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Abstract

Recent extensions of the Perceptron as the Tempotron and theChronotron sug-
gest that this theoretical concept is highly relevant for understanding networks of
spiking neurons in the brain. It is not known, however, how the computational
power of the Perceptron might be accomplished by the plasticity mechanisms of
real synapses. Here we prove that spike-timing-dependent plasticity having an
anti-Hebbian form for excitatory synapses as well as a spike-timing-dependent
plasticity of Hebbian shape for inhibitory synapses are sufficient for realizing the
original Perceptron Learning Rule if these respective plasticity mechanisms act in
concert with the hyperpolarisation of the post-synaptic neurons. We also show that
with these simple yet biologically realistic dynamics Tempotrons and Chronotrons
are learned. The proposed mechanism enables incremental associative learning
from a continuous stream of patterns and might therefore underly the acquisition
of long term memories in cortex. Our results underline that learning processes
in realistic networks of spiking neurons depend crucially on the interactions of
synaptic plasticity mechanisms with the dynamics of participating neurons.

1 Introduction

Perceptrons are paradigmatic building blocks of neural networks [1]. The original Perceptron Learn-
ing Rule (PLR) is a supervised learning rule that employs a threshold to control weight changes,
which also serves as a margin to enhance robustness [2, 3]. Ifthe learning set is separable, the PLR
algorithm is guaranteed to converge in a finite number of steps [1], which justifies the term ’perfect
learning’.

Associative learning can be considered a special case of supervised learning where the activity of the
output neuron is used as a teacher signal such that after learning missing activities are filled in. For
this reason the PLR is very useful for building associative memories in recurrent networks where
it can serve to learn arbitrary patterns in a ’quasi-unsupervised’ way. Here it turned out to be far
more efficient than the simple Hebb rule, leading to a superior memory capacity and non-symmetric
weights [4]. Note also that over-learning from repetitionsof training examples is not possible with
the PLR because weight changes vanish as soon as the accumulated inputs are sufficient, a property
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which in contrast to the naı̈ve Hebb rule makes it suitable also for incremental learning of associative
memories from sequential presentation of patterns.

On the other hand, it is not known if and how real synaptic mechanisms might realize the success-
dependent self-regulation of the PLR in networks of spikingneurons in the brain. For example in
the Tempotron [5], a generalization of the perceptron to spatio-temporal patterns, learning was con-
ceived even somewhat less biological than the PLR, since here it not only depends on the potential
classification success, but also on a process that is not local in time, namely the localization of the
absolute maximum of the (virtual) postsynaptic membrane potential of the post-synaptic neuron.
The simplified tempotron learning rule, while biologicallymore plausible, still relies on a reward
signal which tells each neuron specifically that it should have spiked or not. Taken together, while
highly desirable, the feature of self regulation in the PLR still poses a challenge for biologically
realistic synaptic mechanisms.

The classical form of spike-timing-dependent plasticity (STDP) for excitatory synapses (here de-
noted CSTDP) states that the causal temporal order of first pre-synaptic activity and then postsy-
naptic activity leads to long-term potentiation of the synapse (LTP) while the reverse order leads to
long-term depression (LTD)[6, 7, 8]. More recently, however, it became clear that STDP can exhibit
different dependencies on the temporal order of spikes. In particular, it was found that the reversed
temporal order (first post- then presynaptic spiking) couldlead to LTP (and vice versa; RSTDP),
depending on the location on the dendrite [9, 10]. For inhibitory synapses some experiments were
performed which indicate that here STDP exists as well and has the form of CSTDP [11]. Note that
CSTDP of inhibitory synapses in its effect on the postsynaptic neuron is equivalent to RSTDP of
excitatory synapses. Additionally it has been shown that CSTDP does not always rely on spikes, but
that strong subthreshold depolarization can replace the postsynaptic spike for LTD while keeping
the usual timing dependence [12]. We therefore assume that there exists a second threshold for the
induction of timing dependent LTD. For simplicity and without loss of generality, we restrict the
study to RSTDP for synapses that in contradiction to Dale’s law can change their sign.

It is very likely that plasticity rules and dynamical properties of neurons co-evolved to take advan-
tage of each other. Combining them could reveal new and desirable effects. A modeling example
for a beneficial effect of such an interplay was investigatedin [13], where CSTDP interacted with
spike-frequency adaptation of the postsynaptic neuron to perform a gradient descent on a square
error. Several other studies investigate the effect of STDPon network function, however mostly
with a focus on stability issues (e.g. [14, 15, 16]). In contrast, we here focus on the construc-
tive role of STDP for associative learning. First we prove that RSTDP of excitatory synapses (or
CSTDP on inhibitory synapses) when acting in concert with neuronal after-hyperpolarisation and
depolarization-dependent LTD is sufficient for realizing the classical Perceptron learning rule, and
then show that this plasticity dynamics realizes a learningrule suited for the Tempotron and the
Chronotron [17].

2 Ingredients

2.1 Neuron model and network structure

We assume a feed-forward network ofN presynaptic neurons and one postsynaptic integrate-and-
fire neuron with a membrane potentialU governed by

τU U̇ = −U + Isyn + Iext, (1)

whereIsyn denotes the input from the presynaptic neurons, andIext is an input which can be used
to drive the postsynaptic neuron to spike at certain times. When the neuron reaches a threshold
potentialUthr, it is reset to a reset potentialUreset < 0, from where it decays back to the resting
potentialU∞ = 0 with time constantτU . Spikes and other signals (depolarization) take finite times
to travel down the axon (τa) and the dendrite (τd). Synaptic transmission takes the form of delta
pulses, which reach the soma of the postsynaptic neuron after time τa + τd, and are modulated by
the synaptic weightw. We denote the presynaptic spike train of neuroni asxi with spike timestipre:

xi(t) =
∑
ti
pre

δ(t − tipre). (2)
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Figure 1:Illustration of STDP mechanism. A: Upper trace (red) is the membrane potential of the
postsynaptic neuron. Shown are the firing thresholdUthr and the threshold for LTDUst. Middle
trace (black) is the variablez(t), the train of LTD threshold crossing events. Please note that the first
spike inz(t) occurs at a different time than the neuronal spike. Bottom traces showw(t) (yellow)
and x̄ (blue) of a selected synapse. The second event inz reads out the trace of the presynaptic
spikex̄, leading to LTD.B: Learning rule (4) is equivalent to RSTDP. A postsynaptic spike leads
to an instantaneous jump in the traceȳ (top left, red line), which decays exponentially. Subsequent
presynaptic spikes (dark blue bars and corresponding thin gray bars in the STDP window) “read” out
the state of the trace for the respective∆t = tpre − tpost. Similarly, z(t) reads out the presynaptic
tracex̄ (lower left, blue line). Sampling for all possible times results in the STDP window (right).

A postsynaptic neuron receives the inputIsyn(t) =
∑

i wixi(t − τa − τd). The postsynaptic spike
train is similarly denoted byy(t) =

∑
tpost

δ(t − tpost).

2.2 The plasticity rule

The plasticity rule we employ mimics reverse STDP: A postsynaptic spike which arrives at the
synapse shortly before a presynaptic spike leads to synaptic potentiation. For synaptic depression
the relevant signal is not the spike, but the point in time whereU(t) crosses an additional threshold
Ust from below, withU∞ < Ust < Uthr (“subthreshold threshold”). These events are modelled as
δ-pulses in the functionz(t) =

∑
k δ(t−tk), wheretk are the times of the aforementioned threshold

crossing events (see Fig. 1 A for an illustration of the principle). The temporal characteristic of
(reverse) STDP is preserved: If a presynaptic spike occurs shortly before the membrane potential
crosses this threshold, the synapse depresses. Timing dependent LTD without postsynaptic spiking
has been observed, although with classical timing requirements [12].

We formalize this by letting pre- and postsynaptic spikes each drive a synaptic trace:

τpre ˙̄x = −x̄ + x(t − τa)

τpost ˙̄y = −ȳ + y(t − τd).
(3)

The learning rule is a read–out of the traces by spiking and threshold crossing events, respectively:

ẇ ∝ ȳx(t − τa) − γx̄z(t − τd), (4)

whereγ is a factor which scales depression and potentiation relative to each other. Fig. 1 B shows
how this plasticity rule creates RSTDP.

3 Equivalence to Perceptron Learning Rule

The Perceptron Learning Rule (PLR) for positive binary inputs and outputs is given by

∆wµ
i ∝ xi,µ

0
(2yµ

0
− 1)Θ [κ − (2yµ

0
− 1)(hµ − ϑ)] , (5)
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wherexi,µ
0

∈ {0, 1} denotes the activity of presynaptic neuroni in patternµ ∈ {1, . . . , P},
yµ
0
∈ {0, 1} signals the desired response to patternµ, κ > 0 is a margin which ensures a certain

robustness against noise after convergence,hµ =
∑

i wix
i,µ
0

is the input to a postsynaptic neuron,
ϑ denotes the firing threshold, andΘ(x) denotes the Heaviside step function. If theP patterns are
linearly separable, the perceptron will converge to a correct solution of the weights in a finite number
of steps. For random patterns this is generally the case forP < 2N . A finite marginκ reduces the
capacity.

Interestingly, for the case of temporally well separated synchronous spike patterns the combination
of RSTDP-like synaptic plasticity dynamics with depolarization-dependent LTD and neuronal hy-
perpolarization leads to a plasticity rule which can be mapped to the Perceptron Learning Rule. To
cut down unnecessary notation in the derivation, we drop theindicesi andµ except where necessary
and consider only times0 ≤ t ≤ τa + 2τd.

We consider a single postsynaptic neuron withN presynaptic neurons, with the conditionτd < τa.
During learning, presynaptic spike patterns consisting ofsynchronous spikes at timet = 0 are
induced, concurrent with a possibly occuring postsynapticspike which signals the class the presy-
naptic pattern belongs to. This is equivalent to the settingof a single layered perceptron with bi-
nary neurons. Withx0 andy0 used as above we can write the pre- and postsynaptic activityas
x(t) = x0δ(t) andy(t) = y0δ(t). The membrane potential of the postsynaptic neuron dependson
y0:

U(t) = y0Ureset exp(−t/τU )

U(τa + τd) = y0Ureset exp(−(τa + τd)/τU ) = y0Uad.
(6)

Similarly, the synaptic current is

Isyn(t) =
∑

i

wix
i
0
δ(t − τa − τd)

Isyn(τa + τd) =
∑

i

wix
i
0

= Iad.
(7)

The activity traces at the synapses are

x̄(t) = x0Θ(t − τa)
exp(−(t − τa)/τpre)

τpre

ȳ(t) = y0Θ(t − τd)
exp(−(t − τd)/τpost)

τpost

.

(8)

The variable of threshold crossingz(t) depends on the history of the postsynaptic neurons, which
again can be written with the aid ofy0 as:

z(t) = Θ(Iad + y0Uad − Ust)δ(t − τa − τd). (9)

Here, Θ reflects the condition for induction of LTD. Only when the postsynaptic input at time
t = τa + τd is greater than the residual hyperpolarization (Uad < 0!) plus the thresholdUst, a
potential LTD event gets enregistered. These are the ingredients for the plasticity rule (4):

∆w ∝

∫
[ȳx(t − τa) − γx̄z(t − τd)] dt

=x0y0

exp(−(τa + τd)/τpost)

τpost

− γx0

exp(−2τd/τpre)

τpre

Θ(Iad + y0Uad − Ust).

(10)

We shorten this expression by choosingγ such that the factors of both terms are equal, which we
can drop subsequently:

∆w ∝ x0 (y0 − Θ(Iad + y0Uad − Ust)) . (11)

We expand the equation by adding and substractingy0Θ(Iad + y0Uad − Ust):

∆w ∝x0 [y0(1 − Θ(Iad + y0Uad − Ust)) − (1 − y0)Θ(Iad + y0Uad − Ust)]

=x0 [y0Θ(−Iad − Uad + Ust) − (1 − y0)Θ(Iad − Ust)] .
(12)

We used1 − Θ(x) = Θ(−x) in the last transformation, and droppedy0 from the argument of the
Heaviside functions, as the two terms are seperated into thetwo casesy0 = 0 andy0 = 1. We do a
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similar transformation to construct an expressionG that turns either into the argument of the left or
right Heaviside function depending ony0. That expression is

G = Iad − Ust + y0(−2Iad − Uad + 2Ust), (13)

with which we replace the arguments:

∆w ∝ x0y0Θ(G) − x0(1 − y0)Θ(G) = x0(2y0 − 1)Θ(G). (14)

The last task is to show thatG and the argument of the Heaviside function in equation (5) are
equivalent. For this we chooseIad = h, Uad = −2κ andUst = ϑ − κ and keep in mind, that
ϑ = Uthr is the firing threshold. If we put this intoG we get

G =Iad − Ust + y0(−2Iad − Uad + 2Ust)

=h − ϑ + κ + 2y0h + 2y0κ + 2y0ϑ − 2y0κ

=κ − (2y0 − 1)(h − ϑ),

(15)

which is the same as the argument of the Heaviside function inequation (5). Therefore, we have
shown the equivalence of both learning rules.

4 Associative learning of spatio-temporal spike patterns

4.1 Tempotron learning with RSTDP

The condition of exact spike synchrony used for the above equivalence proof can be relaxed to
include the association of spatio-temporal spike patternswith a desired postsynaptic activity. In the
following we take the perspective of the postsynaptic neuron which during learning is externally
activated (or not) to signal the respective class by spikingat timet = 0 (or not). During learning in
each trial presynaptic spatio-temporal spike patterns arepresented in the time span0 < t < T , and
plasticity is ruled by (4). For these conditions the resulting synaptic weights realize a Tempotron
with substantial memory capacity.

A Tempotron is an integrate-and-fire neuron with input weights adjusted to perform arbitrary clas-
sifications of (sparse) spike patterns [5, 18]. To implementa Tempotron, we make two changes
to the model. First, we separate the time scales of membrane potential and hyperpolarization by
introducing a variableν:

τν ν̇ = −ν . (16)

Immediately after a postsynaptic spike,ν is reset toνspike < 0. The reason is that the length
of hyperpolarization determines the time window where significant learning can take place. To
improve comparability with the Tempotron as presented originally in [5], we setT = 0.5s and
τν = τpost = 0.2s, so that the postsynaptic neuron can learn to spike almost anywhere over the time
window, and we introduce postsynaptic potentials (PSP) with a finite rise time:

τsİsyn = −Isyn +
∑

i

wixi(t − τa), (17)

wherewi denotes the synaptic weight of presynaptic neuroni. With τs = 3ms andτU = 15ms the
PSPs match the ones used in the original Tempotron study. This second change has little impact on
the capacity or otherwise. With these changes, the membranepotential is governed by

τU U̇ = (ν − U) + Isyn(t − τd). (18)

A postsynaptic spike resetsU to νspike = Ureset < 0. Ureset is the initial hyperpolarization which
is induced after a spike, which relaxes back to zero with the time constantτν ≫ τU . Presynaptic
spikes add up linearly, and for simplicity we assume that both the axonal and the dendritic delay are
negligibly small:τa = τd = 0.

It is a natural choice to setτU = τpre andτν = τpost. τU sets the time scale for the summation
of EPSP contributing to spurious spikes,τν sets the time window where the desired spikes can lie.
They therefore should coincide with LTD and LTP, respectivly.
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Figure 2: Illustration of Perceptron learning with RSTDP with subthreshold LTD and postsynaptic
hyperpolarization. Shown are the tracesx̄, ȳ andU . Pre- and postsynaptic spikes are displayed as
black bars att = 0. A: Learning in the case ofy0 = 1, i.e. a postsynaptic spike as the desired
output. Initially the weights are too low and the synaptic current (summed PSPs) is smaller than
Ust. Weight change is LTP only until during pattern presentation the membrane potential hitsUst.
At this point LTP and LTD cancel exactly, and learning stops.B: Pattern completion fory0 = 1.
Shown are the same traces as in A at the absence of an inital postsynaptic spike. The membrane
potential after learning is drawn as a dashed line to highlight the amplitude. Without the initial hy-
perpolarization, the synaptic current after learning is large enough to cross the spiking threshold, the
postsynaptic neuron fires the desired spike. Learning untilUst is reached ensures a minimum height
of synaptic currents and therefore robustness against noise. C: Pattern presentation and completion
for y0 = 0. Initially, the synaptic current during pattern presentation causes a spike and conse-
quently LTD. Learning stops when the membrane potential stays belowUst. Again, this ensures a
certain robustness against noise, analogous to the margin in the PLR.
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Figure 3: Performance of Tempotron and Chronotron after convergence.A: Classification perfor-
mance of the Tempotron. Shown is the fraction of pattern which elicit the desired postsynaptic activ-
ity upon presentation. Perfect recall for allN is achieved up toα = 0.18. Beyond that mark, some
of the patterns become incorrectly classified. The inset shows the learning curves forα = 7/16. The
final fraction of correctly classified pattern is the averagefraction of the last 500 blocks of each run.
B: Performance of the Chronotron. Shown is the fraction of pattern which during recall succeed in
producing the correct postsynaptic spike time in a window oflength 30 ms after the teacher spike.
See supplemental material for a detailed description. Please note that the scale of the load axis is
different in A and B.

Table 1: Parameters for Tempotron learning

τU , τpre τν , τpost τs Uthr Ust νspike η γ
15 ms 200 ms 3 ms 20 mV 19 mV -20 mV 10−5 2

4.1.1 Learning performance

We test the performance of networks ofN input neurons at classifying spatio-temporal spike patterns
by generatingP = αN patterns, which we repeatedly present to the network. In each pattern,
each presynaptic neuron spikes exactly once at a fixed time ineach presentation, with spike times
uniformly distributed over the trial. Learning is organized in learning blocks. In each block allP
patterns are presented in randomized order. Synaptic weights are initialized as zero, and are updated
after each pattern presentation. After each block, we test if the postsynaptic output matches the
desired activity for each pattern. If during training a postsynaptic spike att = 0 was induced, the
output can lie anytime in the testing trial for a positive outcome. To test scaling of the capacity,
we generate networks of 100 to 600 neurons and present the patterns until the classification error
reaches a plateau. Examples of learning curves (Classification error over time) are shown in Fig. 3.
For each combination ofα andN , we run 40 simulations. The final classification error is the mean
over the last 500 blocks, averaged over all runs. The parameters we use in the simulations are shown
in Tab. 1. Fig. 3 shows the final classification performance asa function of the memory loadα, for
all network sizes we use. Up to a load of0.18, the networks learns to perfectly classify each pattern.
Higher loads leave a residual error which increases with load. The drop in performance is steeper
for larger networks. In comparison, the simplified Tempotron learning rule proposed in [5] achieves
perfect classification up toα ≈ 1.5, i.e. one order of magnitude higher.

4.2 Chronotron learning with RSTDP

In the Chronotron [17] input spike patterns become associated with desired spike trains. There are
different learning rules which can achieve this mapping, including E–learning, I–learning, ReSuMe
and PBSNLR [17, 19, 20]. The plasticity mechanism presentedhere has the tendency to generate
postsynaptic spikes as close in time as possible to the teacher spike during recall. The presented
learning principle is therefore a candidate for Chronotronlearning. The average distance of these
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spikes depends on the time constants of hyperpolarization and the learning window, especiallyτpost.
The modifications of the model necessary to implement Chronotron learning are described in the
supplement. The resulting capacity, i.e. the ability to generate the desired spike times within a short
window in time, is shown in Fig. 3 B. Up to a load ofα = 0.01, the recall is perfect within the limits
of the learning windowτlw = 30ms. Inspection of the spike times reveals that the average distance
of output spikes to the respective teacher spike is much shorter than the learning window (≈ 2ms
for α = 0.01, see supplemental Fig. 1).

5 Discussion

We present a new and biologically highly plausible approachto learning in neuronal networks.
RSTDP with subthreshold LTD in concert with hyperpolarisation is shown to be mathematically
equivalent to the Perceptron learning rule for activity patterns consisting of synchronous spikes,
thereby inheriting the highly desirable properties of the PLR (convergence in finite time, stop condi-
tion if performance is sufficient and robustness against noise). This provides a biologically plausible
mechanism to build associative memories with a capacity close to the theoretical maximum. Equiv-
alence of STDP with the PRL was shown before in [21], but this equivalence only holds on average.
We would like to stress that we here present a novel approach that ensures exact mathematical eqi-
valence to the PRL.

The mechanism proposed here is complementary to a previous approach [13] which uses CSTDP
in combination with spike frequency adaptation to perform gradient descent learning on a squared
error. However, that approach relies on an explicit teachersignal, and is not applicable to auto-
associative memories in recurrent networks. Most importantly, the approach presented here inherits
the important feature of selfregulation and fast convergence from the original Perceptron which is
absent in [13].

For sparse spatio-temporal spike patterns extensive simulations show that the same mechanism is
able to learn Tempotrons and Chronotrons with substantial memory capacity. In the case of the
Tempotron, the capacity achieved with this mechanism is lower than with a comparably plausible
learning rule. However, in the case of the Chronotron the capacity comes close to the one obtained
with a commonly employed, supervised spike time learning rule. Moreover, these rules are biolog-
ically quite unrealistic. A prototypical example for such asupervised learning rule is the Temptron
rule proposed by Gütig and Sompolinski [5]. Essentially, after a pattern presentation the complete
time course of the membrane potential during the presentation is examined, and if classification was
erroneous, the synaptic weights which contributed most to the absolute maximum of the potential
are changed. In other words, the neurons would have to able toretrospectivly disentangle contri-
butions to their membrane potential at a certain time in the past. As we showed here, RSTDP with
subthreshold LTD together with postsynaptic hyperpolarization for the first time provides a realistic
mechanism for Tempotron and Chronotron learning.

Spike after-hyperpolarization is often neglected in theoretical studies or assumed to only play a role
in network stabilization by providing refractoriness. Depolarization dependent STDP receives little
attention in modeling studies (but see [22]), possibly because there are only few studies which show
that such a mechanism exists [12, 23]. The novelty of the learning mechanism presented here lies
in the constructive roles both play in concert. After-hyperpolarization allows synaptic potentiation
for presynaptic inputs immediately after the teacher spikewithout causing additional non-teacher
spikes, which would be detrimental for learning. During recall, the absence of the hyperpolarization
ensures the then desired threshold crossing of the membranepotential (see Fig. 2 B). Subthreshold
LTD guarantees convergence of learning. It counteracts synaptic potentiation when the membrane
potential becomes sufficiently high after the teacher spike. The combination of both provides the
learning margin, which makes the resulting network robust against noise in the input. Taken together,
our results show that the interplay of neuronal dynamics andsynaptic plasticity rules can give rise
to powerful learning dynamics.
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