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Abstract

In a closed-loop brain-computer interface (BCl), adaptieeoders are used to
learn parameters suited to decoding the user’s neural mespd-eedback to the
user provides information which permits the neural tuniagalso adapt. We
present an approach to model this process of co-adaptatimvebn the encod-
ing model of the neural signal and the decoding algorithm asuki-agent for-
mulation of the linear quadratic Gaussian (LQG) controlgem. In simulation
we characterize how decoding performance improves as tmalrencoding and
adaptive decoder optimize, qualitatively resembling expentally demonstrated
closed-loop improvement. We then propose a novel, modiedder update rule
which is aware of the fact that the encoder is also changidgsaow it can im-
prove simulated co-adaptation dynamics. Our modelingagugr offers promise
for gaining insights into co-adaptation as well as imprguvirser learning of BCI
control in practical settings.

1 Introduction

Neural signals from electrodes implanted in cortex [1]celecorticography (ECoG) [2], and elec-
troencephalography (EEG) [3] all have been used to decodernmientions and control motor
prostheses. Standard approaches involve using statisiickels to decode neural activity to control
some actuator (e.g. a cursor on a screen [4], a robotic miabdp(i5], or a virtual manipulator [6]).
Performance of offline decoders is typically different fréime performance of online, closed-loop
decoders where the user gets immediate feedback and nenirad tthanges are known to occur
[7, 8]. In order to understand how decoding will be perfornredlosed-loop, it is necessary to
model how the decoding algorithm updates and neural engagidates interact in a coordinated
learning process, termed co-adaptation.

There have been a number of recent efforts to learn improdaptave decoders specifically tailored
for the closed loop setting [9, 10], including an approadying on stochastic optimal control theory
[11]. In other contexts, emphasis has been placed on tgairsers to improve closed-loop control
[12]. Some efforts towards modeling the co-adaptation @sedave sought to model properties
of different decoders when used in closed-loop [13, 14, W& emphasis on ensuring the stabil-
ity of the decoder and tuning the adaptation rate. One resiemtlation study also demonstrated
how modulating task difficulty can improve the rate of co{atdéion when feedback noise limits
performance [16]. However, despite speculation that etiptpco-adaptation will be integral to
state-of-the-art BCI [17], general models of co-adaptatind methods which exploit those models
to improve co-adaptation dynamics are lacking.
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We propose that we should be able to leverage our knowledgevothe encoder changes in order
to better update the decoder. In the current work, we pressimple model of the closed-loop co-
adaptation process and show how we can use this model towegeroder learning on simulated
experiments. Our model is a novel control setting which wseglit Linear Quadratic Gaussian
(LQG) system. Optimal decoding is performed by Linear QatdiEstimation (LQE), effectively
the Kalman filter model. Encoding model updates are perfdrioyghe Linear Quadratic Regulator
(LQR), the dual control problem of the Kalman filter. The gystis split insofar as each agent has
different information available and each performs optinnadiates given the state of the other side
of the system. We take advantage of this model from the decide by anticipating changes in
the encoder and pre-emptively updating the decoder to ntaéchstimate of the further optimized
encoding model. We demonstrate that this approach can irapie co-adaptation process.

2 Mode framework

2.1 Task model

For concreteness, we consider a motor-cortical neurdpesit setting. We assume a naive user,
placed into a BCI control setting, and propose a trainingsahwhich permits the user and decoder
to adapt. We provide a visual target cue at a 3D location amdskr controls the BCl via neural sig-
nals which, in a natural setting, relate to hand kinemalit® target position is moved each timestep
to form a trajectory through the 3D space reachable by thesusend. The BCI user receives visual
feedback via the displayed location of their decoded hamsdtipa. The user’s objective is to control
their cursor to be as close to the continuously moving targetor as possible. A key feature of this
scheme is that we know the “intention” of the user, assuntingrresponds to the target.

The complete graphical model of this system is provided iarédL.x; in our simulations is a three
dimensional position vector (Cartesian Coordinates)esponding to the intended hand position.
This variable could be replaced or augmented by other asadf interest (e.g. velocity). We
randomly evolve the target signal using a linear-Gaussidimdodel (eq. (1)). The neural encoding
model is linear-Gaussian in response to intended positjcaind feedbaclki; 1 (eq. (2)), giving

a vector of neural responses (e.g. local field potential or smoothed firing rates of neunts).
Since we do not observe the whole brain region, we must sufisatime number of neural units
from which we collect information. The transformatiéhis conceptually equivalent to electrode
sampling andy; is the observable neural response vector via the elect(edeq3)). Lastlyz, is
the decoded hand position estimate, which also servesaal ¥e&edback (eq. (4)).

Ty = Pri_1 + & & ~N(0,Q) (1)
ur = Axy + BTi—1 + 1 ne ~ N(O, R) (2)
yr = Cug + €4 et ~N(0,5) (3
Ty = Fy + G2y 4)

During training, the decoding system is allowed ac-
cess to the target position, interpreted as the real in-
tentionz;. The decoded, is only used as feedback,

to inform the user of the gradually learned dynamics
of the decoder. After training, the system is tested
on a task with the same parameters of the trajectory
dynamics, but with the actual intention only known
to the user, and hidden from the decoder. A natural
objective is to minimize tracking error, measured as
accumulated mean squared error between the target

. . . .and neurally decoded pose over time.
Figure 1: Graphical modelrelating target sig- 4 P

nal (z.), neural response(), electrode ob- For contemporary BCI applications, the Kalman fil-
servation of neural responsg,), and de- ter is a reasonable baseline decoder, so we do not
coded feedback signat ). consider even simpler models. However, for other
applications one might wish to consider a model in
which the state at each timestep is encoded indepen-
dently. It is possible to find a closed form for the optimal ether and decoder that minimizes the
error in this case [18, 19].




Sections 2.2 and 2.3 describe the model presented in figuseséem from the distinct viewpoints
of the two agents involved — the encoder and the decoder. Atwder observes, andi; 1, and
selectsA and B to generate a control signal. The decoder observegg, and selectd” and G

to estimate the intention a. We assume that both agents are free to performed uncoresirai
optimization on their parameters.

2.2 Encoding model and optimal decoder

Our encoding model is quite simple, with neural units restdog in a linear-Gaussian fashion to
intended position:;; and feedback;_; (eq. (2)). This is a standard model of neural responses for
BCI. The matricesA and B effectively correspond to the tuning response functionthefneural
units, and we will allow these parameters to be adjusted uth@econtrol of the user. The matrix

C corresponds to the observation of the neural units by thetrelges, so we treat it as fixed (in our
caseC' will down-sample the neurons). For this paper, we assumgermivariances are fixed and
known, but this can be generalized. Given the encoder, tbed#e will estimate the intention;,
which follows a hidden Markov chain (eq. (1)). The obserwasi available to the decoder are the
electrode sampleg (eq. (2) and (3))

Yt = CA.I't + CB@t_l + 62; 62 ~ N(O, RC) (5)
Rc =CRCT + 8. (6)

Given all the electrode samples up to timéhe problem of finding the most likely hidden intention
is a Linear-Quadratic Estimation problem (figure 2), andsigsrdard solution is the Kalman filter,
and this decoder is widely in similar contexts. To choosergppate Kalman gairF’ and mean
dynamics, the decoding system needs a good model of the dynamics ahtlerlying intention
process P, @ of eq.(1)) and the electrode observations4, C'B, and Rc of egs. (5) & (6)).
We can assume thd and @ are known since the decoding algorithm is controlled by tmes
experimenter who specifies the intention process for theitigaphase. We discuss the estimation
of the observation model in section 4.

Figure 2: Decoder’s point of view — target Figure 3: Encoder’s point of view —target sig-
signal ;) directly generates observed re- nal (x;) and decoded feedback signal (1)
sponsesyf;), with the encoding model col- generate neural responsg ) Model of de-
lapsed to omit the full signalu¢). De-  coder collapses over responsgg (vhich are
coded feedback signali() is generated by unseen by the encoder side.

the steady state Kalman filter.

Given an encoding model, and assuming a very long horlzdhere exist standard methods to
optimize the stationary value of the decoder parameterk [PBe stationary covariance of
giveni;_1 is the unique positive-definite fixed point of the Riccati atijon

¥ = PYPT — PY(CA)T(Rc + (CAD(CAT)HCASPT + Q. (7)
The Kalman gain is then
F=xCAT(cAZ(CAT +Ro)! (8)

with mean dynamics
G=P—-F(CA)P - F(CB). 9)

*0ur task is control of the BCI for arbitrarily long duratioso it makes sense to look for the stationary
decoder. Similarly the BCI user will look for a stationaryceder. We could also handle the finite horizon case
(see section 2.3 for further discussion).



We estimatei; using eq. (4), and this is the most likely value, as well asekgected value,
of z; given the electrode observatiops, . .., y;. Using this estimate as the decoded intention is
equivalent to minimizing the expectation of a quadratid cos

Cge = 3 Al — &% (10)

t

2.3 Modé of co-adaptation

At the same time as the decoder-side agent optimizes theldeparameterg’ andG, the encoder-
side agent can optimize the encoder parameteasd B. We formulate encoder updates for the BCI
application as a standard LQR problem. This framework megtthat the encoder-side agent has an
intention model (same as eq. (1)) and a model of the decotlerd&coder model combines eq. (3)
and (4) into

ft = FC’ut + Gj?tfl + FEt. (11)

This model is depicted in figure 3. We assume that the enc@deaidtess to a perfect estimate of the
intention-model parameter? and@ (task knowledge). We also assume that the encoder is free to
change its parametersand B arbitrarily given the decoder-side parameters (whichrit estimate

as discussed in section 4).

As a model of real neural activity, there must be some cost¢oeasing the power of the neural

signal. Without such a cost, the solutions diverge. We adddalitional cost term (a regularizer),

which is quadratic in the magnitude of the neural respensand penalizes a large neural signal
Cigr = Y _ 3w — &1” + Suf Ruy. (12)

t

Since the decoder has no direct influence on this additienai,tit can be viewed as optimizing for
this target cost function as well. The LQR problem is sohiedlarly to eq. (7), by assuming a very
long horizon and optimizing the stationary value of the elegarameters [20].

We next formulate our objective function in terms of stama@R parameters. The control depends
on the joint process of the intention and the feedlfagkz;_1 ), but the cost is defined betweep
andz,. To compute the expected cost giveni; 1 andu,, we use eq. (11) to get

E|#; — 24]|* = ||[FCut + Gi4—1 — x¢||* + const (13)

= (Gi’t_l — .I't)T(Gi't_l — .I't) + (FCUt)T(FCUt) + 2(Gi’t_1 — .I't)T(FCUt) -+ const

Equation 13 provides the error portion of the quadratic ctbje of the LQR problem. The standard
solution for the stationary case involves computing thesitasl” of the cost-to-go in joint state

[;‘51} as the unique positive-definite fixed point of the Riccatiatmn

V =P'VP+ (N +P'VD)R+ S+ DT'vD)"Y(NT + DTV P) + Q. (14)
HereP is thp process dynamics for the joint statecpindz; andD is the controllability of this
dynamics.Q), S andV are the cost parameters which can be determined by inspesdtieg. (13).
R is the Hessian of the neural response cost term which is ohiesémulations so that the resulting
increase in neural signal strength is reasonable.

P= {15 g] D= [FOC]’ Q= [—IG Z;?é} §=(FC)(FC), N= [G;{;?%)]

In our formulation, the encoding modgl, B) is equivalent to the feedback gain
[A B]=-(DT"VD+ R+ S)""(NT + DTV P). (15)

This is the optimal stationary control, and is generallyoyatimal for shorter planning horizons. In
the co-adaptation setting, the encoding madegl, B;) regularly changes to adapt to the changing
decoder. This means th@d;, B;) is only used for one timestep (or a few) before it is updatdte T
effective planning horizon is thus shortened from its idefuhity, and now depends on the rate and
magnitude of the perturbations introduced in the encodingeh Eq. (14) can be solved for this
finite horizon, but here for simplicity we assume the encagetates introduce small or infrequent
enough changes to keep the planning horizon very long, anst#tionary control close to optimal.
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Figure 4: (a) Each curve plots single trial changes in deapdiean squared error (MSE) over
whole timeseries as a function of the number of update be&iions. The encoder is updated in
even steps, the decoder in odd ones. Distinct curves areftiipfe, random initializations of the
encoder. (b) Plots the corresponding changes in encodamgder updates - y-axig, is correlation
between the vectorized encoder parameters after eacheupitatthe final values.

3 Perfect estimation setting

We can consider co-adaptation in a hypothetical settingreveach agent has instant access to a
perfect estimate of the other’s parameters as soon as tlagygeh To keep this setting comparable
to the setting of section 4, where parameter estimationadea, we only allow each agent access to
those variables that it could, in principle, estimate. Weuase both agents know the parameters
andq of the intention dynamics, that the encoder kndws andG of eq. (11), and that the decoder
knowsC A, CB andR¢ of eq. (5) and (6). These are the same parameters neededggeatt for

its own re-optimization. This process of parameter updatpsrformed by alternating between the
encoder update equations (7)-(9) and the decoder updat¢i@ugi(14)-(15). Since the agents take
turns minimizing the expected infinite-horizon objectivé®q. (12) given the other, this cost will
tend to decrease, approximately converging.

Note that neither of these steps depends explicitly on tleemed values of the neural signal
or the decoded output;. In other words, co-adaptation can be simulated without actually
generating the stochastic process of intention, encodidgd@coding. However, this process and
the signal-feedback loop become crucial when estimationvisived, as in section 4. Then each
agent’s update indirectly depends on its observationsiitrits estimated model of the other agent.

To examine the dynamics in this idealized setting, we holedfithe target trajectory; . r as well

as the realization of the noise terms. We initialize the $ition with a random encoding model and
observe empirically that, as the encoder and the decodempaied alternatingly, the error rapidly
reduces to a plateau. As the improvement saturates, thiego@oder-decoder pair approximates
a locally optimal solution to the co-adaptation problemgufe 4(a) plots the error as a function
of the number of model update iterations — the different esrmorrespond to distinct, random ini-
tializations of the encoder parametetsB with everything else held fixed. We emphasize that
for a fixed encoder, the first decoder update would yield tfiaite-horizon optimal update if the
encoder could not adapt, and the error can be interpretativesko this initial optimal decoding
(see supplementary figl(a) for depiction of initial errodamprovement by encoder adaptation in
supplementary figl(b)). This method obtains optimized decalecoder pairs with moderate sensi-
tivity to the initial parameters of the encoding model. pteted in the context of BCI, this suggests
that the initial tuning of the observed neurons may affeettital optima attainable for BCI perfor-
mance due to standard co-adaptation. We may also be ablditoizgpthe final error by cleverly
choosing updates to decoder parameters in a fashion whitkwhich optimum is reached. Figure
4(b) displays the corresponding approximate convergehtteecencoder parameters - as the error
decreases, the encoder parameters settle to a stableesat{tial final values across initializations
vary).

Parameters free from the standpoint of the simulation agentfural noise covariande- and the
HessianR of the neural signal cost. We set these to reasonable valiresnoise to a moderate



level and the cost sufficiently high as to prevent an excegygilarge neural signal which would
swamp the noise and yield arbitrarily low error (see supgletn In an experimental setting, these
parameters would be set by the physical system and they weeld to be estimated beforehand.

4 Partially observable setting with estimation

More realistic than the model of co-adaptation where the@decside and encoder-side agents au-
tomatically know each other’s parameters, is one whereatgeaf updating is limited by the partial
knowledge each agent has about the other. In each timestelp agent will update its estimate of
the other agent’'s parameters, and then use the currentgssito re-optimize its own parameters.
In this work we use a recursive least squares (RLS) whichdsemted in the supplement section 3
for this estimation. RLS has a forgetting factorwhich regulates how quickly the routine expects
the parameters it estimates to change. This co-adaptattmess is detailed in procedure 1. We
elect to use the same estimation routine for each agent autinasthat the user performs ideal-
observer style optimal estimation. In general, if more kiezalge is available about how a real BCI
user updates their estimates of the decoder parametehsa snadel could easily be used. We could
also explore in simulation how various suboptimal estioratinodels employed by the user affect
co-adaptation.

As noted previously, we will assume the noise model is fixedi that the decoder side knows the
neural signal noise covarianég: (eq. (6)). The encoder-side will use a scaled identity maitsithe
estimate of the electrodes-decoder noise model. To jogsfiynate the decoder parameters and the
noise model, an EM-based scheme would be a natural appreach ¢stimation of the BCI user’s
internal model of the decoder has been treated explici21f).

Procedure 1 standard co-adaptation
for t = 1tolengthTraining do
Encoder-side
Getx; andz;_
Update encoder-side estimate of decoﬁg}, G (RLS)
Update optimal encodet, B using current decoder estima‘f/@7 G (LOR)
Encode current intention using, B and send signaj;
Decoder-side
Getz; andy;
Update decoder-side estimate of encoﬁar, CB (RLS)
Update optimal decodédr, G using current encoder estima(/i@, CB (LQE)
Decode current signal using G and display as feedbadk
end for

Standard co-adaptation yields improvements in decodirfgppeance over time as the encoder and
decoder agents estimate each others’ parameters and bpdatkon those estimates. Appropriately,
that model will improve the encoder-decoder pair over tiagein the blue curves of figure 5 below.

5 Encoder-aware decoder updates

In this section, we present an approach to model the encqufates from the decoder side. We
will use this to “take an extra step” towards optimizing trecdder for what the anticipated future
encoder ought to look like.

In the most general case, the encoder can updatend B; in an unconstrained fashion at each
timestept. From the decoder side, we do not knéwand therefore we cannot knoWwC', an
estimate of which is needed by the user to update the endddeever, the decoder sefsand can
predict updates tfCA CB] directly, instead of tdA B] as the actual encoder does (equation
15). We emphasize that this update is not actually how thewsleupdate the encoder, rather it
captures how the encoder ought to change the signals oldaeywee decoder (from the decoder’s
perspective).
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Figure 5: In each subplot, the blue line corresponds to @sang error as a function of simulated
time from standard co-adaptation (procedure 1). The grieercbrresponds to the improved one-
step-ahead co-adaptation (procedure 2). Plots from lefigttt have decreasing RLS forgetting
factor used by the encoder-side to estimate the decodeanptees. Curves depict the median error
across 20 simulations with confidence intervals of 25% artd @Gantiles. Error at each timestep is
appropriately cross-validated, it corresponds to takiiregencoder-decoder pair of that timestep and
computing error on “test” data.

We can find the updatg’A,,.c.a  CBypreq) by solving a modified version of the LQR problem
presented in section 2.3, eq. (15)

[CAprea CBprea) = —(D'VD' + R + 8 Y (N'" + D"V P), (16)
with terms defined similarly to section 2.3, except
~ 0 % < —F
D' = [F] ., S8'=FTF, N = [GTF} . (17)
We also note that the quadratic penalty used in this appmtiam been transformed from a cost

on the responses of all of the neural units to a cost only orotiserved ones.k’ serves as a
regularization parameter which now must be tuned so thedigezide estimate of the encoding
update is reasonable. For simplicity we Iet = ~I for some constant coarsely tunedthough

in general this cost need not be a scaled identity matrix.akgns 16 & 17 only use information
available at the decoder side, with terms dependeit@raving been replaced by terms dependent
instead onF'. These predictions will be used only to engineer decodeatgpschemes that can be
used to improve co-adaptation (as in procedure 2).

Procedure 2 r-step-ahead co-adaptation

for t = 1tolengthTraining do
Encoder-side
As in section 5
Decoder-side
Getx; andy, o
Update decoder-side estimate of encader, CB (RLS)
Update optimal decoddr, G using current encoder estimated, CB (LQE)
for r =1 tonumStepsAhead do
Anticipate encoder updatéA,,.q, C Bpr.q to updated decodér, G (modified LQR)
Update r-step-ahead optimal decodety usingC' A,;cq, C Bprea (LQE)
end for
Decode current signal using r-step-ahéad: and display as feedbaadl
end for

The ability to compute decoder-side approximate encodeaigs opens the opportunity to improve
encoder-decoder update dynamics by anticipating encgideradaptation to guide the process to-
wards faster convergence, and possibly to better solutiemisthe current estimate of the encoder,
we update the optimal decoder, anticipate the encoder ejbgathe method of section above, and
then update the decoder in response to the anticipated @napdate. This procedure allows r-

step-ahead updating as presented in procedure 2. Figurménd&rates how the one-step-ahead



scheme can improve the co-adaptation dynamics. It ismoiori obvious that this method would
help - the decoder-side estimate of the encoder update igleotical to the actual update. An
encoder-side agent more permissive of rapid changes ireitedér may better handle r-step-ahead
co-adaptation. We have also tried r-step-ahead updatesfor. However, this did not outperform
the one-step-ahead method, and in some cases yields aedegdhitive to standard co-adaptation.
These simulations are susceptible to the setting of theeftingy factor used by each agent in the
RLS estimation, the initial uncertainty of the parametars] the quadratic cost used in the one-
step-ahead approximatidti. The encoder-side RLS parameters in a real setting will beraiéned

by the BCI user and?’ should be tuned (as a regularization parameter).

The encoder-side forgetting factor would correspond rbughthe plasticity of the BCI user with
respect to the task. A high forgetting factor permits ther digdolerate very large changes in the
decoder, and a low forgetting factor corresponds to the asgrming more decoder stability. From
left to right in the subplots of figure 5, encoder-side fotipet factor decreases - the regime where
augmenting co-adaptation may offer the most benefit cooredpto a user that is most uncertain
about the decoder and willing to tolerate decoder changeketNér or not co-adaptation gains
are possible in our model depend upon parameters of thensy$tevertheless, for appropriately
selected parameters, attempting to augment the co-amapdtould not hurt performance even
if the user were outside of the regime where the most bengfibssible. A real user will likely
perform their half of co-adaptation sub-optimally relatte our idealized BCI user and the structure
of such suboptimalities will likely increase the opportyrfor co-adaptation to be augmented. The
timescale of these simulation results are unspecified, butdicorrespond to the timescale on which
the biological neural encoding can change. This varies $lyaad implicated brain-region, ranging
from a few training sessions [22, 23] to days [24].

6 Conclusion

Our work represents a step in the direction of exploitingadaptation to jointly optimize the neural
encoding and the decoder parameters, rather than simpiyiajotg the decoder parameters without
taking the encoder parameter adaptation into account. Wiehtloe process of co-adaptation that
occurs in closed-loop BCI use between the user and decoldjagtam. Moreover, the results using
our modified decoding update demonstrate a proof of conteptreliable improvement can be
obtained relative to naive adaptive decoders by encodareampdates to the decoder in a simulated
system. It is still open how well methods based on this apgredll extend to experimental data.

BCl is a two-agent system, and we may view co-adaptation asave formulated it within multi-
agent control theory. As both agents adapt to reduce the effitbe decoded intention given their
respective estimates of the other agent, a fixed point otthviadaptation process is a Nash equilib-
rium. This equilibrium is only known to be unique in the cageane the intention at each timestep is
independent [25]. In our more general setting, there may @re ithan one encoder-decoder pair for
which each is optimal given the other. Moreover, there magteon-linear encoders with which
non-linear decoders can be in equilibrium. These connestidll be explored in future work.

Obviously our model of the neural encoding and the processtigh the neural encoding model
is updated are idealizations. Future experimental work agtermine how well our co-adaptive
model can be applied to the real neuroprosthetic contextrdgd, low-cost experiments it might
be best to begin with a human, closed-loop experimentsdeigno simulate a BCI [26]. As the
Kalman filter is a standard decoder, it will be useful to begiperimental investigations with this
choice (as analyzed in this work). More complicated deapdichemes also appear to improve
decoding performance [23] by better accounting for the learities in the real neural encoding,
and such methods scale to BCI contexts with many output degrefreedom [27]. An important
extension of the co-adaptation model presented in this vgadknon-linear encoding and decoding
schemes. Even in more complicated, realistic settings,ape the framework presented here will
offer similar practical benefits for improving BCI control.
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