
Estimation, Optimization, and Parallelism when

Data is Sparse

John C. Duchi1,2 Michael I. Jordan1

University of California, Berkeley1

Berkeley, CA 94720
{jduchi,jordan}@eecs.berkeley.edu

H. Brendan McMahan2

Google, Inc.2

Seattle, WA 98103
mcmahan@google.com

Abstract

We study stochastic optimization problems when the data is sparse, which is in
a sense dual to current perspectives on high-dimensional statistical learning and
optimization. We highlight both the difficulties—in terms of increased sample
complexity that sparse data necessitates—and the potential benefits, in terms of
allowing parallelism and asynchrony in the design of algorithms. Concretely, we
derive matching upper and lower bounds on the minimax rate for optimization
and learning with sparse data, and we exhibit algorithms achieving these rates.
We also show how leveraging sparsity leads to (still minimax optimal) parallel
and asynchronous algorithms, providing experimental evidence complementing
our theoretical results on several medium to large-scale learning tasks.

1 Introduction and problem setting

In this paper, we investigate stochastic optimization problems in which the data is sparse. Formally,
let {F (·; ξ), ξ ∈ Ξ} be a collection of real-valued convex functions, each of whose domains con-
tains the convex set X ⊂ Rd. For a probability distribution P on Ξ, we consider the following
optimization problem:

minimize
x∈X

f(x) := E[F (x; ξ)] =

∫

Ξ

F (x; ξ)dP (ξ). (1)

By data sparsity, we mean the samples ξ are sparse: assuming that samples ξ lie in Rd, and defining
the support supp(x) of a vector x to the set of indices of its non-zero components, we assume

supp∇F (x; ξ) ⊂ supp ξ. (2)

The sparsity condition (2) means that F (x; ξ) does not “depend” on the values of xj for indices j
such that ξj = 0.1 This type of data sparsity is prevalent in statistical optimization problems and
machine learning applications; in spite of its prevalence, study of such problems has been limited.

As a motivating example, consider a text classification problem: data ξ ∈ Rd represents words
appearing in a document, and we wish to minimize a logistic loss F (x; ξ) = log(1 + exp(〈ξ, x〉))
on the data (we encode the label implicitly with the sign of ξ). Such generalized linear models satisfy
the sparsity condition (2), and while instances are of very high dimension, in any given instance, very
few entries of ξ are non-zero [8]. From a modelling perspective, it thus makes sense to allow a dense
predictor x: any non-zero entry of ξ is potentially relevant and important. In a sense, this is dual to
the standard approaches to high-dimensional problems; one usually assumes that the data ξ may be
dense, but there are only a few relevant features, and thus a parsimonious model x is desirous [2]. So

1Formally, if πξ denotes the coordinate projection zeroing all indices j of its argument where ξj = 0, then
F (πξ(x); ξ) = F (x; ξ) for all x, ξ. This follows from the first-order conditions for convexity [6].

1

while such sparse data problems are prevalent—natural language processing, information retrieval,
and other large data settings all have significant data sparsity—they do not appear to have attracted
as much study as their high-dimensional “duals” of dense data and sparse predictors.

In this paper, we investigate algorithms and their inherent limitations for solving problem (1) under
natural conditions on the data generating distribution. Recent work in the optimization and machine
learning communities has shown that data sparsity can be leveraged to develop parallel (and even
asynchronous [12]) optimization algorithms [13, 14], but this work does not consider the statistical
effects of data sparsity. In another line of research, Duchi et al. [4] and McMahan and Streeter [9]
develop “adaptive” stochastic gradient algorithms to address problems in sparse data regimes (2).
These algorithms exhibit excellent practical performance and have theoretical guarantees on their
convergence, but it is not clear if they are optimal—in that no algorithm can attain better statistical
performance—or whether they can leverage parallel computing as in the papers [12, 14].

In this paper, we take a two-pronged approach. First, we investigate the fundamental limits of
optimization and learning algorithms in sparse data regimes. In doing so, we derive lower bounds
on the optimization error of any algorithm for problems of the form (1) with sparsity condition (2).
These results have two main implications. They show that in some scenarios, learning with sparse
data is quite difficult, as essentially each coordinate j ∈ [d] can be relevant and must be optimized
for. In spite of this seemingly negative result, we are also able to show that the ADAGRAD algorithms
of [4, 9] are optimal, and we show examples in which their dependence on the dimension d can be
made exponentially better than standard gradient methods.

As the second facet of our two-pronged approach, we study how sparsity may be leveraged in parallel
computing frameworks to give substantially faster algorithms that still achieve optimal sample com-
plexity in terms of the number of samples ξ used. We develop two new algorithms, asynchronous
dual averaging (ASYNCDA) and asynchronous ADAGRAD (ASYNCADAGRAD), which allow asyn-
chronous parallel solution of the problem (1) for general convex f and X . Combining insights of
Niu et al.’s HOGWILD! [12] with a new analysis, we prove our algorithms achieve linear speedup in
the number of processors while maintaining optimal statistical guarantees. We also give experiments
on text-classification and web-advertising tasks to illustrate the benefits of the new algorithms.

2 Minimax rates for sparse optimization

We begin our study of sparse optimization problems by establishing their fundamental statistical and
optimization-theoretic properties. To do this, we derive bounds on the minimax convergence rate
of any algorithm for such problems. Formally, let x̂ denote any estimator for a minimizer of the
objective (1). We define the optimality gap ǫN for the estimator x̂ based on N samples ξ1, . . . , ξN

from the distribution P as

ǫN (x̂, F,X , P) := f(x̂)− inf
x∈X

f(x) = EP [F (x̂; ξ)]− inf
x∈X

EP [F (x; ξ)] .

This quantity is a random variable, since x̂ is a random variable (it is a function of ξ1, . . . , ξN).
To define the minimax error, we thus take expectations of the quantity ǫN , though we require a bit
more than simply E[ǫN]. We let P denote a collection of probability distributions, and we consider
a collection of loss functions F specified by a collection F of convex losses F : X × ξ → R. We
can then define the minimax error for the family of losses F and distributions P as

ǫ∗N (X ,P,F) := inf
x̂

sup
P∈P

sup
F∈F

EP [ǫN (x̂(ξ1:N), F,X , P)], (3)

where the infimum is taken over all possible estimators x̂ (an estimator is an optimization scheme,
or a measurable mapping x̂ : ΞN → X) .

2.1 Minimax lower bounds

Let us now give a more precise characterization of the (natural) set of sparse optimization problems
we consider to provide the lower bound. For the next proposition, we let P consist of distributions
supported on Ξ = {−1, 0, 1}d, and we let pj := P (ξj 6= 0) be the marginal probability of ap-
pearance of feature j ∈ {1, . . . , d}. For our class of functions, we set F to consist of functions F
satisfying the sparsity condition (2) and with the additional constraint that for g ∈ ∂xF (x; ξ), we
have that the jth coordinate |gj | ≤Mj for a constant Mj <∞. We obtain

2

Proposition 1. Let the conditions of the preceding paragraph hold. Let R be a constant such that
X ⊃ [−R,R]d. Then

ǫ∗N (X ,P,F) ≥ 1

8
R

d∑

j=1

Mj min

{
pj ,

√
pj√

N log 3

}
.

We provide the proof of Proposition 1 in the supplement A.1 in the full version of the paper, provid-
ing a few remarks here. We begin by giving a corollary to Proposition 1 that follows when the data
ξ obeys a type of power law: let p0 ∈ [0, 1], and assume that P (ξj 6= 0) = p0j

−α. We have

Corollary 2. Let α ≥ 0. Let the conditions of Proposition 1 hold with Mj ≡ M for all j, and
assume the power law condition P (ξj 6= 0) = p0j

−α on coordinate appearance probabilities. Then

(1) If d > (p0N)1/α,

ǫ∗N (X ,P,F) ≥ MR

8

[
2

2− α

√
p0
N

(
(p0N)

2−α
2α − 1

)
+

p0
1− α

(
d1−α − (p0N)

1−α
α

)]
.

(2) If d ≤ (p0N)1/α,

ǫ∗N (X ,P,F) ≥ MR

8

√
p0
N

(
1

1− α/2d
1−α

2 − 1

1− α/2

)
.

Expanding Corollary 2 slightly, for simplicity assume the number of samples is large enough that

d ≤ (p0N)1/α. Then we find that the lower bound on optimization error is of order

MR

√
p0
N
d1−

α
2 when α < 2, MR

√
p0
N

log d when α→ 2, and MR

√
p0
N

when α > 2. (4)

These results beg the question of tightness: are they improvable? As we see presently, they are not.

2.2 Algorithms for attaining the minimax rate

To show that the lower bounds of Proposition 1 and its subsequent specializations are sharp, we
review a few stochastic gradient algorithms. We begin with stochastic gradient descent (SGD): SGD
repeatedly samples ξ ∼ P , computes g ∈ ∂xF (x; ξ), then performs the update x ← ΠX (x − ηg),
where η is a stepsize parameter and ΠX denotes Euclidean projection onto X . Standard analyses of
stochastic gradient descent [10] show that after N samples ξi, the SGD estimator x̂(N) satisfies

E[f(x̂(N))]− inf
x∈X

f(x) ≤ O(1)
R2M(

∑d
j=1 pj)

1

2

√
N

, (5)

where R2 denotes the ℓ2-radius of X . Dual averaging, due to Nesterov [11] (sometimes called
“follow the regularized leader” [5]) is a more recent algorithm. In dual averaging, one again samples
g ∈ ∂xF (x; ξ), but instead of updating the parameter vector x one updates a dual vector z by
z ← z + g, then computes

x← argmin
x∈X

{
〈z, x〉+ 1

η
ψ(x)

}
,

where ψ(x) is a strongly convex function defined over X (often one takes ψ(x) = 1
2 ‖x‖

2
2). As

we discuss presently, the dual averaging algorithm is somewhat more natural in asynchronous and
parallel computing environments, and it enjoys the same type of convergence guarantees (5) as SGD.

The ADAGRAD algorithm [4, 9] is an extension of the preceding stochastic gradient methods. It
maintains a diagonal matrix S, where upon receiving a new sample ξ, ADAGRAD performs the
following: it computes g ∈ ∂xF (x; ξ), then updates

Sj ← Sj + g2j for j ∈ [d].

The dual averaging variant of ADAGRAD updates the usual dual vector z ← z + g; the update to x
is based on S and a stepsize η and computes

x← argmin
x′∈X

{
〈z, x′〉+ 1

2η

〈
x′, S

1

2x′
〉}

.

3

After N samples ξ, the averaged parameter x̂(N) returned by ADAGRAD satisfies

E[f(x̂(N))]− inf
x∈X

f(x) ≤ O(1)R∞M√
N

d∑

j=1

√
pj , (6)

where R∞ denotes the ℓ∞-radius of X (cf. [4, Section 1.3 and Theorem 5]). By inspection, the
ADAGRAD rate (6) matches the lower bound in Proposition 1 and is thus optimal. It is interesting
to note, though, that in the power law setting of Corollary 2 (recall the error order (4)), a calculation

shows that the multiplier for the SGD guarantee (5) becomesR∞

√
dmax{d(1−α)/2, 1}, while ADA-

GRAD attains rate at worst R∞ max{d1−α/2, log d}. For α > 1, the ADAGRAD rate is no worse,

and for α ≥ 2, is more than
√
d/ log d better—an exponential improvement in the dimension.

3 Parallel and asynchronous optimization with sparsity

As we note in the introduction, recent works [12, 14] have suggested that sparsity can yield benefits
in our ability to parallelize stochastic gradient-type algorithms. Given the optimality of ADAGRAD-
type algorithms, it is natural to focus on their parallelization in the hope that we can leverage their
ability to “adapt” to sparsity in the data. To provide the setting for our further algorithms, we
first revisit Niu et al.’s HOGWILD! [12]. HOGWILD! is an asynchronous (parallelized) stochastic
gradient algorithm for optimization over product-space domains, meaning that X in problem (1)
decomposes as X = X1 × · · · × Xd, where Xj ⊂ R. Fix a stepsize η > 0. A pool of independently
running processors then performs the following updates asynchronously to a centralized vector x:

1. Sample ξ ∼ P
2. Read x and compute g ∈ ∂xF (x; ξ)
3. For each j s.t. gj 6= 0, update xj ← ΠXj

(xj − ηgj).

Here ΠXj
denotes projection onto the jth coordinate of the domainX . The key of HOGWILD! is that

in step 2, the parameter x is allowed to be inconsistent—it may have received partial gradient updates
from many processors—and for appropriate problems, this inconsistency is negligible. Indeed, Niu
et al. [12] show linear speedup in optimization time as the number of processors grow; they show
this empirically in many scenarios, providing a proof under the somewhat restrictive assumptions
that there is at most one non-zero entry in any gradient g and that f has Lipschitz gradients.

3.1 Asynchronous dual averaging

A weakness of HOGWILD! is that it appears only applicable to problems for which the domain X
is a product space, and its analysis assumes ‖g‖0 = 1 for all gradients g. In effort to alleviate these
difficulties, we now develop and present our asynchronous dual averaging algorithm, ASYNCDA.
ASYNCDA maintains and upates a centralized dual vector z instead of a parameter x, and a pool of
processors perform asynchronous updates to z, where each processor independently iterates:

1. Read z and compute x := argminx∈X

{
〈z, x〉+ 1

ηψ(x)
}

// Implicitly increment “time”

counter t and let x(t) = x

2. Sample ξ ∼ P and let g ∈ ∂xF (x; ξ) // Let g(t) = g.

3. For j ∈ [d] such that gj 6= 0, update zj ← zj + gj .

Because the actual computation of the vector x in ASYNCDA is performed locally on each processor
in step 1 of the algorithm, the algorithm can be executed with any proximal function ψ and domain
X . The only communication point between any of the processors is the addition operation in step 3.
Since addition is commutative and associative, forcing all asynchrony to this point of the algorithm
is a natural strategy for avoiding synchronization problems.

In our analysis of ASYNCDA, and in our subsequent analysis of the adaptive methods, we require a
measurement of time elapsed. With that in mind, we let t denote a time index that exists (roughly)
behind-the-scenes. We let x(t) denote the vector x ∈ X computed in the tth step 1 of the ASYNCDA

4

algorithm, that is, whichever is the tth x actually computed by any of the processors. This quantity

exists and is recoverable from the algorithm, and it is possible to track the running sum
∑t
τ=1 x(τ).

Additionally, we state two assumptions encapsulating the conditions underlying our analysis.

Assumption A. There is an upper bound m on the delay of any processor. In addition, for each
j ∈ [d] there is a constant pj ∈ [0, 1] such that P (ξj 6= 0) ≤ pj .

We also require certain continuity (Lipschitzian) properties of the loss functions; these amount to a
second moment constraint on the instantaneous ∂F and a rough measure of gradient sparsity.

Assumption B. There exist constants M and (Mj)
d
j=1 such that the following bounds hold for all

x ∈ X : E[‖∂xF (x; ξ)‖22] ≤ M
2 and for each j ∈ [d] we have E[|∂xj

F (x; ξ)|] ≤ pjMj .

With these definitions, we have the following theorem, which captures the convergence behavior of
ASYNCDA under the assumption that X is a Cartesian product, meaning that X = X1 × · · · × Xd,

where Xj ⊂ R, and that ψ(x) = 1
2 ‖x‖

2
2. Note the algorithm itself can still be efficiently parallelized

for more general convex X , even if the theorem does not apply.

Theorem 3. Let Assumptions A and B and the conditions in the preceding paragraph hold. Then

E

[T∑

t=1

F (x(t); ξt)− F (x∗; ξt)
]
≤ 1

2η
‖x∗‖22 +

η

2
TM2 + ηTm

d∑

j=1

p2jM
2
j .

We now provide a few remarks to explain and simplify the result. Under the more stringent condition

that |∂xj
F (x; ξ)| ≤ Mj , Assumption A implies E[‖∂xF (x; ξ)‖22] ≤

∑d
j=1 pjM

2
j . Thus, for the

remainder of this section we take M
2 =

∑d
j=1 pjM

2
j , which upper bounds the Lipschitz continuity

constant of the objective function f . We then obtain the following corollary.

Corollary 4. Define x̂(T) = 1
T

∑T
t=1 x(t), and set η = ‖x∗‖2 /M

√
T . Then

E[f(x̂(T))− f(x∗)] ≤ M ‖x∗‖2√
T

+m
‖x∗‖2
2M
√
T

d∑

j=1

p2jM
2
j .

Corollary 4 is nearly immediate: since ξt is independent of x(t), we have E[F (x(t); ξt) | x(t)] =
f(x(t)); applying Jensen’s inequality to f(x̂(T)) and performing an algebraic manipulation give the
result. If the data is suitably sparse, meaning that pj ≤ 1/m, the bound in Corollary 4 simplifies to

E[f(x̂(T))− f(x∗)] ≤ 3

2

M ‖x∗‖2√
T

=
3

2

√∑d
j=1 pjM

2
j ‖x∗‖2√

T
, (7)

which is the convergence rate of stochastic gradient descent even in centralized settings (5). The

convergence guarantee (7) shows that after T timesteps, the error scales as 1/
√
T ; however, if we

have k processors, updates occur roughly k times as quickly, as they are asynchronous, and in time
scaling as N/k, we can evaluate N gradient samples: a linear speedup.

3.2 Asynchronous AdaGrad

We now turn to extending ADAGRAD to asynchronous settings, developing ASYNCADAGRAD

(asynchronous ADAGRAD). As in the ASYNCDA algorithm, ASYNCADAGRAD maintains a shared
dual vector z (the sum of gradients) and the shared matrix S, which is the diagonal sum of squares
of gradient entries (recall Section 2.2). The matrix S is initialized as diag(δ2), where δj ≥ 0 is an
initial value. Each processor asynchronously performs the following iterations:

1. Read S and z and set G = S
1

2 . Compute x := argminx∈X {〈z, x〉 + 1
2η 〈x,Gx〉} // Implicitly

increment “time” counter t and let x(t) = x, S(t) = S

2. Sample ξ ∼ P and let g ∈ ∂F (x; ξ)
3. For j ∈ [d] such that gj 6= 0, update Sj ← Sj + g2j and zj ← zj + gj .

5

As in the description of ASYNCDA, we note that x(t) is the vector x ∈ X computed in the tth “step”
of the algorithm (step 1), and similarly associate ξt with x(t).

To analyze ASYNCADAGRAD, we make a somewhat stronger assumption on the sparsity properties
of the losses F than Assumption B.

Assumption C. There exist constants (Mj)
d
j=1 such that E[(∂xj

F (x; ξ))2 | ξj 6= 0] ≤ M2
j for all

x ∈ X .

Indeed, taking M
2 =

∑
j pjM

2
j shows that Assumption C implies Assumption B with specific

constants. We then have the following convergence result.

Theorem 5. In addition to the conditions of Theorem 3, let Assumption C hold. Assume that for all
j we have δ2 ≥M2

jm and X ⊂ [−R∞, R∞]d. Then

T∑

t=1

E
[
F (x(t); ξt)− F (x∗; ξt)

]

≤
d∑

j=1

min

{
1

η
R2

∞E

[(
δ2 +

T∑

t=1

gj(t)
2

) 1

2

]
+ ηE

[(T∑

t=1

gj(t)
2

) 1

2

]
(1 + pjm),MjR∞pjT

}
.

It is possible to relax the condition on the initial constant diagonal term; we defer this to the full
version of the paper.

It is natural to ask in which situations the bound provided by Theorem 5 is optimal. We note that, as
in the case with Theorem 3, we may obtain a convergence rate for f(x̂(T))−f(x∗) using convexity,

where x̂(T) = 1
T

∑T
t=1 x(t). By Jensen’s inequality, we have for any δ that

E

[(
δ2 +

T∑

t=1

gj(t)
2

) 1

2

]
≤

(
δ2 +

T∑

t=1

E[gj(t)
2]

) 1

2

≤
√
δ2 + TpjM2

j .

For interpretation, let us now make a few assumptions on the probabilities pj . If we assume that
pj ≤ c/m for a universal (numerical) constant c, then Theorem 5 guarantees that

E[f(x̂(T))− f(x∗)] ≤ O(1)
[
1

η
R2

∞ + η

] d∑

j=1

Mj min

{√
log(T)/T + pj√

T
, pj

}
, (8)

which is the convergence rate of ADAGRAD except for a small factor of min{√log T/T, pj} in

addition to the usual
√
pj/T rate. In particular, optimizing by choosing η = R∞, and assuming

pj &
1
T log T , we have convergence guarantee

E[f(x̂(T))− f(x∗)] ≤ O(1)R∞

d∑

j=1

Mj min

{√
pj√
T
, pj

}
,

which is minimax optimal by Proposition 1.

In fact, however, the bounds of Theorem 5 are somewhat stronger: they provide bounds using the
expectation of the squared gradients gj(t) rather than the maximal value Mj , though the bounds are
perhaps clearer in the form (8). We note also that our analysis applies to more adversarial settings
than stochastic optimization (e.g., to online convex optimization [5]). Specifically, an adversary may
choose an arbitrary sequence of functions subject to the random data sparsity constraint (2), and our
results provide an expected regret bound, which is strictly stronger than the stochastic convergence
guarantees provided (and guarantees high-probability convergence in stochastic settings [3]). More-
over, our comments in Section 2 about the relative optimality of ADAGRAD versus standard gradient
methods apply. When the data is sparse, we indeed should use asynchronous algorithms, but using
adaptive methods yields even more improvement than simple gradient-based methods.

4 Experiments

In this section, we give experimental validation of our theoretical results on ASYNCADAGRAD and
ASYNCDA, giving results on two datasets selected for their high-dimensional sparsity.2

2In our experiments, ASYNCDA and HOGWILD! had effectively identical performance.

6

2 4 6 8 10 12 14 16
1

2

3

4

5

6

7

8

Number of workers

S
p
ee

d
u
p

A-ADAGRAD
ASYNCDA

2 4 6 8 10 12 14 16
0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

Number of workers

T
ra

in
in

g
lo

ss

2 4 6 8 10 12 14 16
0.017

0.018

0.019

0.02

0.021

0.022

0.023

0.024

0.025

Number of workers

T
es

t
er

ro
r

Figure 1. Experiments with URL data. Left: speedup relative to one processor. Middle: training
dataset loss versus number of processors. Right: test set error rate versus number of processors. A-
ADAGRAD abbreviates ASYNCADAGRAD.

1
.0

1
.2

1
.4

1
.6

1
.8

Fixed stepsizes, training data, L2=0

number of passes

re
la

ti
v
e
 l
o
g
-l
o
s
s

1 2 4 8 16 64 256

A-AdaGrad η = 0.002

A-AdaGrad η = 0.004

A-AdaGrad η = 0.008

A-AdaGrad η = 0.016

A-AdaGrad η = 0.002

A-AdaGrad η = 0.004

A-AdaGrad η = 0.008

A-AdaGrad η = 0.016

A-DA η = 0.800

A-DA η = 1.600

A-DA η = 3.200

1
.0

0
1

.0
1

1
.0

2
1

.0
3

1
.0

4
Fixed stepsizes, test data, L2=0

number of passes

1 2 4 8 16 32 64 128 256

1
.0

0
1

.0
1

1
.0

2
1

.0
3

1
.0

4

Impact of L2 regularizaton on test error

number of passes

1 2 4 8 16 32 64 128 256

A-AdaGrad, η = 0.008 L2 = 0

A-AdaGrad, η = 0.008 L2 = 80

A-DA, η = 0.8 L2 = 0

A-DA, η = 0.8 L2 = 80

Figure 2: Relative accuracy for various stepsize choices on an click-through rate prediction dataset.

4.1 Malicious URL detection

For our first set of experiments, we consider the speedup attainable by applying ASYNCADAGRAD

and ASYNCDA, investigating the performance of each algorithm on a malicious URL prediction
task [7]. The dataset in this case consists of an anonymized collection of URLs labeled as malicious
(e.g., spam, phishing, etc.) or benign over a span of 120 days. The data in this case consists of
2.4 · 106 examples with dimension d = 3.2 · 106 (sparse) features. We perform several experiments,
randomly dividing the dataset into 1.2 · 106 training and test samples for each experiment.

In Figure 1 we compare the performance of ASYNCADAGRAD and ASYNCDA after doing after
single pass through the training dataset. (For each algorithm, we choose the stepsize η for optimal
training set performance.) We perform the experiments on a single machine running Ubuntu Linux
with six cores (with two-way hyperthreading) and 32Gb of RAM. From the left-most plot in Fig. 1,
we see that up to six processors, both ASYNCDA and ASYNCADAGRAD enjoy the expected linear
speedup, and from 6 to 12, they continue to enjoy a speedup that is linear in the number of processors
though at a lesser slope (this is the effect of hyperthreading). For more than 12 processors, there is
no further benefit to parallelism on this machine.

The two right plots in Figure 1 plot performance of the different methods (with standard errors)
versus the number of worker threads used. Both are essentially flat; increasing the amount of par-
allelism does nothing to the average training loss or the test error rate for either method. It is clear,
however, that for this dataset, the adaptive ASYNCADAGRAD algorithm provides substantial per-
formance benefits over ASYNCDA.

4.2 Click-through-rate prediction experiments

We also experiment on a proprietary datasets consisting of search ad impressions. Each example
corresponds to showing a search-engine user a particular text ad in response to a query string. From
this, we construct a very sparse feature vector based on the text of the ad displayed and the query
string (no user-specific data is used). The target label is 1 if the user clicked the ad and -1 otherwise.

7

1
.0

0
0

1
.0

0
5

1
.0

1
0

1
.0

1
5

(A) Optimized stepsize for each number of passes

number of passes

re
la

ti
v
e
 l
o
g
-l
o
s
s

1 2 4 8 16 32 64 128 256

A-DA, L2=80

A-AdaGrad, L2=80

1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.008

0
4

8
1

2

(B) A-AdaGrad speedup

target relative log-loss

s
p
e
e
d
u
p

(C) Optimal stepsize scaling

number of passes

re
la

ti
v
e
 s

te
p
s
iz

e

1 2 4 8 16 32 64 128 256

0
1

2

A-DA base η = 1.600

A-AdaGrad base η = 0.023

1
.0

0
0

1
.0

0
5

1
.0

1
0

1
.0

1
5

(D) Impact of training data ordering

number of passes

re
la

ti
v
e
 l
o
g
-l
o
s
s

1 2 4 8 16 32 64 128 256

A-DA η = 1.600

A-AdaGrad η = 0.016

Figure 3. (A) Relative test-set log-loss for ASYNCDA and ASYNCADAGRAD, choosing the best
stepsize (within a factor of about 1.4×) individually for each number of passes. (B) Effective speedup
for ASYNCADAGRAD. (C) The best stepsize η, expressed as a scaling factor on the stepsize used for
one pass. (D) Five runs with different random seeds for each algorithm (with ℓ2 penalty 80).

We fit logistic regression models using both ASYNCDA and ASYNCADAGRAD. We run extensive
experiments on a moderate-sized dataset (about 107 examples, split between training and testing),
which allows thorough investigation of the impact of the stepsize η, the number of training passes,3

and ℓ2-regularization on accuracy. For these experiments we used 32 threads on 16 core machines
for each run, as ASYNCADAGRAD and ASYNCDA achieve similar speedups from parallelization.

On this dataset, ASYNCADAGRAD typically achieves an effective additional speedup over
ASYNCDA of 4× or more. That is, to reach a given level of accuracy, ASYNCDA generally needs
four times as many effective passes over the dataset. We measure accuracy with log-loss (the lo-
gistic loss) averaged over five runs using different random seeds (which control the order in which
the algorithms sample examples during training). We report relative values in Figures 2 and 3, that
is, the ratio of the mean loss for the given datapoint to the lowest (best) mean loss obtained. Our
results are not particularly sensitive to the choice of relative log-loss as the metric of interest; we
also considered AUC (the area under the ROC curve) and observed similar results.

Figure 2 shows relative log-loss as a function of the number of training passes for various stepsizes.
Without regularization, ASYNCADAGRAD is prone to overfitting: it achieves significantly higher
accuracy on the training data (Fig. 2 (left)), but unless the stepsize is tuned carefully to the number
of passes, it will overfit (Fig. 2 (middle)). Fortunately, the addition of ℓ2 regularization largely solves
this problem. Indeed, Figure 2 (right) shows that while adding an ℓ2 penalty of 80 has very little
impact on ASYNCDA, it effectively prevents the overfitting of ASYNCADAGRAD.4

Fixing ℓ2 regularization multiplier to 80, we varied the stepsize η over a multiplicative grid with res-

olution
√
2 for each number of passes and for each algorithm. Figure 3 reports the results obtained by

selecting the best stepsize in terms of test set log-loss for each number of passes. Figure 3(A) shows
relative log-loss of the best stepsize for each algorithm; 3(B) shows the relative time ASYNCDA
requires with respect to ASYNCADAGRAD to achieve a given loss. Specifically, Fig. 3(B) shows the
ratio of the number of passes the algorithms require to achieve a fixed loss, which gives a broader
estimate of the speedup obtained by using ASYNCADAGRAD; speedups range from 3.6× to 12×.
Figure 3(C) shows the optimal stepsizes as a function of the best setting for one pass. The optimal
stepsize decreases moderately for ASYNCADAGRAD, but are somewhat noisy for ASYNCDA.

It is interesting to note that ASYNCADAGRAD’s accuracy is largely independent of the ordering of
the training data, while ASYNCDA shows significant variability. This can be seen both in the error
bars on Figure 3(A), and explicitly in Figure 3(D), where we plot one line for each of the five random
seeds used. Thus, while on the one hand ASYNCDA requires somewhat less tuning of the stepsize
and ℓ2 parameter, tuning ASYNCADAGRAD is much easier because of its predictable response.

3Here “number of passes” more precisely means the expected number of times each example in the dataset
is trained on. That is, each worker thread randomly selects a training example from the dataset for each update,
and we continued making updates until (dataset size) × (number of passes) updates have been processed.

4For both algorithms, this is accomplished by adding the term η80 ‖x‖2
2

to the ψ function. We can achieve
slightly better results for ASYNCADAGRAD by varying the ℓ2 penalty with the number of passes.

8

References

[1] P. Auer and C. Gentile. Adaptive and self-confident online learning algorithms. In Proceedings
of the Thirteenth Annual Conference on Computational Learning Theory, 2000.

[2] P. Bühlmann and S. van de Geer. Statistics for High-Dimensional Data: Methods, Theory and
Applications. Springer, 2011.

[3] N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-line learning
algorithms. IEEE Transactions on Information Theory, 50(9):2050–2057, September 2004.

[4] J. C. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

[5] E. Hazan. The convex optimization approach to regret minimization. In Optimization for
Machine Learning, chapter 10. MIT Press, 2012.

[6] J. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms I & II.
Springer, New York, 1996.

[7] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker. Identifying malicious urls: An application of
large-scale online learning. In Proceedings of the 26th International Conference on Machine
Learning, 2009.

[8] C. Manning and H. Schütze. Foundations of Statistical Natural Language Processing. MIT
Press, 1999.

[9] B. McMahan and M. Streeter. Adaptive bound optimization for online convex optimization.
In Proceedings of the Twenty Third Annual Conference on Computational Learning Theory,
2010.

[10] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach
to stochastic programming. SIAM Journal on Optimization, 19(4):1574–1609, 2009.

[11] Y. Nesterov. Primal-dual subgradient methods for convex problems. Mathematical Program-
ming, 120(1):261–283, 2009.

[12] F. Niu, B. Recht, C. Ré, and S. Wright. Hogwild: a lock-free approach to parallelizing stochas-
tic gradient descent. In Advances in Neural Information Processing Systems 24, 2011.

[13] P. Richtárik and M. Takáč. Parallel coordinate descent methods for big data optimization.
arXiv:1212.0873 [math.OC], 2012. URL http://arxiv.org/abs/1212.0873.

[14] M. Takáč, A. Bijral, P. Richtárik, and N. Srebro. Mini-batch primal and dual methods for
SVMs. In Proceedings of the 30th International Conference on Machine Learning, 2013.

9

http://arxiv.org/abs/1212.0873

