces in [5, 6, 7]. Abbasi-Yadkori and Szepesvári [5] and
Abbasi-Yadkori [6] derive algorithms withO(

√
T ) regret for linearly parameterized MDP problems,

while Ortner and Ryabko [7] deriveO(T (2d+1)/(2d+2)) regret bounds under a Lipschitz assumption,
where d is the dimensionality of the state space. We note that these algorithms are computationally
expensive.

Even-Dar et al. [8] consider the problem of online learning MDPs with fixed and known dynamics,
but adversarially changing loss functions. They show that when the transition kernel satisfies a
mixing condition (see Section 3), there is an algorithm with regret boundO(

√
T ). Yu and Mannor [9,

10] study a harder setting, where the transition dynamics may also change adversarially over time.
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However, their regret bound scales with the amount of variation in the transition kernels and in the
worst case may grow linearly with time.

Recently, Neu et al. [11] give a no-regret algorithm for the episodic shortest path problem with
adversarial losses but stochastic transition dynamics.

1.2 Our Contributions

First, we study a general MDP problem with large (possibly continuous) state and action spaces
and adversarially changing dynamics and loss functions. We present an algorithm that guarantees
O(
√
T ) regret with respect to a suitably small (totally bounded) class of policies Π for this online

MDP problem. The regret grows with the metric entropy of Π, so that if the comparison class is
the set of all policies (that is, the algorithm must compete with the optimal fixed policy), it scales
polynomially with the size of the state and action spaces. The above algorithm is efficient as long
as the comparison class has polynomial size and we can compute expectations over sample paths
for each policy. This result has several advantages over the results of [5, 6, 7]. First, the transition
distributions and loss functions are chosen adversarially. Second, by designing an appropriate small
class of comparison policies, the algorithm is efficient, even in the face of very large state and action
spaces.

Next, we present efficient no-regret algorithms for the episodic online shortest path problem for two
cases: when the graphs and loss functions (edge weights) are chosen adversarially and the set of
graphs is small; and when the graphs are chosen adversarially, but the loss is stochastic.

Finally, we show that for the general adversarial online shortest path problem, designing an efficient
no-regret algorithm is at least as hard as learning parity with noise. Since the online shortest path
problem is a special case of online MDP problem, the hardness result is also applicable there.1 The
noisy parity problem is widely believed to be computationally intractable, and has been used to
design cryptographic schemes.

Organization: In Section 3 we introduce an algorithm for MDP problems with adversarially chosen
transition kernels and loss functions. Section 4 discusses how this algorithm can also be applied to
the online episodic shortest path problem with adversarially varying graphs and loss functions and
also considers the case of stochastic loss functions. Finally, in Section 4.2, we show the reduction
from the adversarial online epsiodic shortest path problem to learning parity with noise.

2 Notations

Let X ⊂ Rn be a state space and A ⊂ Rd be an action space. Let ∆S be the space of probability
distributions over a set S. Define a policy π as a mapping π : X → ∆A. We use π(a|x) to
denote the probability of choosing an action a in state x under policy π. A random action under
policy π is denoted by π(x). A transition probability kernel (or transition kernel) m is a mapping
m : X ×A → ∆X . For finite X , let P (π,m) be the transition probability matrix of policy π under
transition kernel m. A loss function is a bounded real-valued function over state and action spaces,
` : X × A → R. For a vector v, define ‖v‖1 =

∑
i |vi|. For a real-valued function f defined over

X × A, define ‖f‖∞,1 = maxx∈X
∑
a∈A |f(x, a)|. The inner product between two vectors v and

w is denoted by 〈v, w〉.

3 Online MDP Problems

In this section, we study a general MDP problem with large state and action spaces. The adversary
can change the dynamics and the loss functions, but is restricted to choose dynamics that satisfy a
mixing condition.

Assumption A1 Uniform Mixing There exists a constant τ > 0 such that for all distributions
d and d′ over the state space, any deterministic policy π, and any transition kernel m ∈ M ,
‖dP (π,m)− d′P (π,m)‖1 ≤ e−1/τ ‖d− d′‖1.

1There was an error in the proof of a claimed hardness result for the online adversarial MDP problem [8];
this claim has since been retracted [12, 13].
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For all policies π ∈ Π, wπ,0 = 1. η = min{
√

log |Π| /T , 1/2}.
Choose π1 uniformly at random.
for t := 1, 2, . . . , T do

Learner takes the action at ∼ πt(.|xt) and adversary chooses mt and `t.
Learner suffers loss `t(xt, at) and observes mt and `t. Update state: xt+1 ∼ mt(.|xt, at).
For all policies π, wπ,t = wπ,t−1(1− η)E[`t(x

π
t ,π)].

Wt =
∑
π∈Π wπ,t. For any π, pπ,t+1 = wπ,t/Wt.

With probability βt = wπt,t/wπt,t−1 choose the previous policy, πt+1 = πt, while with
probability 1− βt, choose πt+1 based on the distribution pπ,t+1.

end for

Figure 1: OMDP: The Online Algorithm for Markov Decision Processes

This assumption excludes deterministic MDPs that can be more difficult to deal with. As discussed
by Neu et al. [14], if Assumption A1 holds for deterministic policies, then it holds for all policies.

We propose an exponentially-weighted average algorithm for this problem. The algorithm, called
OMDP and shown in Figure 1, maintains a distribution over the policy class, but changes its policy
with a small probability. The main results of this section are the following regret bounds for the
OMDP algorithm. The proofs can be found in Appendix A.

Theorem 1. Let the loss functions selected by the adversary be bounded in [0, 1], and the transition
kernels selected by the adversary satisfy Assumption A1. Then, for any policy π ∈ Π,

E [RT (OMDP, π)] ≤ (4 + 2τ2)
√
T log |Π|+ log |Π| .

Corollary 2. Let Π be an arbitrary policy space,N (ε) be the ε-covering number of the metric space
(Π, ‖.‖∞,1), and C(ε) be an ε-cover. Assume that we run the OMDP algorithm on C(ε). Then, under
the same assumptions as in Theorem 1, for any policy π ∈ Π,

E [RT (OMDP, π)] ≤ (4 + 2τ2)
√
T logN (ε) + logN (ε) + τT ε .

Remark 3. If we choose Π to be the space of deterministic policies and X and A are finite spaces,
from Theorem 1 we obtain that E [RT (OMDP, π)] ≤ (4 + 2τ2)

√
T |X | log |A|+ |X | log |A|. This

result, however, is not sufficient to show that the average regret with respect to the optimal stationary
policy converges to zero. This is because, unlike in the standard MDP framework, the optimal
stationary policy is not necessarily deterministic. Corollary 2 extends the result of Theorem 1 to
continuous policy spaces.

In particular, if X and A are finite spaces and Π is the space of all policies, N (ε) ≤ (|A|/ε)|A||X |,
so the expected regret satisfies E [RT (OMDP, π)] ≤ (4+2τ2)

√
T |A||X | log |A|ε +|A||X | log |A|ε +

τT ε. By the choice of ε = 1
T , we get that E [RT (OMDP, π)] = O(τ2

√
T |A| |X | log(|A|T )).

3.1 Proof Sketch

The main idea behind the design and the analysis of our algorithm is the following regret decompo-
sition:

RT (A, π) =

T∑
t=1

`t(x
A
t , at)−

T∑
t=1

`t(x
πt
t , πt) +

T∑
t=1

`t(x
πt
t , πt)−

T∑
t=1

`t(x
π
t , π) , (1)

whereA is an online learning algorithm that generates a policy πt at round t, xAt is the state at round
t if we have followed the policies generated by algorithm A, and `(x, π) = `(x, π(x)). Let

BT (A) =

T∑
t=1

`t(x
A
t , at)−

T∑
t=1

`t(x
πt
t , πt) , CT (A, π) =

T∑
t=1

`t(x
πt
t , πt)−

T∑
t=1

`t(x
π
t , π) .
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Note that the choice of policies has no influence over future losses in CT (A, π). Thus, CT (A, π)
can be bounded by a reduction to full information online learning algorithms. Also, notice that the
competitor policy π does not appear in BT (A). In fact, BT (A) depends only on the algorithm A.
We will show that if the class of transition kernels satisfies Assumption A1 and algorithm A rarely
changes its policies, then BT (A) can be bounded by a sublinear term. To be more precise, let αt
be the probability that algorithm A changes its policy at round t. We will require that there exists
a constant D such that for any 1 ≤ t ≤ T , any sequence of models m1, . . . ,mt and loss functions
`1, . . . , `t, αt ≤ D/

√
t.

We would like to have a full information online learning algorithm that rarely changes its policy.
The first candidate that we consider is the well-known Exponentially Weighted Average (EWA)
algorithm [15, 16]. In our MDP problem, the EWA algorithm chooses a policy π ∈ Π accord-
ing to distribution qt(π) ∝ exp

(
−λ
∑t−1
s=1 E [`s(x

π
s , π)]

)
for some λ > 0. The policies that this

EWA algorithm generates most likely are different in consecutive rounds and thus, the EWA algo-
rithm might change its policy frequently. However, a variant of EWA, called Shrinking Dartboard
(SD) (Guelen et al. [17]), rarely changes its policy (see Lemma 8 in Appendix A). The OMDP al-
gorithm is based on the SD algorithm. Note that the algorithm needs to know the number of rounds,
T , in advance. Also note that we could use any rarely switching algorithm such as Follow the Lazy
Leader of Kalai and Vempala [18] as the subroutine.

4 Adversarial Online Shortest Path Problem

We consider the following adversarial online shortest path problem with changing graphs. The
problem is a repeated game played between a decision-maker and an (oblivious) adversary over
T rounds. At each round t the adversary presents a directed acyclic graph gt on n nodes to the
decision maker, with L layers indexed by {1, . . . , L} and a special start and finish node. Each layer
contains a fixed set of nodes and has connections only with the next layer. 2 The decision-maker
must choose a path pt from the start to the finish node. Then, the adversary reveals weights across
all the edges of the graph. The loss `t(gt, pt) of the decision-maker is the weight along the path that
the decision-maker took on that round.

Denote by [k] the set {1, 2, . . . , k}. A policy is a mapping π : [n] → [n]. Each policy may be
interpreted as giving a start to finish path. Suppose that the start node is s ∈ [n], then π(i) gives the
subsequent node. The path is interpreted as follows : if at a node v, the edge (v, π(v)) exists then the
next node is π(v). Otherwise, the next node is an arbitrary (pre-determined) choice that is adjacent
to v. We compete against the class of such policies for choosing the shortest path. Denote the class
of such policies by Π. The regret of a decision-makerA with respect to a policy π ∈ Π is defined as:
RT (A, π) =

∑T
t=1 `t(gt, pt) −

∑T
t=1 `t(gt, π(gt)), where π(gt) is the path obtained by following

the policy π starting at the source node. Note that it is possible that there exists no policy that would
result in an actual path that leads to the sink for some graph. In this case we say that the loss of the
policy is infinite. Thus, there may be adversarially chosen sequences of graphs for which the regret
of a decision-maker is not well-defined. This can be easily corrected by the adversary ensuring that
the graph always has some fixed set of edges which result in a (possibly high loss) s → f path.
In fact, we show that the adversary can choose a sequence of graphs and loss functions that make
this problem at least as hard as learning noisy parities. Learning noisy parities is a notoriously hard
problem in computational learning theory. The best known algorithm runs in time 2O(n/ log(n)) [20]
and the presumed hardness of this and related problems has been used for designing cryptographic
protocols [21].

Interestingly, for the hardness result to hold, it is essential that the adversary have the ability to
control both the sequence of graphs and losses. The problem is well-understood when the graphs
are generated randomly and the losses are adversarial. Jaksch et al. [3] and Bartlett and Tewari [4]
propose efficient algorithms for problems with stochastic losses.3 Neu et al. [22] extend these results
to problems with adversarial loss functions.

2As noted by Neu et al. [19], any directed acyclic graph can be transformed into a graph that satisfies our
assumptions.

3These algorithms are originally proposed for continuing problems, but we can use them in shortest path
problems with small modifications.
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One can also ask what happens in the case when the graphs are chosen by the adversary, but the
weight of each edge is drawn at random according to a fixed stationary distribution. In this setting,
we show a reduction to bandit linear optimization. Thus, in fact, that algorithm does not need to see
the weights of all edges at the end of the round, but only needs to know the loss it suffered.

Finally, we consider the case when both graphs and losses are chosen adversarially. Although the
general problem is at least as hard as learning noisy parities, we give an efficient algorithm whose
regret scales linearly with the number of different graphs. Thus, if the adversary is forced to choose
graphs from some small set G, then we have an efficient algorithm for solving the problem. We note
that in fact, our algorithm does not need to see the graph gt at the beginning of the round, in which
case an algorithm achieving O(|G|

√
T ) may be trivially obtained.

4.1 Stochastic Loss Functions and Adversarial Graphs

Consider the case when the weight of each edge is chosen from a fixed distribution. Then it is easy
to see that the expected loss of any path is a fixed linear function of the expected weights vector. The
set of available paths depends on the graph and it may change from time to time. This is an instance
of stochastic linear bandit problem, for which efficient algorithms exist [23, 24, 25].
Theorem 4. Let us represent each path by a binary vector of length n(n − 1)/2, such that the ith
element is 1 only if the corresponding edge is present in the path. Assume that the learner suffers
the loss of c(p) for choosing path p, where E [c(p)] = 〈`, p〉 and the loss vector ` ∈ Rn(n−1)/2 is
fixed. Let Pt be the set of paths in a graph gt. Consider the CONFIDENCEBALL1 algorithm of Dani
et al. [24] applied to the shortest path problem with a changing action set Pt and the loss function
`. Then the regret with respect to the best path in each round is Cn3

√
T for a problem-independent

constant C.

Let ̂̀t be the least squares estimate of ` at round t, Vt =
∑t−1
s=1 psp

>
s be the covariance matrix, and

Pt be the decision set at round t. The CONFIDENCEBALL1 algorithm constructs a high probability
norm-1 ball confidence set, Ct =

{
` :

∥∥∥V 1/2
t (`− ̂̀t)∥∥∥

1
≤ βt

}
for an appropriate βt, and chooses

an action pt according to pt = argmin`∈Ct,p∈Pt〈`, p〉. Dani et al. [24] prove that the regret of the
CONFIDENCEBALL1 algorithm is bounded by O(m3/2

√
T ), where m is the dimensionality of the

action set (in our case m = n(n− 1)/2). The above optimization can be solved efficiently, because
only 2n corners of Ct need to be evaluated.

Note that the regret in Theorem 4 is with respect to the best path in each round, which is a stronger
result than competing with a fixed policy.

4.2 Hardness Result

In this section, we show that the setting when both the graphs and the losses are chosen by an
adversary, the problem is at least as hard as the noisy parity problem. We consider the online agnostic
parity learning problem. Recall that the class of parity function over {0, 1}n is the following: For
S ⊆ [n], PARS(x) = ⊕i∈Sxi, where ⊕ denotes modulo 2 addition. The class is PARITIES =
{PARS | S ⊆ [n]}. In the online setting, the learning algorithm is given xt ∈ {0, 1}n, the learning
algorithm then picks ŷt ∈ {0, 1}, and then the true label yt is revealed. The learning algorithm
suffers loss I(ŷt 6= yt). The regret of the learning algorithm with respect to PARITIES is defined
as: Regret =

∑T
t=1 I(ŷt 6= yt) − minPARS∈PARITIES

∑T
t=1 I(PARS(xt) 6= yt). The goal is to

design a learning algorithm that runs in time polynomial in n, T and suffers regretO(poly(n)T 1−δ)
for some constant δ > 0. It follows from prior work that online agnostic learning of parities is at
least as hard as the offline version (see Littlestone [26], Kanade and Steinke [27]). As mentioned
previously, the agnostic parity learning problem is notoriously difficult. Thus, it seems unlikely that
a computationally efficient no-regret algorithm for this problem exists.
Theorem 5. Suppose there is a no-regret algorithm for the online adversarial shortest path prob-
lem that runs in time poly(n, T ) and achieves regret O(poly(n)T 1−δ) for any constant δ > 0.
Then there is a polynomial-time algorithm for online agnostic parity learning that achieves regret
O(poly(n)T 1−δ). By the online to batch reduction, this would imply a polynomial time algorithm
for agnostically learning parities.
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1a

2a 2b

3a 3b

4a 4b

5a 5b

6a 6b

⊥
y 1− y

(a)

for t := 1, 2, . . . do
Adversary chooses a graph gt ∈ G
for l = 1, . . . , L do

Initialize an EWA expert algorithm, E
for s = 1, . . . , t− 1 do

if gs ∈ C(xt,l) then
Feed expert E with the value function Qs =
Qπs,gs,cs

end if
end for
Let πt(.|xt,l) be the distribution over actions of the expert
E
Take the action at,l ∼ πt(.|xt,l), suffer the loss
ct(nt,l, at,l), and move to the node nt,l+1 = gt(nt,l, at,l)

end for
Learner observes the graph gt and the loss function ct
Compute the value function Qt = Qπt,gt,ct for all nodes
n′ ∈ [n]

end for

(b)

Figure 2: (a) Encoding the example (1, 0, 1, 0, 1) ∈ {0, 1}5 as a graph. (b) Improved Algorithm for
the Online Shortest Path Problem.

Proof. We first show how to map a point (x, y) to a graph and a loss function. Let (x, y) ∈ {0, 1}n×
{0, 1}. We define a graph, g(x) and a loss function `x,y associated with (x, y). Define a graph on
2n + 2 nodes – named 1a, 2a, 2b, 3a, 3b, . . . , na, nb, (n + 1)a, (n + 1)b,⊥ in that order. Let E(x)
denote the set of edges of g(x). The set E(x) contains the following edges:

(i) If x1 = 1, both (1a, 2a) and (1a, 2b) are in E(x), else if x1 = 0, only (1a, 2a) is present.

(ii) For 1 < i ≤ n, if xi = 1, the edges (ia, (i + 1)a), (ia, (i + 1)b), (ib, (i + 1)a), (ib, (i + 1)b)
are all present; if xi = 0 only the two edges (ia, (i+ 1)a) and (ib, (i+ 1)b) are present.

(iii) The two edges ((n+ 1)a,⊥) and ((n+ 1)b,⊥) are always present.

For the loss function, define the weights as follows. The weight of the edge ((n + 1)a,⊥) is y;
the weight of the edge ((n + 1)b,⊥) is 1 − y. The weights of all the remaining edges are set to 0.
Figure 2(a) shows the encoding of the example (1, 0, 1, 0, 1) ∈ {0, 1}5.

Suppose an algorithm with the stated regret bound for the online shortest path problem exists, call
it U . We will use this algorithm to solve the online parity learning problem. Let xt be an example
received; then pass the graph g(xt) to the algorithm U . The start vertex is 1a and the finish vertex
is ⊥. Suppose the path pt chosen by U reaches ⊥ using the edge ((n + 1)a,⊥) then set ŷt to be 0.
Otherwise, choose ŷt = 1.

Thus, in effect we are using algorithm U as a meta-algorithm for the online agnostic parity learning
problem. First, it is easy to check that the loss suffered by the meta-algorithm on the parity problem
is exactly the same as the loss of U on the online shortest path problem. This follows directly from
the definition of the losses on the edges.

Next, we claim that for any S ⊆ [n], there is a policy πS that achieves the same loss (on the online
shortest path problem) as the parity PARS does (on the parity learning problem). The policy is as
follows:

(i) From node ia, if i ∈ S and (ia, (i+ 1)b) ∈ E(gt), go to (i+ 1)b, otherwise go to (i+ 1)a.
(ii) From node ib, if i ∈ S and (ib, (i+ 1)a) ∈ E(gt), go to (i+ 1)a, otherwise go to (i+ 1)b.
(iii) Finally, from either (n+ 1)a or (n+ 1)b, just move to ⊥.

We can think of the path pt as being in type a nodes or type b nodes. For each i ∈ S, such that
xti = 1, the path pt switches types. Thus, if PARS(xt) = 1, pt reaches ⊥ via the edge ((n+ 1)b,⊥)
and if PARS(xt) = 0, pt reaches ⊥ via the edge ((n + 1)a,⊥). Recall that the loss function is
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defined as follows: weight of the edge ((n + 1)a,⊥) is yt, weight of the edge ((n + 1)b,⊥) is
1 − yt; other edges have loss 0. Thus, the loss suffered by the policy πS is 1 if PARS(xt) 6= yt

and 0 otherwise. This is exactly the loss of the parity function PARS on the agnostic parity learning
problem. Thus, if the algorithm U has regret O(poly(n), T 1−δ), then the meta-algorithm for the
online agnostic parity learning problem also has regret O(poly(n), T 1−δ).

Remark 6. We observe that the online shortest path problem is a special case of online MDP
learning. Thus, the above reduction also shows that, short of a major breakthrough, it is unlikely
that there exists a computationally efficient algorithm for the fully adversarial online MDP problem.

4.3 Small Number of Graphs

In this section, we design an efficient algorithm and prove aO(|G|
√
T ) regret bound, where G is the

set of graphs played by the adversary up to round T . The computational complexity of the algorithm
is O(L2t) at round t. The algorithm does not need to know the set G or |G|. This regret bound holds
even if the graphs are revealed at the end of the rounds. Notice that if the graphs are shown at the
beginning of the rounds, obtaining regret bounds that scale likeO(|G|

√
T ) is trivial; the learner only

needs to run |G| copies of the MDP-E algorithm of Even-Dar et al. [12], one for each graph.

Let nπt,l denote the node at layer l of round t if we run policy π. Let ct(n′, a) be the loss incurred
for taking action a in node n′ at round t.4 We construct a new graph, called G, as follows: graph G
also has a layered structure with the same number of layers, L. At each layer, we have a number of
states that represent all possible observations that we might have upon arriving at that layer. Thus,
a state at layer l has the form of x = (s, a0, n1, a1, . . . , nl−1, al−1, nl), where ni belongs to layer i
and ai ∈ A.

Let X be the set of states in G and Xl be the set of states in layer l of G. For (x, a) ∈ X × A,
let c(x, a) = c(n(x), a), where n(x) is the last node observed in state x. Let g(n′, a) be the next
node under graph g if we take action a in node n′. Let g(x, a) = g(n(x), a). Let c(x, π) =∑
a π(a|x)c(x, a). For a graph g and a loss function `, define the value functions by

∀n′ ∈ [n], Qπ,g,c(n
′, π′) = Ea∼π′(n′) [c(n′, a) +Qπ,g,c(g(n′, a), π)] ,

∀x, s.t. g ∈ C(x), Qπ,g,c(x, π
′) = Qπ,g,c(n(x), π′) ,

with Qπ,g,c(f, a) = 0 for any π, g, c, a where f is the finish node. Let Qt = Qπt,gt,ct denote the
value function associated with policy πt at time t. For x = (s, a0, n1, a1, . . . , nl−1, al−1, nl), define
C(x) = {g ∈ G : n1 = g(s, a0), . . . , nl = g(nl−1, al−1)}, the set of graphs that are consistent
with the state x.

We can use the MDP-E algorithm to generate policies. The algorithm, however, is computationally
expensive as it updates a large set of experts at each round. Notice that the number of states at stage l,
|Xl|, can be exponential in the number of graphs. We show a modification of the MDP-E algorithm
that would generate the same sequence of policies, with the advantage that the new algorithm is
computationally efficient. The algorithm is shown in Figure 2(b). As the generated policies are
always the same, the regret bound in the next theorem, that is proven for the MDP-E algorithm, also
applies to the new algorithm. The proof can be found in Appendix B.

Theorem 7. For any policy π, E [RT (MDP-E, π)] ≤ 2L
√

8T log(2T ) +

Lmin{|G| ,maxl |Xl|}
√
T log |A|2 + 2L.

The theorem gives a sublinear regret as long as |G| = o(
√
T ). On the other hand, the hardness

result in Theorem 5 applies when |G| = Θ(T ). Characterizing regret vs. computational complexity
tradeoffs when |G| is in between remains for future work.
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