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Abstract

In many practical applications of active learning, it is maost-effective to re-
quest labels in large batches, rather than one-at-a-tifme.ig because the cost of
labeling a large batch of examples at once is often subliimeifie number of ex-
amples in the batch. In this work, we study the label compjesfi active learning
algorithms that request labels in a given number of batasewell as the tradeoff
between the total number of queries and the number of roulagea. We ad-
ditionally study the total cost sufficient for learning, fm abstract notion of the
cost of requesting the labels of a given number of examplesa. In particular,
we find that for sublinear cost functions, it is often dedieato request labels in
large batches (i.e., buying in bulk); although this may é=ae the total number of
labels requested, it reduces the total cost required foniteg.

1 Introduction

In many practical applications of active learning, the ¢ostcquire a large batch of labels at once is
significantly less than the cost of the same number of seglieotnds of individual label requests.
This is true for both practical reasons (overhead time fartstp, reserving equipment in discrete
time-blocks, multiple labelers working in parallel, et@hd for computational reasons (e.g., time
to update the learner’s hypothesis and select the next dgampay be large). Consider making
one vs multiple hematological diagnostic tests on an otiepa There are fixed up-front costs:
bringing the patient in for testing, drawing and storing theod, entring the information in the
hospital record system, etc. And there are variable costsspecific test. Consider a microarray
assay for gene expression data. There is a fixed cost ingefimnd running the microarray, but
virtually no incremental cost as to the number of samples, guconstraint on the max allowed.
Either of the above conditions are often the case in sciemifperiments (e.g/ [1]), As a different
example, consider calling a focused group of experts toemddyuestions w.r.t new product design
or introduction. There is a fixed cost in forming the grouptédmine membership, contract, travel,
etc.), and a incremental per-question cost. The commomaaiisin in such real-world versions
of “oracles” is that learning can buy-in-bulk to advantageduse oracles charge either per batch
(answering a batch of questions for the same cost as angnargingle question up to a batch
maximum), or the cost per batchds? + b, whereb is the set-up cost; is the number of queries,
andp = 1 orp < 1 (for the case where practice yields efficiency).

Often we have other tradeoffs, such as delay vs testing Eostnstance in a medical diagnosis case,
the most cost-effective way to minimize diagnostic testaurely sequential active learning, where
each test may rule out a set of hypotheses (diagnoses) ammthsthe next test to perform. But
a patient suffering from a serious disease may worsen waieential tests are being conducted.
Hence batch testing makes sense if the batch can be testedaitep In general one can convert
delay into a second cost factor and optimize for batch siaénfinimizes a combination of total
delay and the sum of the costs for the individual tests. Rdirmhg means more tests would be
needed, since we lack the benefit of earlier tests to rulewutd ones. In order to perform this



batch-size optimization we also need to estimate the nuwitredundant tests incurred by turning
a sequence into a shorter sequence of batches.

For the reasons cited above, it can be very useful in pratdigeneralize active learning to active-
batch learning, with buy-in-bulk discounts. This paperalepes a theoretical framework exploring
the bounds and sample compelxity of active buy-in-bulk nreekearning, and analyzing the trade-
off that can be achieved between the number of batches anot#i@umber of queries required for
accurate learning.

In another example, if we have many labelers (virtually mitd) operating in parallel, but must
pay for each query, and the amount of time to get back the an®meach query is considered
independent with some distribution, it may often be the dhs¢ the expected amount of time
needed to get back the answersitogueries is sublinear im, so that if the “cost” is a function
of both the payment amounts and the time, it might sometingeleds costly to submit multiple
gueries to be labeled in parallel. In scenarios such as tesgioned above, a batch mode active
learning strategy is desirable, rather than a method thettsénstances to be labeled one-at-a-time.

There have recently been several attempts to construdstie@pproaches to the batch mode active
learning problem (e.g.[ [2]). However, theoretical analysas been largely lacking. In contrast,
there has recently been significant progress in understgrnide advantages of fully-sequential ac-
tive learning (e.g./13,14,15/6] 7]). In the present work, we iaterested in extending the techniques
used for the fully-sequential active learning model, stngyatural analogues of them for the batch-
model active learning model.

Formally, we are interested in two quantities: the sampleglexity and the total cost. The sample
complexity refers to the number of label requests used byakperithm. We expect batch-mode
active learning methods to useorelabel requests than their fully-sequential cousins. Orother
hand, if thecostto obtain a batch of labels isublinearin the size of the batch, then we may
sometimes expect the total cost used by a batch-mode lgaméthod to be significantlessthan
the analogous fully-sequential algorithms, which reqlegstls individually.

2 Definitions and Notation

As in the usual statistical learning problem, there is addath Borel spacé’, called the instance
space, and a sé& of measurable classifiefs: X — {—1,+1}, called the concept space. Through-
out, we suppose that the VC dimension®fdenotedi below, is finite.

In the learning problem, there is an unobservable disiobuP xy over X x {—1,+1}. Based on
this quantity, we le2 = {(X, Y;)}22, denote an infinite sequence of independ2gt, -distributed
random variables. We also denote By = {(X1,Y1),(X3,Y2),...,(X}:,Y:)} the firstt such
labeled examples. Additionally denote B the marginal distribution oDy over X. For a
classifierh : X — {—1,+1}, denoteer(h) = Pxy)~px, (R(X) # Y), theerror rate of h.

Additionally, form € NandQ € (X x {~1,+1})™, leter(h; Q) = 57 X (,.)eo Lh(x) # yl,

the empirical error rateof h. In the special case th& = Z,,, abbreviateer,,(h) = er(h; Q).

Forr > 0, defineB(h,r) = {g € C : Dx(z : h(z) # g(z)) < r}. For anyH C C, define
DIS(H) = {x € X : 3h,g € H s.t.h(z) # g(x)}. We also denote by(z) = P(Y = +1|X = x),

where(X,Y) ~ Dxy, and leth*(x) = sign(n(z) — 1/2) denote theBayes optimal classifier

In the active learning protocol, the algorithm has directess to theX; sequence, but must request
to observe each lab#&}, sequentially. The algorithm asks up to a specified numblkabef requests
n (thebudge}, and then halts and returns a classifier. We are partiguladrested in determining,
for a given algorithm, how large this number of label reqsgsteds to be in order to guarantee
small error rate with high probability, a value known as kleel complexity In the present work,
we are also interested in tlmwstexpended by the algorithm. Specifically, in this contexéeréh
is a cost functiorr : N — (0,00), and to request the labe{y7,,Y;,,...,Y;, } of m examples
{Xi, X4y, ..., X,,, } atonce requires the algorithm to peyn); we are then interested in the sum
of these costs, over aflatchesof label requests made by the algorithm. Depending on tha for
of the cost function, minimizing the cost of learning mayuadty require the algorithm to request
labels in batches, which we expect would actually increlaséddtal number of label requests.



To help quantify the label complexity and cost complexitg mvake use of the following definition,
due to [6/7].

Definition 2.1. [6] [7] Define the disagreement coefficient:dfas
Dx (DIS(B(h*
0(c) — sup D (DISB(. 1))

r>e r

3 Buy-in-Bulk Active Learning in the Realizable Case: k-batch AL

We begin our anlaysis with the simplest case: namely, tHezedde case, with a fixed prespecified
number of batches. We are then interested in quantifyingatied complexity for such a scenario.

Formally, in this section we suppo&é € C ander(h*) = 0. This is refered to as thesalizable
case We first review a well-known method for active learning ie tlealizable case, refered to as
CAL after its discoverers Cohn, Atlas, and Ladriér [8].

Algorithm: CAL(n)
1.t+0,m« 0,90+ 0
2. Whilet < n

3. m+~m+1

4. If iner(h; QU {(Xm,y)}) =0
yegr—l?,)i-l}IhnGlger( QU {( y)})

5. Request,,, letQ + QU {(X,,, Vi) t < t+1
6. Returnh = argmin, ¢ er(h; Q)

The label complexity of CAL is known to b@ (6(e)(dlog(6(e)) + log(log(1/€)/d))log(1/€)) [[].
That is, some of this size suffices to guarantee that, with probability §, the returned classifier

h haser(h) < e.

One particularly simple way to modify this algorithm to makbatch-based is to simply divide up
the budget into equal batch sizes. This yields the followmethod, which we refer to ds-batch
CAL, wherek € {1,...,n}.

Algorithm: k-batch CAL{)

1 LetQ + {},b+2,V+C
2.Form=1,2,...

3. IfX,, e DIS(V)

4. Q+QU{X.,}

5. If|Q| = [n/k]

6. Request the labels of examplesin
7. Let L be the corresponding labeled examples
8. V«{heV:er(h;L)=0}

9. b+ b+1land@ « 0

10.  Ifb > k, Returnanyh € V

We expect the label complexity étbatch CAL to somehow interpolate between passive learning
(atk = 1) and the label complexity of CAL (dt = n). Indeed, the following theorem bounds the
label complexity ofk-batch CAL by a function that exhibits this interpolatiorhl&ior with respect

to the known upper bounds for these two cases.

Theorem 3.1. In the realizable case, for some
Ae,8) =0 (ke_l/kH(e)l_l/k(dlog(l/e) ¥ 1og(1/5))) :

for anyn > A(e, 0), with probability at leasti — 4, runningk-batch CAL with budget produces a
classifierh with er(h) < e.

Proof. Let M = |n/k|. DefineVy = C andigy, = 0. Generally, forb > 1, letiyy, ipa, .- ., ions
denote the indicesof the firstM points X; € DIS(V;,_1) for whichi > i(,_1)5;, andletVy, = {h €



Vi1 :Vj < M, h(X;,,) = h*(X;,;)}. These correspond to the version space at the conclusion of
batchb in the k-batch CAL algorithm.

Note thatX;,, ,...,X;,,, are conditionally iid givenV,_,, with distribution of X given X ¢
DIS(V,—1). Thus, the PAC bound of[9] implies that, for some constart (0, o), with prob-
ability > 1 —6/k,

dlog(M/d) + log(k/é)P
M

By a union bound, the above holds for all< k with probability > 1 — §; suppose this is the

case. Sinc&(DIS(Vy—1)) < 0(e) max{e, maxyey, ,er(n) ) and any with maxuey, _, er(h) < e

would also havenaxycy, er(h) < ¢, we have

Aog(M/d) +log(k/) ,

< .
max er(h) < max {e, 7 ( )hlenli)fl er(h))}

V, C B (h*,c (DIS(Vbl))> .

Noting thatP(DIS(Vy)) < 1 impliesV; C B (h*, cdlog(M/dJeflog(k/‘s)), by induction we have

max er(h) < max {67 (cdlog(M/d) + 10g(k/5)>k g(e)k—l} |

heVvy M

k—1
For some constanrt > 0, any M > ¢/ 9% (dlog £ + log(k/8)) makes the right hand side e.

€

k—1
SinceM = |n/k|, it suffices to haves > k (1 + %9 (dlog 2 + log(k/(S))). O

Theoren 31l has the property that, when the disagreemefficeer is small, the stated bound
on the total number of label requests sufficient for learrng@ decreasing function df. This
makes sense, sindée) small would imply that fully-sequential active learningnsich better than
passive learning. Small valuesotorrespond to more passive-like behavior, while largenesilof
k take fuller advantage of the sequential nature of activenieg. In particular, wherk: = 1, we
recover a well-known label complexity bound for passiver@ay by empirical risk minimization
[10]. In contrast, whert = log(1/¢), thee /% factor ise (constant), and the rest of the bound is at
mostO(0(e)(dlog(1/e) +1og(1/d))log(1/¢)), which is (up to dog factor) a well-known bound on
the label complexity of CAL for active learnin@l[7] (a slighgfinement of the proof would in fact
recover the exact bound 6f [7] for this case); fdarger tharlog(1/¢), the label complexity can only
improve; for instance, consider that upon reaching a givaa gointX,, in the data stream, i is
the version space ik-batch CAL (for somek), andV”’ is the version space i2%-batch CAL, then
we havel’’ C V (supposing: is a multiple of2k), so thatX,,, € DIS(V’) only if X,,, € DIS(V).
Note that evert = 2 can sometimes provide significant reductions in label cemxipyl over passive
learning: for instance, by a factor proportionallto,/e in the case thaf(e) is bounded by a finite
constant.

4 Batch Mode Active Learning with Tsybakov noise

The above analysis was for the realizable case. While thigigee a particularly clean and simple
analysis, it is not sufficiently broad to cover many reatisiarning applications. To move beyond
the realizable case, we need to allow the labels to be nadfader(h*) > 0. One popular noise
model in the statistical learning theory literature is Tatv noise, which is defined as follows.

Definition 4.1. [11] The distributionDxy satisfiesTsybakov noiséf h* € C, and for some > 0
anda € [0, 1],

vt > 0,P(n(x) —1/2| < t) < et ™=,
equivalentlyVh, P(h(z) # h*(z)) < ca(er(h) — er(h*))®, wherec; andc, are constants.

SupposingD xy satisfies Tsybakov noise, we define a quantity

& = cs <dlog(m/d) + 1Og(km/5)) S |

m




based on a standard generalization bound for passive megifhz]. Specifically,[[12] have shown
that, for anyl” C C, with probability at least — §/(4km?),

sup |(er(h) —er(g)) — (erm(h) —erm(9))] < Em. @
h,geVv

Consider the following modification df-batch CAL, designed to be robust to Tsybakov noise. We
refer to this method ak-batch Robust CAL, wherk € {1,...,n}.

Algorithm: k-batch Robust CAL¢)

1L letQ+ {},b+< 1,V C,my <0
2.Form=1,2,...

3. IfX,, € DIS(V)

4. Q+ QU{Xn}

5. If|Q| = [n/k]

6. Request the labels of examplegjn

7. Let L be the corresponding labeled examples
8

9

1

1

V {heV: (er(h; L) — mingeyer(g; L)) 1M < e 3
. b+ b+1land@ « 0
0. my < m
1. Ifb>k Returnanyi € V

Theorem 4.2. Under the Tsybakov noise condition, lettifig= 5>, andg = Zf;ol 3¢, for some

2—a 1+83—p*
1\ 7 _pkt d kd B
Me, 6) =0 (k <€> ! (cof(cae®))’t - (dlog (e) + log (56)> >,

for anyn > (e, §), with probability at leastl — §, running k-batch Robust CAL with budget
produces a classifie with er(h) — er(h*) <e.

Proof. Let M = |n/k|]. Defineiogyy = 0 andVy = C. Generally, forb > 1, let
b1, 02, - - -, 4o denote the indices of the first M points X; € DIS(V,_;) for which i >
i(b—l)Ma and Ieth = {(Xibw ib1)a ) (XibMaYibM)} andV, = {h € Vo1 : (er(h;Qb) -

mingev, , er(g; Qb)) =i < iyn—iq_1a - ThESE correspond to the détat the conclu-

sion of batchb in the k-batch Robust CAL algorithm.

For b e {1,...,k}, (@ (applied under the conditional distribution giveij,_,, com-
bined with the law of total probability) implies thavm > 0, letting Z,,, =
{(Xio_ 15 Yoyt 1)s o5 (Xigy_1yar4ms Yigo_ 1y ar+-m) }» With probability at least —d/(4km?),

if h* € Vi1, thener(h*; Zp ) — mingev, , er(g; Zo.m) < Em, and everyh € V,_; with
er(h; Zy m) — mingev, , er(9; Zp.m) < & haser(h) — er(h*) < 2&,,. By a union bound,
this holds forall m € N, with probability at leastl — ¢/(2k). In particular, this means it
holds form = iy — i—1)n- But note that for this value ofn, any h,g € V1 have
er(h; Zp,m) — er(g; Zy.m) = (er(h; Qp) — er(g; Qp)) L (since for every(z,y) € Zy,m \ Qs, either
both h andg make a mistake, or neither do). Thushif € V,_;, we haveh* € V, as well, and
furthermoresup,, ¢y, er(h) — er(h*) < 2&;,,,—i,_,,,- By induction (ovem) and a union bound,
these are satisfied for dlle {1,..., k} with probability at least — §/2. For the remainder of the
proof, we suppose this— 4/2 probability event occurs.

Next, we focus on lower bounding; — i(;,—1)ar, @gain by induction. As a base case, we clearly
haveiin — dops > M. Now suppose some € {2,...,k} hasigp_yyy — igp—2ayn > Tp—1

for someT,_;. Then, by the above, we havep,,.y,  er(h) —er(h*) < 2&r,_,. By the Tsy-
bakov noise condition, this implie§,_; C B (h*,c, (2ETH)°‘), so that ifsup,,cy, , er(h) —
er(h*) > € P(DIS(Vh_1)) < O(cae¥)ea (267, ,)". Now note that the conditional distribution
of iypr — i—1)a Qiven V,_y is @ negative binomial random variable with parametifsand

1 — P(DIS(V,—1)) (that is, a sum of\/ GeometricP(DIS(V;_1))) random variables). A Cher-
noff bound (applied under the conditional distributionegi;, ;) implies thatP (iyns — i (p—1)ar <



M/(2P(DIS(V,_1)))|Vs_1) < e~ M/6, Thus, forVj,_, as above, with probability at least-¢ ~/,
oM —(p—1)M > 20(026“)03({28T 7= Thus, we can defir#, as in the right hand side, which thereby

defines a recurrence. By induction, with probability at tdas ke=/6 > 1 — §/2,

_ 1 B_ﬁk71 1 5(B_ﬁk71)
iknr = ig—yn = MP | ———— .
b ( = 4c20(coe) 2(dlog(M) + log(kM/5))

By a union bound, with probability— 4, this occurs simultaneously with the abeve,, ., er(h)—
er(h*) < 2€ bound. Combining these two results yields

UM —t(k—1)M

ay\B-BF1 ﬁ 1+8(—pk—1
sup er(h) —er(h*) = O( <(629(02€ )-) ) (dlog(M) + log(kJVI/é))W).
heVy ]\/[6

Setting this tce and solving fom, we find that it suffices to have

1+85-gk

1 2 ke
M > ¢y (> ’ (c2B(c2e®))! Ea (dlog (d) + log (l;;d)) ’ ,
€ € €

for some constant, € [1, co), which then implies the stated result. O

Note: the threshold,, in k-batch Robust CAL has a direct dependence on the paramdtdrs o
Tsybakov noise condition. We have expressed the algoriththi$ way only to simplify the pre-
sentation. In practice, such information is not often ald#é. However, we can replaég, with a
data-dependent local Rademacher complexity béypdas in [7], which also satisfieSl(1), and satis-
fies (with high probability,,, < ¢’&,,,, for some constant € [1, o) (see[[13]). This modification
would therefore provide essentially the same guarantéedsédbove (up to constant factors), with-
out having any direct dependence on the noise parametershamnalysis gets only slightly more
involved to account for the confidences in the concentratiequalities for thes€,,, estimators.

A similar result can also be obtained for batch-based vegiahother noise-robust disagreement-
based active learning algorithms from the literature (@gariant of4? [5] that uses updates based
on quantities related to these, estimators, in place of the traditional upper-bound/letveand
construction, would also suffice).

Whenk = 1, Theoren{ 4R matches the best results for passive learamtp(log factors), which
are known to be minimax optimal (again, up to log factors)wéf let ¥ become large (while still
considered as a constant), our result converges to the kresuits for one-at-a-time active learning
with RobustCAL (again, up to log factors)! [7,114]. Althoudiose results are not always minimax
optimal, they do represent the state-of-the-art in the gdamalysis of active learning, and they are
really the best we could hope for from basing our algorithniRoustCAL.

5 Buy-in-Bulk Solutions to Cost-Adaptive Active Learning

The above sections discussed scenarios in which we havedrfixaberk of batches, and we
simply bounded the label complexity achievable within tbatstraint by considering a variant of
CAL that usesk equal-sized batches. In this section, we take a slightferint approach to the
problem, by going back to one of the motivations for usingchdiased active learning in the first
place: namely, sublineaostsfor answering batches of queries at a time. If the cost of ansgy
m queries at once is sublinearn, then batch-based algorithms arise naturally from thelprob
of optimizing the total cost required for learning.

Formally, in this section, we suppose we are given a costtiime : (0,00) — (0, 00), which is
nondecreasing, satisfiebnx) < ac(z) (for z,a € [1,00)) , and further satisfies the condition that
for everyq € N, 3¢’ € N such thate(q) < ¢(q’) < 4¢(q), which typically amounts to a kind of
smoothness assumption. For instangg) = ,/q would satisfy these conditions (as would many
other smooth increasing concave functions); the lattarraption can be generalized to allow other
constants, though we only study this case below for sintglici

To understand the total cost required for learning in thislehowe consider the following cost-
adaptive modification of the CAL algorithm.



Algorithm: Cost-Adaptive CAL()

1.9« 0, R+ DIS(C),V + C,t+ 0

2. Repeat

3. g+« 1

4. Dountil P(DIS(V)) < P(R)/2

5. Letq’ > ¢ be minimal such that(¢’ — ¢q) > 2¢(q)

6. Ife(¢ —q)+t > C,Returnanyh € V

7 Request the labels of the next— ¢ examples iDIS(V)
8

. Updatel” by removing those classifiers inconsistent with these fabe
9. Lett <t +c(¢ — q)
10. qg< ¢
11. R+ DIS(V)

Note that the total cost expended by this method never esdbedudget argument. We have the
following result on how large of a budgétis sufficient for this method to succeed.

Theorem 5.1. In the realizable case, for some
A(e,6) = O (e(6(e) (d10g(6(€)) + log(log(1/¢)/8)) ) 10g(1/e))

for any C' > (e, §), with probability at leastl — §, Cost-Adaptive CAL{) returns a classifier,
wither(h) <e.

Proof. Supposing an unlimited budget’(= o¢), let us determine how much cost the algorithm
incurs prior to havingup,,cy er(h) < ¢; this cost would then be a sufficient size foito guarantee
this occurs. First, note th&t* € V is maintained as an invariant throughout the algorithm.oAls
note that ifg is ever at least as large @86(¢)(d log(6(¢)) + log(1/4"))), then as in the analysis for
CAL [[7], we can conclude (via the PAC bound Bf [9]) that witlopability at leastl — &/,

sup P(h(X) # h*(X)|X € R) < 1/(20(e)),

so that

sup er(h) = sup P(h(X) # h*(X)|X € R)P(R) < P(R)/(26(¢)).

hev hev
We know R = DIS(V") for the setl’’ which was the value of the variablé at the time thisk was
obtained. Supposingip,, ¢y er(h) > €, we know (by the definition of (¢)) that

P(R) < P <DIS <B <h*, sup er(h)>)> < 0() sup ex(h).

Therefore,

sup er(h) < 1 sup er(h).

hev 2 hevr
In particular, this implies the condition in Step 4 will betiséed if this happens while
sup,c er(h) > €. But this condition can be satisfied at moSbg,(1/€)] times while
sup,ey er(h) > e (sincesup,cy er(h) < P(DIS(V))). So with probability at least —
d'[logy(1/€)], as long assup,, ¢y er(h) > €, we always have(q) < 4c(O(6(¢e)(dlog(f(e€)) +
log(1/8")))) < O(c(6(e)(dlog(f(e)) + log(1/d")))). Letting & = §/[logy(1/€)], this is
1 — 6. So for each round of the outer loop whilep,,cy er(h) > €, by summing the geomet-
ric series of cost values(q’ — ¢) in the inner loop, we find the total cost incurred is at most
O(c(0(e)(dlog(8(e)) + log(log(1/€)/d)))). Again, there are at mogtog,(1/¢)] rounds of the
outer loop whilesup,, ¢y er(h) > ¢, so that the total cost incurred before we hawg), oy er(h) < e
is at mostO(c(6(e)(dlog(0(€)) + log(log(1/€)/9))) log(1/e)). O

Comparing this result to the known label complexity of CAlhieh is (from [7])

O (0(¢) (dlog(6(e)) + log(log(1/€)/d)) log(1/€)) ,

we see that the major factor, namely tg6(¢) (dlog(6(e)) + log(log(1/€)/d))) factor, is now
inside the argument to the cost functief). In particular, when this cost function ssiblinear we



expect this bound to be significantly smaller than the cagtired by the original fully-sequential
CAL algorithm, which uses batches of sizeso that there is a significant advantage to using this
batch-mode active learning algorithm.

Again, this result is formulated for the realizable casesionplicity, but can easily be extended to
the Tsybakov noise model as in the previous section. Inqudati, by reasoning quite similar to
that above, a cost-adaptive variant of the Robust CAL aflgoriof [14] achieves error rate(h) —
er(h*) < e with probability at least — § using a total cost

0 (c (9(026a)6362a*2dpo1y10g (1/(e5)) ) log (1 /e)) .

We omit the technical details for brevity. However, the idsasimilar to that above, except
that the update to the sét is now as ink-batch Robust CAL (with an appropriate modifica-
tion to thed-related logarithmic factor ir€,,), rather than simply those classifiers making no
mistakes. The proof then follows analogous to that of ThedEel, the only major change be-
ing that now we bound the number of unlabeled examples pseded the inner loop before
suppey P(R(X) # h*(X)) < P(R)/(26); letting V' be the previous version space (the one for
which R = DIS(V")), we haveP(R) < Oca(supycy- er(h) — er(h*))®, so that it suffices to have
suppcy P(R(X) # h*(X)) < (c2/2)(suppcy- er(h) — er(h*))®, and for this it suffices to have
sup,ey er(h) —er(h*) < 27V sup, oy er(h) —er(h*); by invertingé,,,, we find that it suffices to
have a number of samplés((271/ sup,, ¢ er(h) — er(h*))*~2d). Since the number of label re-

quests amongn samples in the inner loop is rough(mP(R)) < O(méca(supy,cyr er(h) —
er(h*))®), the batch size needed to makep, ., P(h(X) # h*(X)) < P(R)/(20) is at
most O (0c22%/“(supp,ey- er(h) — er(h*))?*2d). Whensup, ¢y er(h) — er(h*) > e, this is

O (0c22?/2€222d). If sup,ey P(R(X) # h*(X)) < P(R)/(20) is ever satisfied, then by the
same reasoning as above, the update condition in Step 4 weuddtisfied. Again, this update can
be satisfied at moddg(1/¢) times before achievingup;, oy er(h) —er(h*) <.

6 Conclusions

We have seen that the analysis of active learning can beeatigpthe setting in which labels are
requested ilbatches We studied this in two related models of learning. In the Giese, we supposed
the numberk of batches is specified, and we analyzed the number of lajeksts used by an
algorithm that requested labels inequal-sized batches. As a functiongfthis label complexity
became closer to that of the analogous results for fullyseetial active learning for larger values of
k, and closer to the label complexity of passive learning foaker values of;, as one would expect.
Our second model was based on a notion ofdb&tto request the labels of a batch of a given size.
We studied an active learning algorithm designed for thisrge and found that the total cost used
by this algorithm may often be significantly smaller thart theed by the analogous fully-sequential
active learning methods, particularly when the cost fuorcis sublinear

There are many active learning algorithms in the literatheg can be described (or analyzed) in
terms of batches of label requests. For instance, this isabe for the margin-based active learning
strategy explored by [15]. Here we have only studied vasiafitCAL (and its noise-robust gen-
eralization). However, one could also apply this style ddlgsis to other methods, to investigate
analogous questions of how the label complexities of sucthods degrade as the batch sizes in-
crease, or how such methods might be modified to account fablanear cost function, and what
results one might obtain on the total cost of learning witesth modified methods. This could
potentially be a fruitful future direction for the study ofifch mode active learning.

The tradeoff between the total number of queries and the puoflyounds examined in this paper is
natural to study. Similar tradeoffs have been studied iemtbntexts. In any two-party communica-
tion task, there are three measures of complexity that preally used: communication complexity
(the total number of bits exchanged), round complexity (thmber of rounds of communication),
and time complexity. The classic wotk |16] considered thabjgm of the tradeoffs between com-
munication complexity and rounds of communication.| [1Tidé¢s the tradeoffs among all three of
communication complexity, round complexity, and time céewjly. Interested readers may wish
to go beyond the present and to study the tradeoffs amonigeathtee measures of complexity for
batch mode active learning.
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