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Abstract

In many practical applications of active learning, it is more cost-effective to re-
quest labels in large batches, rather than one-at-a-time. This is because the cost of
labeling a large batch of examples at once is often sublinearin the number of ex-
amples in the batch. In this work, we study the label complexity of active learning
algorithms that request labels in a given number of batches,as well as the tradeoff
between the total number of queries and the number of rounds allowed. We ad-
ditionally study the total cost sufficient for learning, foran abstract notion of the
cost of requesting the labels of a given number of examples atonce. In particular,
we find that for sublinear cost functions, it is often desirable to request labels in
large batches (i.e., buying in bulk); although this may increase the total number of
labels requested, it reduces the total cost required for learning.

1 Introduction

In many practical applications of active learning, the costto acquire a large batch of labels at once is
significantly less than the cost of the same number of sequential rounds of individual label requests.
This is true for both practical reasons (overhead time for start-up, reserving equipment in discrete
time-blocks, multiple labelers working in parallel, etc.)and for computational reasons (e.g., time
to update the learner’s hypothesis and select the next examples may be large). Consider making
one vs multiple hematological diagnostic tests on an out-patient. There are fixed up-front costs:
bringing the patient in for testing, drawing and storing theblood, entring the information in the
hospital record system, etc. And there are variable costs, per specific test. Consider a microarray
assay for gene expression data. There is a fixed cost in setting up and running the microarray, but
virtually no incremental cost as to the number of samples, just a constraint on the max allowed.
Either of the above conditions are often the case in scientific experiments (e.g., [1]), As a different
example, consider calling a focused group of experts to address questions w.r.t new product design
or introduction. There is a fixed cost in forming the group (determine membership, contract, travel,
etc.), and a incremental per-question cost. The common abstraction in such real-world versions
of “oracles” is that learning can buy-in-bulk to advantage because oracles charge either per batch
(answering a batch of questions for the same cost as answering a single question up to a batch
maximum), or the cost per batch isaxp + b, whereb is the set-up cost,x is the number of queries,
andp = 1 or p < 1 (for the case where practice yields efficiency).

Often we have other tradeoffs, such as delay vs testing cost.For instance in a medical diagnosis case,
the most cost-effective way to minimize diagnostic tests ispurely sequential active learning, where
each test may rule out a set of hypotheses (diagnoses) and informs the next test to perform. But
a patient suffering from a serious disease may worsen while sequential tests are being conducted.
Hence batch testing makes sense if the batch can be tested in parallel. In general one can convert
delay into a second cost factor and optimize for batch size that minimizes a combination of total
delay and the sum of the costs for the individual tests. Parallelizing means more tests would be
needed, since we lack the benefit of earlier tests to rule out future ones. In order to perform this
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batch-size optimization we also need to estimate the numberof redundant tests incurred by turning
a sequence into a shorter sequence of batches.

For the reasons cited above, it can be very useful in practiceto generalize active learning to active-
batch learning, with buy-in-bulk discounts. This paper developes a theoretical framework exploring
the bounds and sample compelxity of active buy-in-bulk machine learning, and analyzing the trade-
off that can be achieved between the number of batches and thetotal number of queries required for
accurate learning.

In another example, if we have many labelers (virtually unlimited) operating in parallel, but must
pay for each query, and the amount of time to get back the answer to each query is considered
independent with some distribution, it may often be the casethat the expected amount of time
needed to get back the answers tom queries is sublinear inm, so that if the “cost” is a function
of both the payment amounts and the time, it might sometimes be less costly to submit multiple
queries to be labeled in parallel. In scenarios such as thosementioned above, a batch mode active
learning strategy is desirable, rather than a method that selects instances to be labeled one-at-a-time.

There have recently been several attempts to construct heuristic approaches to the batch mode active
learning problem (e.g., [2]). However, theoretical analysis has been largely lacking. In contrast,
there has recently been significant progress in understanding the advantages of fully-sequential ac-
tive learning (e.g., [3, 4, 5, 6, 7]). In the present work, we are interested in extending the techniques
used for the fully-sequential active learning model, studying natural analogues of them for the batch-
model active learning model.

Formally, we are interested in two quantities: the sample complexity and the total cost. The sample
complexity refers to the number of label requests used by thealgorithm. We expect batch-mode
active learning methods to usemorelabel requests than their fully-sequential cousins. On theother
hand, if thecost to obtain a batch of labels issublinear in the size of the batch, then we may
sometimes expect the total cost used by a batch-mode learning method to be significantlylessthan
the analogous fully-sequential algorithms, which requestlabels individually.

2 Definitions and Notation

As in the usual statistical learning problem, there is a standard Borel spaceX , called the instance
space, and a setC of measurable classifiersh : X → {−1,+1}, called the concept space. Through-
out, we suppose that the VC dimension ofC, denotedd below, is finite.

In the learning problem, there is an unobservable distributionDXY overX × {−1,+1}. Based on
this quantity, we letZ = {(Xt, Yt)}∞t=1 denote an infinite sequence of independentDXY -distributed
random variables. We also denote byZt = {(X1, Y1), (X2, Y2), . . . , (Xt, Yt)} the first t such
labeled examples. Additionally denote byDX the marginal distribution ofDXY overX . For a
classifierh : X → {−1,+1}, denoteer(h) = P(X,Y )∼DXY

(h(X) 6= Y ), the error rate of h.
Additionally, for m ∈ N andQ ∈ (X × {−1,+1})m, let er(h;Q) = 1

|Q|

∑

(x,y)∈Q I[h(x) 6= y],
the empirical error rateof h. In the special case thatQ = Zm, abbreviateerm(h) = er(h;Q).
For r > 0, defineB(h, r) = {g ∈ C : DX(x : h(x) 6= g(x)) ≤ r}. For anyH ⊆ C, define
DIS(H) = {x ∈ X : ∃h, g ∈ H s.t.h(x) 6= g(x)}. We also denote byη(x) = P (Y = +1|X = x),
where(X,Y ) ∼ DXY , and leth∗(x) = sign(η(x)− 1/2) denote theBayes optimal classifier.

In the active learning protocol, the algorithm has direct access to theXt sequence, but must request
to observe each labelYt, sequentially. The algorithm asks up to a specified number oflabel requests
n (thebudget), and then halts and returns a classifier. We are particularly interested in determining,
for a given algorithm, how large this number of label requests needs to be in order to guarantee
small error rate with high probability, a value known as thelabel complexity. In the present work,
we are also interested in thecost expended by the algorithm. Specifically, in this context, there
is a cost functionc : N → (0,∞), and to request the labels{Yi1 , Yi2 , . . . , Yim} of m examples
{Xi1 , Xi2 , . . . , Xim} at once requires the algorithm to payc(m); we are then interested in the sum
of these costs, over allbatchesof label requests made by the algorithm. Depending on the form
of the cost function, minimizing the cost of learning may actually require the algorithm to request
labels in batches, which we expect would actually increase the total number of label requests.
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To help quantify the label complexity and cost complexity, we make use of the following definition,
due to [6, 7].

Definition 2.1. [6, 7] Define the disagreement coefficient ofh∗ as

θ(ǫ) = sup
r>ǫ

DX (DIS(B(h∗, r)))

r
.

3 Buy-in-Bulk Active Learning in the Realizable Case: k-batch CAL

We begin our anlaysis with the simplest case: namely, the realizable case, with a fixed prespecified
number of batches. We are then interested in quantifying thelabel complexity for such a scenario.

Formally, in this section we supposeh∗ ∈ C ander(h∗) = 0. This is refered to as therealizable
case. We first review a well-known method for active learning in the realizable case, refered to as
CAL after its discoverers Cohn, Atlas, and Ladner [8].

Algorithm: CAL(n)
1. t← 0, m← 0,Q ← ∅
2. While t < n
3. m← m+ 1
4. If max

y∈{−1,+1}
min
h∈C

er(h;Q ∪ {(Xm, y)}) = 0

5. RequestYm, letQ ← Q∪ {(Xm, Ym)}, t← t+ 1

6. Return̂h = argminh∈C er(h;Q)

The label complexity of CAL is known to beO (θ(ǫ)(d log(θ(ǫ)) + log(log(1/ǫ)/δ)) log(1/ǫ)) [7].
That is, somen of this size suffices to guarantee that, with probability1 − δ, the returned classifier
ĥ haser(ĥ) ≤ ǫ.

One particularly simple way to modify this algorithm to makeit batch-based is to simply divide up
the budget into equal batch sizes. This yields the followingmethod, which we refer to ask-batch
CAL, wherek ∈ {1, . . . , n}.

Algorithm: k-batch CAL(n)
1. LetQ← {}, b← 2, V ← C

2. Form = 1, 2, . . .
3. If Xm ∈ DIS(V )
4. Q← Q ∪ {Xm}
5. If |Q| = ⌊n/k⌋
6. Request the labels of examples inQ
7. LetL be the corresponding labeled examples
8. V ← {h ∈ V : er(h;L) = 0}
9. b← b+ 1 andQ← ∅
10. If b > k, Return anŷh ∈ V

We expect the label complexity ofk-batch CAL to somehow interpolate between passive learning
(at k = 1) and the label complexity of CAL (atk = n). Indeed, the following theorem bounds the
label complexity ofk-batch CAL by a function that exhibits this interpolation behavior with respect
to the known upper bounds for these two cases.

Theorem 3.1. In the realizable case, for some

λ(ǫ, δ) = O
(

kǫ−1/kθ(ǫ)1−1/k(d log(1/ǫ) + log(1/δ))
)

,

for anyn ≥ λ(ǫ, δ), with probability at least1− δ, runningk-batch CAL with budgetn produces a
classifierĥ with er(ĥ) ≤ ǫ.

Proof. Let M = ⌊n/k⌋. DefineV0 = C andi0M = 0. Generally, forb ≥ 1, let ib1, ib2, . . . , ibM
denote the indicesi of the firstM pointsXi ∈ DIS(Vb−1) for whichi > i(b−1)M , and letVb = {h ∈
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Vb−1 : ∀j ≤ M,h(Xibj ) = h∗(Xibj )}. These correspond to the version space at the conclusion of
batchb in thek-batch CAL algorithm.

Note thatXib1 , . . . , XibM are conditionally iid givenVb−1, with distribution ofX given X ∈
DIS(Vb−1). Thus, the PAC bound of [9] implies that, for some constantc ∈ (0,∞), with prob-
ability ≥ 1− δ/k,

Vb ⊆ B

(

h∗, c
d log(M/d) + log(k/δ)

M
P (DIS(Vb−1))

)

.

By a union bound, the above holds for allb ≤ k with probability≥ 1 − δ; suppose this is the
case. SinceP (DIS(Vb−1)) ≤ θ(ǫ)max{ǫ,maxh∈Vb−1er(h)}, and anyb with maxh∈Vb−1

er(h) ≤ ǫ
would also havemaxh∈Vb

er(h) ≤ ǫ, we have

max
h∈Vb

er(h) ≤ max

{

ǫ, c
d log(M/d) + log(k/δ)

M
θ(ǫ) max

h∈Vb−1

er(h))

}

.

Noting thatP (DIS(V0)) ≤ 1 impliesV1 ⊆ B
(

h∗, cd log(M/d)+log(k/δ)
M

)

, by induction we have

max
h∈Vk

er(h) ≤ max

{

ǫ,

(

c
d log(M/d) + log(k/δ)

M

)k

θ(ǫ)k−1

}

.

For some constantc′ > 0, anyM ≥ c′ θ(ǫ)
k−1
k

ǫ1/k

(

d log 1
ǫ + log(k/δ)

)

makes the right hand side≤ ǫ.

SinceM = ⌊n/k⌋, it suffices to haven ≥ k

(

1 + c′ θ(ǫ)
k−1
k

ǫ1/k

(

d log 1
ǫ + log(k/δ)

)

)

.

Theorem 3.1 has the property that, when the disagreement coefficient is small, the stated bound
on the total number of label requests sufficient for learningis a decreasing function ofk. This
makes sense, sinceθ(ǫ) small would imply that fully-sequential active learning ismuch better than
passive learning. Small values ofk correspond to more passive-like behavior, while larger values of
k take fuller advantage of the sequential nature of active learning. In particular, whenk = 1, we
recover a well-known label complexity bound for passive learning by empirical risk minimization
[10]. In contrast, whenk = log(1/ǫ), theǫ−1/k factor ise (constant), and the rest of the bound is at
mostO(θ(ǫ)(d log(1/ǫ)+ log(1/δ)) log(1/ǫ)), which is (up to alog factor) a well-known bound on
the label complexity of CAL for active learning [7] (a slightrefinement of the proof would in fact
recover the exact bound of [7] for this case); fork larger thanlog(1/ǫ), the label complexity can only
improve; for instance, consider that upon reaching a given data pointXm in the data stream, ifV is
the version space ink-batch CAL (for somek), andV ′ is the version space in2k-batch CAL, then
we haveV ′ ⊆ V (supposingn is a multiple of2k), so thatXm ∈ DIS(V ′) only if Xm ∈ DIS(V ).
Note that evenk = 2 can sometimes provide significant reductions in label complexity over passive
learning: for instance, by a factor proportional to1/

√
ǫ in the case thatθ(ǫ) is bounded by a finite

constant.

4 Batch Mode Active Learning with Tsybakov noise

The above analysis was for the realizable case. While this provides a particularly clean and simple
analysis, it is not sufficiently broad to cover many realistic learning applications. To move beyond
the realizable case, we need to allow the labels to be noisy, so thater(h∗) > 0. One popular noise
model in the statistical learning theory literature is Tsybakov noise, which is defined as follows.

Definition 4.1. [11] The distributionDXY satisfiesTsybakov noiseif h∗ ∈ C, and for somec > 0
andα ∈ [0, 1],

∀t > 0,P(|η(x)− 1/2| < t) < c1t
α

1−α ,

equivalently,∀h, P (h(x) 6= h∗(x)) ≤ c2(er(h)− er(h∗))α, wherec1 andc2 are constants.

SupposingDXY satisfies Tsybakov noise, we define a quantity

Em = c3

(

d log(m/d) + log(km/δ)

m

)
1

2−α

.
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based on a standard generalization bound for passive learning [12]. Specifically, [12] have shown
that, for anyV ⊆ C, with probability at least1− δ/(4km2),

sup
h,g∈V

|(er(h)− er(g))− (erm(h)− erm(g))| < Em. (1)

Consider the following modification ofk-batch CAL, designed to be robust to Tsybakov noise. We
refer to this method ask-batch Robust CAL, wherek ∈ {1, . . . , n}.

Algorithm: k-batch Robust CAL(n)
1. LetQ← {}, b← 1, V ← C, m1 ← 0
2. Form = 1, 2, . . .
3. If Xm ∈ DIS(V )
4. Q← Q ∪ {Xm}
5. If |Q| = ⌊n/k⌋
6. Request the labels of examples inQ
7. LetL be the corresponding labeled examples
8. V ← {h ∈ V : (er(h;L)−ming∈V er(g;L)) ⌊n/k⌋

m−mb
≤ Em−mb

}
9. b← b+ 1 andQ← ∅
10. mb ← m
11. If b > k, Return anŷh ∈ V

Theorem 4.2. Under the Tsybakov noise condition, lettingβ = α
2−α , andβ̄ =

∑k−1
i=0 βi, for some

λ(ǫ, δ) = O

(

k

(

1

ǫ

)

2−α
β̄

(c2θ(c2ǫ
α))

1− βk−1

β̄

(

d log

(

d

ǫ

)

+ log

(

kd

δǫ

))

1+ββ̄−βk

β̄

)

,

for anyn ≥ λ(ǫ, δ), with probability at least1 − δ, runningk-batch Robust CAL with budgetn
produces a classifier̂h with er(ĥ)− er(h∗) ≤ ǫ.

Proof. Let M = ⌊n/k⌋. Define i0M = 0 and V0 = C. Generally, for b ≥ 1, let
ib1, ib2, . . . , ibM denote the indicesi of the first M points Xi ∈ DIS(Vb−1) for which i >
i(b−1)M , and letQb = {(Xib1 , Yib1), . . . , (XibM , YibM )} andVb = {h ∈ Vb−1 : (er(h;Qb) −
ming∈Vb−1

er(g;Qb))
M

ibM−i(b−1)M
≤ EibM−i(b−1)M

}. These correspond to the setV at the conclu-

sion of batchb in thek-batch Robust CAL algorithm.

For b ∈ {1, . . . , k}, (1) (applied under the conditional distribution givenVb−1, com-
bined with the law of total probability) implies that∀m > 0, letting Zb,m =
{(Xi(b−1)M+1, Yi(b−1)M+1), ..., (Xi(b−1)M+m, Yi(b−1)M+m)}, with probability at least1−δ/(4km2),
if h∗ ∈ Vb−1, then er(h∗;Zb,m) − ming∈Vb−1

er(g;Zb,m) < Em, and everyh ∈ Vb−1 with
er(h;Zb,m) − ming∈Vb−1

er(g;Zb,m) ≤ Em haser(h) − er(h∗) < 2Em. By a union bound,
this holds forall m ∈ N, with probability at least1 − δ/(2k). In particular, this means it
holds for m = ibM − i(b−1)M . But note that for this value ofm, any h, g ∈ Vb−1 have
er(h;Zb,m)− er(g;Zb,m) = (er(h;Qb)− er(g;Qb))

M
m (since for every(x, y) ∈ Zb,m \Qb, either

bothh andg make a mistake, or neither do). Thus ifh∗ ∈ Vb−1, we haveh∗ ∈ Vb as well, and
furthermoresuph∈Vb

er(h) − er(h∗) < 2EibM−i(b−1)M
. By induction (overb) and a union bound,

these are satisfied for allb ∈ {1, . . . , k} with probability at least1 − δ/2. For the remainder of the
proof, we suppose this1− δ/2 probability event occurs.

Next, we focus on lower boundingibM − i(b−1)M , again by induction. As a base case, we clearly
have i1M − i0M ≥ M . Now suppose someb ∈ {2, . . . , k} has i(b−1)M − i(b−2)M ≥ Tb−1

for someTb−1. Then, by the above, we havesuph∈Vb−1
er(h) − er(h∗) < 2ETb−1

. By the Tsy-

bakov noise condition, this impliesVb−1 ⊆ B
(

h∗, c2
(

2ETb−1

)α)
, so that ifsuph∈Vb−1

er(h) −
er(h∗) > ǫ, P (DIS(Vb−1)) ≤ θ(c2ǫ

α)c2
(

2ETb−1

)α
. Now note that the conditional distribution

of ibM − i(b−1)M given Vb−1 is a negative binomial random variable with parametersM and
1 − P (DIS(Vb−1)) (that is, a sum ofM Geometric(P (DIS(Vb−1))) random variables). A Cher-
noff bound (applied under the conditional distribution givenVb−1) implies thatP (ibM − i(b−1)M <
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M/(2P (DIS(Vb−1)))|Vb−1) < e−M/6. Thus, forVb−1 as above, with probability at least1−e−M/6,
ibM−i(b−1)M ≥ M

2θ(c2ǫα)c2(2ETb−1
)α . Thus, we can defineTb as in the right hand side, which thereby

defines a recurrence. By induction, with probability at least 1− ke−M/6 > 1− δ/2,

ikM − i(k−1)M ≥M β̄

(

1

4c2θ(c2ǫα)

)β̄−βk−1
(

1

2(d log(M) + log(kM/δ))

)β(β̄−βk−1)

.

By a union bound, with probability1−δ, this occurs simultaneously with the abovesuph∈Vk
er(h)−

er(h∗) < 2EikM−i(k−1)M
bound. Combining these two results yields

sup
h∈Vk

er(h)− er(h∗) = O

((

(c2θ(c2ǫ
α))β̄−βk−1

M β̄

)
1

2−α

(d log(M) + log(kM/δ))
1+β(β̄−βk−1)

2−α

)

.

Setting this toǫ and solving forn, we find that it suffices to have

M ≥ c4

(

1

ǫ

)

2−α
β̄

(c2θ(c2ǫ
α))

1− βk−1

β̄

(

d log

(

d

ǫ

)

+ log

(

kd

δǫ

))

1+ββ̄−βk

β̄

,

for some constantc4 ∈ [1,∞), which then implies the stated result.

Note: the thresholdEm in k-batch Robust CAL has a direct dependence on the parameters of the
Tsybakov noise condition. We have expressed the algorithm in this way only to simplify the pre-
sentation. In practice, such information is not often available. However, we can replaceEm with a
data-dependent local Rademacher complexity boundÊm, as in [7], which also satisfies (1), and satis-
fies (with high probability)̂Em ≤ c′Em, for some constantc′ ∈ [1,∞) (see [13]). This modification
would therefore provide essentially the same guarantee stated above (up to constant factors), with-
out having any direct dependence on the noise parameters, and the analysis gets only slightly more
involved to account for the confidences in the concentrationinequalities for thesêEm estimators.
A similar result can also be obtained for batch-based variants of other noise-robust disagreement-
based active learning algorithms from the literature (e.g., a variant ofA2 [5] that uses updates based
on quantities related to thesêEm estimators, in place of the traditional upper-bound/lower-bound
construction, would also suffice).

Whenk = 1, Theorem 4.2 matches the best results for passive learning (up to log factors), which
are known to be minimax optimal (again, up to log factors). Ifwe letk become large (while still
considered as a constant), our result converges to the knownresults for one-at-a-time active learning
with RobustCAL (again, up to log factors) [7, 14]. Although those results are not always minimax
optimal, they do represent the state-of-the-art in the general analysis of active learning, and they are
really the best we could hope for from basing our algorithm onRobustCAL.

5 Buy-in-Bulk Solutions to Cost-Adaptive Active Learning

The above sections discussed scenarios in which we have a fixed numberk of batches, and we
simply bounded the label complexity achievable within thatconstraint by considering a variant of
CAL that usesk equal-sized batches. In this section, we take a slightly different approach to the
problem, by going back to one of the motivations for using batch-based active learning in the first
place: namely, sublinearcostsfor answering batches of queries at a time. If the cost of answering
m queries at once is sublinear inm, then batch-based algorithms arise naturally from the problem
of optimizing the total cost required for learning.

Formally, in this section, we suppose we are given a cost function c : (0,∞) → (0,∞), which is
nondecreasing, satisfiesc(αx) ≤ αc(x) (for x, α ∈ [1,∞)) , and further satisfies the condition that
for everyq ∈ N, ∃q′ ∈ N such that2c(q) ≤ c(q′) ≤ 4c(q), which typically amounts to a kind of
smoothness assumption. For instance,c(q) =

√
q would satisfy these conditions (as would many

other smooth increasing concave functions); the latter assumption can be generalized to allow other
constants, though we only study this case below for simplicity.

To understand the total cost required for learning in this model, we consider the following cost-
adaptive modification of the CAL algorithm.
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Algorithm: Cost-Adaptive CAL(C)
1.Q ← ∅, R← DIS(C), V ← C, t← 0
2. Repeat
3. q ← 1
4. Do untilP (DIS(V )) ≤ P (R)/2
5. Letq′ > q be minimal such thatc(q′ − q) ≥ 2c(q)

6. If c(q′ − q) + t > C, Return anŷh ∈ V
7. Request the labels of the nextq′ − q examples inDIS(V )
8. UpdateV by removing those classifiers inconsistent with these labels
9. Let t← t+ c(q′ − q)
10. q ← q′

11. R← DIS(V )

Note that the total cost expended by this method never exceeds the budget argumentC. We have the
following result on how large of a budgetC is sufficient for this method to succeed.

Theorem 5.1. In the realizable case, for some

λ(ǫ, δ) = O
(

c
(

θ(ǫ) (d log(θ(ǫ)) + log(log(1/ǫ)/δ))
)

log(1/ǫ)
)

,

for anyC ≥ λ(ǫ, δ), with probability at least1 − δ, Cost-Adaptive CAL(C) returns a classifier̂h
with er(ĥ) ≤ ǫ.

Proof. Supposing an unlimited budget (C = ∞), let us determine how much cost the algorithm
incurs prior to havingsuph∈V er(h) ≤ ǫ; this cost would then be a sufficient size forC to guarantee
this occurs. First, note thath∗ ∈ V is maintained as an invariant throughout the algorithm. Also,
note that ifq is ever at least as large asO(θ(ǫ)(d log(θ(ǫ)) + log(1/δ′))), then as in the analysis for
CAL [7], we can conclude (via the PAC bound of [9]) that with probability at least1− δ′,

sup
h∈V

P (h(X) 6= h∗(X)|X ∈ R) ≤ 1/(2θ(ǫ)),

so that
sup
h∈V

er(h) = sup
h∈V

P (h(X) 6= h∗(X)|X ∈ R)P (R) ≤ P (R)/(2θ(ǫ)).

We knowR = DIS(V ′) for the setV ′ which was the value of the variableV at the time thisR was
obtained. Supposingsuph∈V ′ er(h) > ǫ, we know (by the definition ofθ(ǫ)) that

P (R) ≤ P

(

DIS

(

B

(

h∗, sup
h∈V ′

er(h)

)))

≤ θ(ǫ) sup
h∈V ′

er(h).

Therefore,

sup
h∈V

er(h) ≤ 1

2
sup
h∈V ′

er(h).

In particular, this implies the condition in Step 4 will be satisfied if this happens while
suph∈V er(h) > ǫ. But this condition can be satisfied at most⌈log2(1/ǫ)⌉ times while
suph∈V er(h) > ǫ (since suph∈V er(h) ≤ P (DIS(V ))). So with probability at least1 −
δ′⌈log2(1/ǫ)⌉, as long assuph∈V er(h) > ǫ, we always havec(q) ≤ 4c(O(θ(ǫ)(d log(θ(ǫ)) +
log(1/δ′)))) ≤ O(c(θ(ǫ)(d log(θ(ǫ)) + log(1/δ′)))). Letting δ′ = δ/⌈log2(1/ǫ)⌉, this is
1 − δ. So for each round of the outer loop whilesuph∈V er(h) > ǫ, by summing the geomet-
ric series of cost valuesc(q′ − q) in the inner loop, we find the total cost incurred is at most
O(c(θ(ǫ)(d log(θ(ǫ)) + log(log(1/ǫ)/δ)))). Again, there are at most⌈log2(1/ǫ)⌉ rounds of the
outer loop whilesuph∈V er(h) > ǫ, so that the total cost incurred before we havesuph∈V er(h) ≤ ǫ
is at mostO(c(θ(ǫ)(d log(θ(ǫ)) + log(log(1/ǫ)/δ))) log(1/ǫ)).

Comparing this result to the known label complexity of CAL, which is (from [7])

O (θ(ǫ) (d log(θ(ǫ)) + log(log(1/ǫ)/δ)) log(1/ǫ)) ,

we see that the major factor, namely theO (θ(ǫ) (d log(θ(ǫ)) + log(log(1/ǫ)/δ))) factor, is now
inside the argument to the cost functionc(·). In particular, when this cost function issublinear, we
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expect this bound to be significantly smaller than the cost required by the original fully-sequential
CAL algorithm, which uses batches of size1, so that there is a significant advantage to using this
batch-mode active learning algorithm.

Again, this result is formulated for the realizable case forsimplicity, but can easily be extended to
the Tsybakov noise model as in the previous section. In particular, by reasoning quite similar to
that above, a cost-adaptive variant of the Robust CAL algorithm of [14] achieves error rateer(ĥ)−
er(h∗) ≤ ǫ with probability at least1− δ using a total cost

O
(

c
(

θ(c2ǫ
α)c22ǫ

2α−2dpolylog (1/(ǫδ))
)

log (1/ǫ)
)

.

We omit the technical details for brevity. However, the ideais similar to that above, except
that the update to the setV is now as ink-batch Robust CAL (with an appropriate modifica-
tion to the δ-related logarithmic factor inEm), rather than simply those classifiers making no
mistakes. The proof then follows analogous to that of Theorem 5.1, the only major change be-
ing that now we bound the number of unlabeled examples processed in the inner loop before
suph∈V P (h(X) 6= h∗(X)) ≤ P (R)/(2θ); letting V ′ be the previous version space (the one for
whichR = DIS(V ′)), we haveP (R) ≤ θc2(suph∈V ′ er(h) − er(h∗))α, so that it suffices to have
suph∈V P (h(X) 6= h∗(X)) ≤ (c2/2)(suph∈V ′ er(h) − er(h∗))α, and for this it suffices to have
suph∈V er(h)−er(h∗) ≤ 2−1/α suph∈V ′ er(h)−er(h∗); by invertingEm, we find that it suffices to
have a number of samples̃O

(

(2−1/α suph∈V ′ er(h)− er(h∗))α−2d
)

. Since the number of label re-
quests amongm samples in the inner loop is roughlỹO(mP (R)) ≤ Õ(mθc2(suph∈V ′ er(h) −
er(h∗))α), the batch size needed to makesuph∈V P (h(X) 6= h∗(X)) ≤ P (R)/(2θ) is at
most Õ

(

θc22
2/α(suph∈V ′ er(h)− er(h∗))2α−2d

)

. When suph∈V ′ er(h) − er(h∗) > ǫ, this is
Õ
(

θc22
2/αǫ2α−2d

)

. If suph∈V P (h(X) 6= h∗(X)) ≤ P (R)/(2θ) is ever satisfied, then by the
same reasoning as above, the update condition in Step 4 wouldbe satisfied. Again, this update can
be satisfied at mostlog(1/ǫ) times before achievingsuph∈V er(h)− er(h∗) ≤ ǫ.

6 Conclusions

We have seen that the analysis of active learning can be adapted to the setting in which labels are
requested inbatches. We studied this in two related models of learning. In the first case, we supposed
the numberk of batches is specified, and we analyzed the number of label requests used by an
algorithm that requested labels ink equal-sized batches. As a function ofk, this label complexity
became closer to that of the analogous results for fully-sequential active learning for larger values of
k, and closer to the label complexity of passive learning for smaller values ofk, as one would expect.
Our second model was based on a notion of thecostto request the labels of a batch of a given size.
We studied an active learning algorithm designed for this setting, and found that the total cost used
by this algorithm may often be significantly smaller than that used by the analogous fully-sequential
active learning methods, particularly when the cost function issublinear.

There are many active learning algorithms in the literaturethat can be described (or analyzed) in
terms of batches of label requests. For instance, this is thecase for the margin-based active learning
strategy explored by [15]. Here we have only studied variants of CAL (and its noise-robust gen-
eralization). However, one could also apply this style of analysis to other methods, to investigate
analogous questions of how the label complexities of such methods degrade as the batch sizes in-
crease, or how such methods might be modified to account for a sublinear cost function, and what
results one might obtain on the total cost of learning with these modified methods. This could
potentially be a fruitful future direction for the study of batch mode active learning.

The tradeoff between the total number of queries and the number of rounds examined in this paper is
natural to study. Similar tradeoffs have been studied in other contexts. In any two-party communica-
tion task, there are three measures of complexity that are typically used: communication complexity
(the total number of bits exchanged), round complexity (thenumber of rounds of communication),
and time complexity. The classic work [16] considered the problem of the tradeoffs between com-
munication complexity and rounds of communication. [17] studies the tradeoffs among all three of
communication complexity, round complexity, and time complexity. Interested readers may wish
to go beyond the present and to study the tradeoffs among all the three measures of complexity for
batch mode active learning.
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