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Abstract

This paper extends factorized asymptotic Bayesian (FAB) inference for latent fea-
ture models (LFMs). FAB inference has not been applicable to models, includ-
ing LFMs, without a specific condition on the Hessian matrix of a complete log-
likelihood, which is required to derive a “factorized information criterion” (FIC).
Our asymptotic analysis of the Hessian matrix of LFMs shows that FIC of LFMs
has the same form as those of mixture models. FAB/LFMs have several desir-
able properties (e.g., automatic hidden states selection and parameter identifiabil-
ity) and empirically perform better than state-of-the-art Indian Buffet processes in
terms of model selection, prediction, and computational efficiency.

1 Introduction

Factorized asymptotic Bayesian (FAB) inference is a recently-developed Bayesian approximation
inference method for model selection of latent variable models [5, 6]. FAB inference maximizes
a computationally tractable lower bound of a “factorized information criterion” (FIC) which con-
verges to a marginal log-likelihood for a large sample limit. In application with respect to mixture
models (MMs) and hidden Markov models, previous work has shown that FAB inference achieves
as good or even better model selection accuracy as state-of-the-art non-parametric Bayesian (NPB)
methods and variational Bayesian (VB) methods with less computational cost. One of the interesting
characteristics of FAB inference is that it estimates both models (e.g., the number of mixed compo-
nents for MMs) and parameter values without priors (i.e., it asymptotically ignores priors), and it
does not have a hand-tunable hyper-parameter. With respect to the trade-off between controllability
and automation, FAB inference places more importance on automation.

Although FAB inference is a promising model selection method, as yet it has only been applicable to
models satisfying a specific condition that the Hessian matrix of a complete log-likelihood (i.e., of a
log-likelihood over both observed and latent variables) must be block diagonal, with only a part of
the observed samples contributing individual sub-blocks. Such models include basic latent variable
models as MMs [6]. The application of FAB inference to more advanced models that do not satisfy
the condition remains to be accomplished.

This paper extends an FAB framework to latent feature models (LFMs) [9, 17]. Model selection for
LFMs (i.e., determination of the dimensionality of latent features) has been addressed by NBP and
VB methods [10, 3]. Although they have shown promising performance in such applications as link
prediction [16], their high computational costs restrict their applications to large-scale data.

Our asymptotic analysis of the Hessian matrix of the log-likelihood shows that FICs for LFMs have
the same form as those for MMs, despite the fact that LFMs do not satisfy the condition explained
above (see Lemma 1). Eventually, as FAB/MMs, FAB/LFMs offer several desirable properties, such
as FIC convergence to a marginal log-likelihood, automatic hidden states selection, and monotonic
increase in the lower FIC bound through iterative optimization. Further we conduct two analysis in
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Section 3: 1) we relate FAB E-steps to a convex concave procedure (CCCP) [29]. Inspired by this
analysis, we propose a shrinkage acceleration method which drastically reduces computational cost
in practice, and 2) we show that FAB/LFMs have parameter identifiability. This analysis offers a
natural guide to the merging post-processing of latent features. Rigorous proofs and assumptions
with respect to the main results are given in the supplementary materials.
Notation In this paper, we denote the (i, j)-th element, the i-th row vector, and the j-th column
vector of A by aij , ai, and a·j , respectively.

1.1 Related Work

FIC for MMs Suppose we have N × D observed data X and N × K latent variables Z. FIC
considers the following alternative representation of the marginal log-likelihood:

log p(X|M) = max
q

{∑
Z

q(Z) log
p(X,Z|M)

q(Z)

}
, p(X,Z|M) =

∫
p(X,Z|P)p(P|M)dP, (1)

where q(Z) is a variational distribution on Z; M and P are a model and its parameter, respec-
tively. In the case of MMs, log p(X,Z|P) can be factorized into log p(Z) and log p(X|Z) =∑

k log pk(X|z·k), where pk is the k-th observation distribution (we here omit parameters for
notational simplicity.) We can then approximate p(X,Z|M) by individually applying Laplace’s
method [28] to log p(Z) and log pk(X|z·k):

p(X,Z|M) ≈ p(X,Z|P̂) (2π)DZ/2

NDZ/2 det |FZ |1/2
K∏

k=1

(2π)Dk/2

(
∑

n znk)
Dk/2 det |Fk|1/2

, (2)

where P̂ is the maximum likelihood estimator (MLE) of p(X,Z|P).1 DZ and Dk are the param-
eter dimensionalities of p(Z) and pk(X|z·k), respectively. FZ and Fk are −∇∇ log p(Z)|P̂/N
and −∇∇ log pk(X|z·k)|P̂/(

∑
n znk), respectively. Under conditions for asymptotic ignoring of

log det |FZ | and log det |Fk|, substituting Eq.(2) into (1) gives the FIC for MMs as follows:

FICMM ≡ max
q

Eq

[
log p(X,Z|P̂)− DZ

2
logN −

∑
k

Dk

2
log
∑
n

znk

]
+H(q), (3)

where H(q) is the entropy of q(Z). The most important term in FICMM (3) is log(
∑

n znk), which
offers such theoretically desirable properties for FAB inference as automatic shrinkage of irrelevant
latent variables and parameter identifiability [6].

Direct optimization of FICMM is difficult because: (i) evaluation of Eq[log
∑

n znk] is computa-
tionally infeasible, and (ii) the MLE is not available in principle. Instead, FAB optimizes a tractable
lower bound of an FIC [6]. For (i), since− log

∑
n znk is a convex function, its linear approximation

at Nπ̃k > 0 yields the lower bound:

−
∑
k

Dk

2
Eq

[
log
∑
n

znk

]
≥ −

∑
k

Dk

2

(
logNπ̃k +

∑
n Eq[znk]/N − π̃k

π̃k

)
, (4)

where 0 < π̃k ≤ 1 is a linearization parameter. For (ii), since, from the definition of the MLE, the
inequality log p(X,Z|P̂) ≥ log p(X,Z|P) holds for any P , we optimize P along with q. Alternat-
ing maximization of the lower bound with respect to q, P , and π̃ guarantees a monotonic increase
in the FIC lower bound [6].

Infinite LFMs and Indian Buffet Process The IBP [10, 11] is a nonparametric prior over infi-
nite LFMs. It enables us to express an infinite number of latent features, and making it possible to
adjust model complexity on the basis of observations. Infinite IBPs have still been actively stud-
ied in terms of both applications (e.g., link prediction [16]) and model representations (e.g., latent
attribute models [19]). Since naive Gibbs sampling requires unrealistic computational cost, accel-
eration algorithms such as accelerated sampling [2] and VB [3] have been developed. Reed and
Ghahramani [22] have recently proposed an efficient MAP estimation framework of an IBP model
via submodular optimization, which is referred to as maximum-expectation IBP (MEIBP). As simi-
lar to FIC, “MAD-Bayes” [1] considers asymptotics of MMs and LFMs, but it is based on a limiting
case that the noise variance goes to zero, which yields a prior-derived regularization term.

1While p(X|P) is a non-regular model, P (X,Z|P) is a regular model (i.e., the Fisher information is non-
singular at the ML estimator,) and Fk and FZ have their inversions at P̂ .
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2 FIC and FAB Algorithm for LFMs

LFMs assume underlying relationships for X with binary features Z ∈ {0, 1}N×K and linear bases
W ∈ RD×K such that, for n = 1, . . . , N ,

xn = Wzn + b+ εn, (5)

where εn ∼ N(0,Λ−1) is the Gaussian noise having the diagonal precision matrix Λ ≡ diag(λ),
and b ∈ RD is a bias term. For later convenience, we define the centered observation X̄ = X −
1b>. Z follows a Bernoulli prior distribution znk ∼ Bern(πk) with a mean parameter πk. The
parameter set P is defined as P ≡ {W,b,λ,π}. Also, we denote parameters with respect to the
d-th dimension as θd = (wd, bd, λd). Similarly with other FAB frameworks, the log-priors of P are
assumed to be constant with respect to N , i.e., limN→∞

log p(P|M)
N = 0

In the case of MMs, we implicitly use the fact that: A1) parameters of pk(X|z·k) are mutually inde-
pendent for k = 1, . . . ,K (in other words,∇∇ log p(X|Z) is block diagonal having K blocks), and
A2) the number of observations which contribute ∇∇ log pk(X|z·k) is

∑
n znk. These conditions

naturally yield the FAB regularization term log
∑

n znk by the Laplace approximation of MMs (2).
However, since θd is shared by all latent features in LFMs, A1 and A2 are not satisfied. In the next
section, we address this issue and derive FIC for LFMs.

2.1 FICs for LFMs

The following lemma plays the most important role in our derivation of FICs for LFMs.

Lemma 1. Let F(d) be the Hessian matrix of the negated log-likelihood with respect to θd, i.e.,
−∇∇ log p(x·d|Z,θd). Under some mild assumptions (see the supplementary materials), the fol-
lowing equality holds:

log det |F(d)| =
∑
k

log

∑
n znk
N

+Op(1). (6)

An important fact is that the log
∑

n znk term naturally appears in log det |F(d)| without A1 and A2.
Lemma 1 induces the following theorem, which states an asymptotic approximation of a marginal
complete log-likelihood, log p(X,Z|M).
Theorem 2. If Lemma 1 holds and the joint marginal log-likelihood is bounded for a sufficiently
large N , it can be asymptotically approximated as:

log p(X,Z|M) = J(Z, P̂) +Op(1), (7)

J(Z,P) ≡ log p(X,Z|P)− |P| −DK

2
logN − D

2

∑
k

log
∑
n

znk. (8)

It is worth noting that, if we evaluate the model complexity of θd (log det |F(d)|) by N , i.e.,
if we apply Laplace’s method without Lemma 1, Eq. (7) falls into Bayesian Information Crite-
rion [23], which tells us that the model complexity relevant to θd increases not O(K logN) but
O(
∑

k log
∑

n znk).

By substituting approximation (7) into Eq. (1), we obtain the FIC of the LFM as follows:

FICLFM ≡ max
q

Eq[J(Z, P̂)] +H(q). (9)

It is interesting that FICLFM (9) and FICMM (3) have exactly the same representation despite the
fact that LFMs do not satisfy A1 and A2. This indicates the wide applicability of FICs and suggests
that FIC representation of approximated marginal log-likelihoods is feasible not only for MMs but
also for more general (discrete) latent variable models.

Since the asymptotic constant terms of Eq. (7) are not affected by the expectation of q(Z), the
difference between the FIC and the marginal log-likelihood is asymptotically constant; in other
words, the distance between log p(X|M)/N and FICLFM/N is asymptotically small.
Corollary 3. For N →∞, log p(X|M) = FICLFM +Op(1) holds.

3



2.2 FAB/LFM Algorithm

As with the case of MMs (3), FICLFM is not available in practice, and we employ the lower bound-
ing techniques (i) and (ii). For LFMs, we further introduce a mean-filed approximation on Z, i.e., we
restrict the class of q(zn) to a factorized form: q(zn) =

∏
k q̃(znk|µnk), where q̃(z|µ) is a Bernoulli

distribution with a mean parameter µ = Eq[z]. Rather than this approximation’s making the FIC
lower bound looser (the equality (1) no longer holds), the variational distribution has a closed-form
solution. Note that this approximation does not cause significant performance degradation in VB
contexts [20, 25]. The VB-extension of IBP [3] also uses this factorized assumption.

By applying (i), (ii), and the mean-field approximation, we obtain the lower bound: L(q,P, π̃) =

Eq [log p(X|Z,Θ) + log p(Z|π) + RHS of (4)]− 2D +K

2
logN +

∑
n

H(q(zn)). (10)

An FAB algorithm alternatingly maximizes L(q,P, π̃) with respect to {{µn},P, π̃}. Notice that
the algorithm described below monotonically increases L in every single step, and therefore we are
guaranteed to obtain a local maximum. This monotonic increase in L gives us a natural stopping
condition with a tolerance δ: if (Lt − Lt−1)/N < δ then stop the algorithm, where we denote the
value of L at the t-th iteration by Lt.

FAB E-step In the FAB E-step, we update µn in a way similar to that with the variational mean-
field inference in a restricted Boltzmann machine [20]. Taking the gradient of L with respect to µn
and setting it to zero yields the following fixed-point equations:

µnk = g (cnk + η(πk)−D/2Nπ̃k) (11)

where g(x) = (1+exp(−x))−1 is the sigmoid function, cnk = w>
·kΛ(x̄n−

∑
l 6=k µnlw·l− 1

2w·k),
and η(πk) = log πk

1−πk
is a natural parameter of the prior of z·k. Update equation (11) is a form of

coordinate descent, and every update is guaranteed to increase the lower bound [25]. After several
iterations of Eq. (11) over k = 1, . . . ,K, we are able to obtain a local maximum of Eq[zn] = µn

and Eq[znz
>
n ] = µnµ

>
n + diag(µn − µ2

n).

One unique term in Eq. (11) is − D
2Nπ̃k

, which originated in the log
∑

n znk term in Eq. (8). In
updating µnk (11), the smaller π̃k (or equivalent to πk by Eq. (12)) is, the smaller µnk is. And a
smaller µnk is likely to induce a smaller π̃k (see Eq. (12)). This results in the shrinking of irrelevant
features, and therefore FAB/LFMs are capable of automatically selecting feature dimensionality
K. This regularization effect is induced independently of prior (i.e., asymptotic ignorance of prior)
and is known as “model induced regularization” which is caused by Bayesian marginalization in
singular models [18]. Notice that Eq. (11) offers another shrinking effect, by means of η(πk), which
is a prior-based regularization. We empirically show that the latter shrinking effect is too weak to
mitigate over-fitting and the FAB algorithm achieves faster convergence, with respect to N , to the
true model (see Section 4.) Note that if we only use the effect of η(πk) (i.e. setting D/2Nπ̃k = 0),
then update equation (11) is equivalent to that of variational EM.

FAB M-step The FAB M-step is equivalent to the M-step in the EM algorithm of LFMs; the
solutions of W,Λ and b are given as in closed form and is exactly the same as those of PPCA [24]
(see the supplementary materials.) For π̃ and π, we obtain the following solutions:

πk = π̃k =
∑
n

µnk/N. (12)

Shrinkage step As we have explained, in principle, the FAB regularization term D
2Nπ̃k

in Eq. (11)
automatically eliminates irrelevant latent features. While the elimination does not change the value
of Eq[log(X|Z,P)], removing them from the model increases L due to a decrease in model com-
plexity. We eliminate shrunken features after FAB E-step in terms of that LFMs approximate X by∑

k µ·kw
>
·k + 1b>. When

∑
n µnk/N = 0, the k-th feature does not affect to the approximation

(
∑

l z·lw
>
·l =

∑
l 6=k z·lw

>
·l ), and we simply remove it. When

∑
n µnk/N = 1, wk can be seen as a

bias (
∑

l z·lw
>
·l =

∑
l 6=k z·lw

>
·l + 1w>

·k), and we update bnew = b+wk and then remove it.
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Algorithm 1 The FAB algorithm for LFMs.
1: Initialize {µn}
2: while Convergence do
3: Update P
4: accelerateShrinkage({µn})
5: for k = 1, . . . ,K do
6: Update {µnk} by Eq. (11)
7: end for
8: Shrink unnecessary latent features
9: if (Lt − Lt−1)/N < δ then

10: {{µ′
n},W

′} ← merge({µn},W)
11: if dim(W′) = dim(W) then Con-

verge
12: else {µn} ← {µ′

n},W←W′

13: end if
14: end while

Algorithm 2 accelerateShrinkage

input {µn}
1: for k = 1, . . . ,K do
2: ck ← (X̄−

∑
l 6=k µ·lw

>
·l− 1

21w
>
·k)Λw·k

3: for t = 1, . . . , Tshrink do
4: Update {µnk} by Eq. (11)
5: Update π and π̃ by Eq. (12)
6: end for
7: end for
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Figure 1: Time evolution of K (top) and L/N
(bottom) in FAB with and without shrinkage ac-
celeration (D = 50 and K = 5). Different lines
represent different random starts.

This model shrinkage also works to avoid the ill-conditioning of the FIC; if there are latent fea-
tures that are never activated (

∑
n µnk/N = 0) or always activated (

∑
n µnk/N = 1), the

FIC will no longer be an approximation of the marginal log-likelihood. Algorithm 1 summa-
rizes whole procedures with respect to the FAB/LFMs. Note that details regarding sub-routines
accelerateShrinkage() and merge() are explained in Section 3.

3 Analysis and Refinements

CCCP Interpretation and Shrinkage Acceleration Here we interpret the alternating updates
of µ and π̃ as a convex concave procedure (CCCP) [29] and consider to eliminate irrelevant
features in early steps to reduce computational cost. By substituting an optimality condition
π̃k =

∑
n µnk/N (12) into the lower bound, we obtain

L(q) = −D

2

∑
k

log
∑
n

µnk +

(∑
n

(cn + η)>µn +H(q)

)
+ const. (13)

The first and second terms are convex and concave with respect to µnk, respectively. The CCCP
solves Eq.(13) by iteratively linearizing the first term around µt−1

nk . By setting the derivative of the
“linearized” objective to be zero, we obtain the CCCP update as follows:

µt
nk = g

(
cnk + η(πk)−

D

2

∑
n

µt−1
nk

)
. (14)

By taking Nπ̃k =
∑

n µ
t−1
nk into account, Eq.(14) is equivalent to Eq.(11).

This new view of the FAB optimization gives us an important insight to accelerate the algorithm.
By considering the FAB optimization as the alternating maximization in terms of P and µ (π̃ is
removed), it is natural to take multiple CCCP steps (14). Such multiple CCCP steps in each FAB-
EM step is expected to accelerate the shrinkage effect discussed in the previous section because the
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regularization in terms of −D/2(
∑

n µnk) causes the effect. Eventually, it is expected to reduce the
total computational cost since we may be able to remove irrelevant latent features in earlier iterations.
We summarize the whole routine of accelerateShrinkage() based on the CCCP in Algorithm 2.
Note that, in practice, we update π along with π̃ for further acceleration of the shrinkage. We
empirically confirmed that Algorithm 2 significantly reduced computational costs (see Section 4 and
Figure 1.) Further discussion of this this update (an exponentiated gradient descent interpretation)
can be found in the supplementary materials.

Identifiability and Merge Post-processing Parameter identifiability is an important theoretical
aspect in learning algorithms for latent variable models. It has been known [26, 27] that general-
ization error significantly worsens if the mapping between parameters and functions is not one-to-
one (i.e., is non-identifiable.) Let us consider the LFM case of K = 2. If w·1 = w·2, then any
combination of µn1 and µn2 = 2µ − µn1 will have the same representation: Eq[Ex[x̄nd|θd]] =
wd1(µn1 + µn2) = 2wd1µ, and therefore the MLE is non-identifiable.

The following theorem shows that FAB inference resolves such non-identifiability in LFMs.

Theorem 4. Let P∗ and q∗ be stationary points of L such that 0 <
∑

n µ
∗
nk/N < 1 for k =

1, . . . ,K and |x̄>
nΛ

∗w∗
·k| < ∞ for k = 1, . . . ,K, n = 1, . . . , N . Then, w∗

·k = w∗
·l is a sufficient

condition of
∑

n µ
∗
nk/N =

∑
n µ

∗
nl/N .

For the ill-conditioned situation described above, the FAB algorithm has a unique solution that
balances the sizes of latent features. In large sample limit, both FAB and EM reach the same ML
value. The point is, for LFMs, ML solutions are not unique and EM is likely to choose large-K-
solutions because of this non-identifiability issue. On the other hands, FAB prefers to small-K ML
solutions on the basis of the regularizer. In addition, Theorem 4 gives us an important insight about
post-processing of latent features. If w∗

·k = w∗
·l, then Eq[log p(X,Z|M∗)] is equivalent without

relation to µnk and µnl, while model complexity is smaller if we only have one latent feature.
Therefore, if w∗

·k = w∗
·l, merging these two latent features increases L, i.e., w∗

·k = 2w∗
·k and

µ∗
·k =

µ∗
·k+µ∗

·l
2 . In practice, we search for such overlapping features on the basis of a Euclidean

distance matrix of W∗ and w∗
·k for k = 1, . . . ,K and merge them if the lower bound increases after

the post-processing. We empirically found that a few merging operations were likely to occur in real
world data sets. The algorithm of merge() is summarized in the supplementary materials.

4 Experiments

We have evaluated FAB/LFMs in terms of computational speed, model selection accuracy, and pre-
diction performance with respect to missing values. We compared FAB inference and the variational
EM algorithm (see Section 2.2) with an IBP that utilized fast Gibbs sampling [2], a VB [3] having a
finite K, and MEIBP [22]. IBP and MEIBP select a model which maximizes posterior probability.
For VB, we performed inference with K = 2, . . . , D and selected the model having the highest free
energy. EM selects K using the shrinkage effect of η as we have explained in Section 2.2.

All the methods were implemented in Matlab (for IBP, VB, and MEIBP, we used original codes
released by the authors), and the computational performance were fairly compared. For FAB and
EM, we set δ = 10−4 (this was not sensitive) and Tshrink = 100 (FAB only); {µn} were randomly
and uniformly initialized by 0 and 1; the initial number of latent features was set to min(N,D) as
well as MEIBP. Since the softwares of IBP, VB, and MEIBP did not learn the standard deviation
of the noise (1/

√
λ in FAB), we fixed it to 1 for artificial simulations, which is the true standard

deviation of toy data, and 0.75 for real data by following the original papers [2, 22]. We set other
parameters with software default values. For example, α, a hyperparameter of IBP, was set to 3,
which might cause overestimation of K. As common preprocessing, we normalized X (i.e., the
sample variance is 1) in all experiments.

Artificial Simulations We first conducted artificial simulations with fully-observed synthetic data
generated by model (5) having a fixed λk = 1 and πk = 0.5. Figure 1 shows the results of a com-
parison between FAB with and without shrinkage acceleration.2 Clearly, our shrinkage acceleration

2We also investigated the effect of merge post-processing, but none was observed in this small example.
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Figure 2: Comparative evaluation of the artificial simulations in terms of N v.s. elapsed time (left)
and selected K (right). Each error-bar shows the standard deviation over 10 trials (D = 30).

Figure 3: Learned Ws in block data.

significantly reduced computational cost by eliminating irrelevant features in the early steps, while
both algorithms achieved roughly the same objective value L and model selection performance at
the convergence. Figure 2 shows the results of a comparison between FAB (with acceleration) and
the other methods. While MEIBP was much faster than FAB in terms of elapsed computational time,
FAB achieved the most accurate estimation of K, especially for large N .

Block Data We next demonstrate performance of FAB/LFMs in terms of learning features. We
used the block data, a synthetic data originally used in [10]. Observations were generated by
combining four distinct patterns (i.e., K = 4, see Figure 3) with Gaussian noise, on 6 by 6 pixels
(i.e., D = 36). We prepared the results of N = 2000 samples with the noise standard deviation
0.3 and no missing values (more results can be found in the supplementary materials.) Figure 3
compares estimated features of each method on early learning phase (at the 5th iteration) and after
the convergence (the result displayed is the example which has the median log-likelihood over 10
trials.) Note that, we omitted MEIPB since we observed that its parameter setting was very sensitive
for this data. While EM and IBP retain irrelevant features, FAB successfully extracts the true patterns
without irrelevant features.

Real World Data We finally evaluated predictive performance by using the real data sets described
in Table 1. We randomly removed 30% of data with 5 different random seeds and treated them as
missing values, and we measured predictive and training log-likelihood (PLL and TLL) for them.
Table 1 summarizes the results with respect to elapsed computational time (hours), selected K,
PLL, and TLL. Note that, for cases when the computational time for a method exceeded 50 hours,
we stopped the program after that iteration.3 Since MEIBP is the method for non-negative data, we
omitted the results of those containing negative values. Also, since MEIBP did not finish the first
iteration within 50 hours for yaleB and USPS data, we set the initial K as 100. FAB consistently
achieved good predictive performance (higher PLL) with low computational cost. Although MEIBP
performed faster than FAB with appropriately set the initial value of K (i.e., yaleB and USPS),
PLLs of FAB were much better than those of MEIBP. In terms of K, FAB typically achieved a
more compact and better model representation than the others (smaller K). Another important
observation is that FAB have much smaller differences between TLL and PLL than the others. This
suggests that FAB’s unique regularization worked well for mitigating over-fitting. For the large
sample data sets (EEG, Piano, USPS), PLLs of FAB and EM were competitive with one another;

3We totally omitted VB because of its long computational time.
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Table 1: Results on real-world data sets. The best result (e.g., the smallest K in model selection)
and those not significantly worse than it are highlighted in boldface. We used a one-side t-test with
95% confidence. *We exclude the results of MEIBP for yaleB and USPS from the t-test because of the
different experimental settings (initial K was smaller than the others. See the body text for details.)

Data Method Time (h) K PLL TLL
Sonar [4] FAB < 0.01 4.4± 1.1 −1.25± 0.02 −1.14± 0.03
208× 49 EM < 0.01 48.8± 0.5 −4.04± 0.46 −0.08± 0.07

IBP 3.3 69.6± 4.8 −4.48± 0.15 0.13± 0.02
MEIBP < 0.01 45.4± 1.7 −18.10± 1.90 −15.60± 1.80

Libras [4] FAB < 0.01 19.0± 0.7 −0.63± 0.03 −0.42± 0.03
360× 90 EM 0.01 75.6± 8.6 −0.68± 0.11 0.76± 0.24

IBP 4.8 36.4± 1.1 −0.18± 0.01 0.13± 0.01
MEIBP 0.05 40.8± 1.3 −11.30± 2.00 −10.70± 1.80

Auslan [14] FAB 0.04 6.0± 0.7 −1.34± 0.15 −0.92± 0.02
16180× 22 EM 0.2 22± 0 −1.79± 0.27 −0.78± 0.02

IBP 50.2 73± 5 −4.54± 0.08 0.08± 0.01
MEIBP N/A N/A N/A N/A

EEG [12] FAB 1.6 11.2± 1.6 −0.93± 0.02 −0.76± 0.04
120576× 32 EM 3.7 32± 0 −0.88± 0.09 −0.59± 0.01

IBP 53.0 46.4± 4.4 −3.16± 0.03 −0.26± 0.05
MEIBP N/A N/A N/A N/A

Piano [21] FAB 19.4 58.0± 3.5 −0.83± 0.01 −0.63± 0.02
57931× 161 EM 50.1 158.6± 3.4 −0.82± 0.02 −0.45± 0.01

IBP 55.8 89.6± 4.2 −1.83± 0.02 −0.84± 0.05
MEIBP 14.3 48.4± 3.2 −7.14± 0.52 −6.90± 0.50

yaleB [7] FAB 2.2 77.2± 7.9 −0.37± 0.02 −0.29± 0.03
2414× 1024 EM 50.9 929± 20 −4.60± 1.20 0.80± 0.27

IBP 51.7 94.2± 7.5 −0.54± 0.02 −0.35± 0.02
∗MEIBP 7.2 69.8± 2.7 −1.18± 0.02 −1.12± 0.02

USPS [13] FAB 11.2 110.2± 5.1 −0.96± 0.01 −0.64± 0.02
110000× 256 EM 45.7 256± 0 −1.06± 0.01 −0.36± 0.01

IBP 61.6 181.0± 4.8 −2.59± 0.08 −0.76± 0.01
∗MEIBP 1.9 22.0± 2.7 −1.35± 0.03 −1.31± 0.03

this is reasonable, for large N , both of them ideally achieve the maximum likelihood while FAB
achieved much smaller K (see identifiability discussion in Section 3). In small N scenarios, on the
other hand, FIC approximation would be not accurate, and FAB would perform worse than NPBs
(while we observed such case only in Libras.)

5 Summary

We have considered here an FAB framework for LFMs that offers fully automated model selection,
i.e., selecting the number of latent features. While LFMs do not satisfy the assumptions that naturally
induce FIC/FAB on MMs, we have shown that they have the same “degree” of model complexity as
the approximated marginal log-likelihood, and we have derived FIC/FAB in a form similar to that
for MMs. In addition, our proposed accelerating mechanism for shrinking models drastically re-
duces total computational time. Experimental comparisons of FAB inference with existing methods,
including state-of-the-art IBP methods, have demonstrated the superiority of FAB/LFM.
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