
Fast Determinantal Point Process Sampling with
Application to Clustering

Byungkon Kang ∗

Samsung Advanced Institute of Technology
Yongin, Korea

bk05.kang@samsung.com

Abstract

Determinantal Point Process (DPP) has gained much popularity for modeling sets
of diverse items. The gist of DPP is that the probability of choosing a particular
set of items is proportional to the determinant of a positive definite matrix that de-
fines the similarity of those items. However, computing the determinant requires
time cubic in the number of items, and is hence impractical for large sets. In this
paper, we address this problem by constructing a rapidly mixing Markov chain,
from which we can acquire a sample from the given DPP in sub-cubic time. In ad-
dition, we show that this framework can be extended to sampling from cardinality-
constrained DPPs. As an application, we show how our sampling algorithm can
be used to provide a fast heuristic for determining the number of clusters, resulting
in better clustering.
There are some crucial errors in the proofs of the theorem which invalidate the
theoretical claims of this paper. Please consult the appendix for more details.

1 Introduction

Determinantal Point Process (DPP) [1] is a well-known framework for representing a probability
distribution that models diversity. Originally proposed to model repulsion among physical particles,
it has found its way into many applications in AI, such as image search [2] and text summariza-
tion [3].
In a nutshell, given an itemsetS = [n] = {1, 2, · · · , n} and a symmetric positive definite (SPD)
matrixL ∈ R

n×n that describes pairwise similarities, a (discrete) DPP is a probability distribution
over2S proportional to the determinant of the corresponding submatrix ofL. It is known that this
distribution assigns more probability mass on set of points that have larger diversity, which is quan-
tified by the entries ofL.
Although the size of the support is exponential, DPP offers tractable inference and sampling algo-
rithms. However, sampling from a DPP requiresO(n3) time, as an eigen-decomposition ofL is
necessary [4]. This presents a huge computational problem when there are a large number of items;
e.g.,n > 104. A motivating problem we consider is that of kernelized clustering [5]. In this problem,
we are given a large number of points plus a kernel function that serves as a dot product between
the points in a feature space. The objective is to partition the points into some number clusters, each
represented by a point calledcentroid, in a way that a certain cost function is minimized. Our ap-
proach is to sample the centroids via DPP. This heuristic is based on the fact that each cluster should
be different from one another as much as possible, which is precisely what DPPs prefer. Naively
using the cubic-complexity sampling algorithm is inefficient, since it can take up to a whole day to
eigen-decompose a10000× 10000 matrix.
In this paper, we present a rapidly mixing Markov chain whose stationary distribution is the DPP

∗This work was submitted when the author was a graduate student at KAIST.

1

of interest. Our Markov chain does not require the eigen-decomposition ofL, and is hence time-
efficient. Moreover, our algorithm works seamlessly even when new items are added toS (andL),
while the previous sampling algorithm requires expensive decompositions wheneverS is updated.

1.1 Settings

More specifically, a DPP over the setS = [n], given a positive-definite similarity matrixL ≻ 0, is
a probability distributionPL over anyY ⊆ S in the following form:

PL(Y = Y) =
det(LY)

∑

Y ′⊆S det(LY ′)
=

det(LY)

det(L+ I)
,

whereI is the identity matrix of corresponding dimension,Y is a random subset ofS, andLY ≻ 0

is the principal minior ofL whose rows and columns are restricted to the elements ofY . i.e.,
LY = [L(i, j)]i,j∈Y , whereL(i, j) is the(i, j) entry ofL. Many literatures introduce DPP in terms
of a marginal kernel that describes marginal probabilities of inclusion. However, since directly
modeling probabilities over each subset ofS1 offers a more flexible framework, we will focus on
the latter representation.

There is a variant of DPPs that places a constraint on the size of the random subsets. Given an
integerk, ak-DPP is a DPP over size-k sets [2]:

P k
L(Y = Y) =

{

det(LY)
∑

|Y ′|=k
det(LY ′)

, if |Y | = k

0, otherwise.

During the discussions, we will use acharacteristic vector representation of eachY ⊆ S; i.e.,
vY ∈ {0, 1}|S|, ∀Y ⊆ S, such thatvY (i) = 1 if i ∈ Y , and 0 otherwise. With abuse of notation,
we will often use set operations on characteristic vectors to indicate the same operation on the
corresponding sets.e.g., vY \ {u} is equivalent to settingvY (u) = 0 and correspondingly,Y \ {u}.

2 Algorithm

The overall idea of our algorithm is to design a rapidly-mixing Markov chain whose stationary
distribution isPL. The state space of our chain consists of the characteristic vectors of each subset
of S. This Markov chain is generated by a standard Metropolis-Hastings algorithm, where the
transition probability from statevY to vZ is given as the ratio ofPL(Z) toPL(Y). In particular, we
will only consider transitions between adjacent states - states that have Hamming distance 1. Hence,
the transition probability of removing an elementu from Y is of the following form:

Pr(Y ∪ {u} → Y) = min

{

1,
det(LY)

det(LY ∪{u})

}

.

The addition probability is defined similarly. The overall chain is an insertion/deletion chain, where
a uniformly proposed element is either added to, or subtracted from the current state. This procedure
is outlined in Algorithm 1. Note that this algorithm has a potentially high computational complexity,
as the determinant ofLY for a givenY ⊆ S must be computed on every iteration. If the size ofY
is large, then a single iteration will become very costly. Before discussing how to address this issue
in Section 2.1, we analyze the properties of Algorithm 1 to show that it efficiently samples fromPL.
First, we state that the chain induced by Algorithm 1 does indeed represent our desired distribution2.

Proposition 1. The Markov chain in Algorithm 1 has a stationary distribution PL.

The computational complexity of sampling fromPL using Algorithm 1 depends on themixing time
of the Markov chain;i.e., the number of steps required in the Markov chain to ensure that the current
distribution is “close enough” to the stationary distribution. More specifically, we are interested
in the ǫ-mixing time τ(ǫ), which guarantees a distribution that isǫ-close toPL in terms of total
variation. In other words, we must spend at least this many time steps in order to acquire a sample
from a distribution close toPL. Our next result states that the chain in Algorithm 1 mixes rapidly:

1Also known asL-ensembles.
2All proofs, including those of irreducibility of our chains, are given in the Appendix of the full version of

our paper.

2

Algorithm 1 Markov chain for sampling fromPL

Require: ItemsetS = [n], similarity matrixL ≻ 0

Randomly initialize stateY ⊆ S
while Not mixeddo

Sampleu ∈ S uniformly at random
Set

p+u (Y)← min

{

1,
det(LY ∪{u})

det(LY)

}

p−u (Y)← min

{

1,
det(LY \{u})

det(LY)

}

if u /∈ Y then
Y ← Y ∪ {u} with prob.p+u (Y)

else
Y ← Y \ {u} with prob.p−u (Y)

end if
end while
return Y

Theorem 1. The Markov chain in Algorithm 1 has a mixing time τ (ǫ) = O (n log (n/ǫ)).

One advantage of having a rapidly-mixing Markov chain as means of sampling from a DPP is that it
is robust to addition/deletion of elements. That is, when a new element is introduced to or removed
from S, we may simply continue the current chain until it is mixed again to obtain a sample from
the new distribution. Previous sampling algorithm, on the other hand, requires to expensively eigen-
decompose the updatedL.

The mixing time of the chain in Algorithm 1 seems to offer a promising direction for sampling
from PL. However, note that this is subject to the presence of an efficient procedure for computing
det(LY). Unfortunately, computing the determinant already costsO(|Y |3) operations, rendering
Algorithm 1 impractical for largeY ’s. In the following sections, we present a linear-algebraic
manipulation of the determinant ratio so that explicit computation of the determinants is unnecessary.

2.1 Determinant Ratio Computation

It turns out that we do not need to explicitly compute the determinants, but rather the ratio of determi-
nants. Suppose we wish to computedet(LY ∪{u})/ det(LY). Since the determinant is permutation-
invariant with respect to the index set, we can representLY ∪{u} as the following block matrix form,
due to its symmetry:

LY ∪{u} =

(

LY bu
b⊤u cu

)

,

wherebu = (L(i, u))i∈Y ∈ R
|Y | and cu = L(u, u). With this, the determinant ofLY ∪{u} is

expressed as
det(LY ∪{u}) = det(LY)

(

cu − b⊤u L
−1
Y bu

)

. (1)

This allows us to re-formulate the insertion transition probability as a determinant-free ratio.

p+u (Y) = min

{

1,
det(LY ∪{u})

det(LY)

}

= min
{

1, cu − b⊤uL
−1
Y bu

}

. (2)

The deletion transition probabilityp−u (Y ∪ {u}) is computed likewise:

p−u (Y ∪ {u}) = min

{

1,
det(LY)

det(LY ∪{u})

}

= min
{

1, (cu − b⊤uL
−1
Y bu)

−1
}

.

However, this transformation alone does not seem to result in enhanced computation time, as com-
puting the inverse of a matrix is just as time-consuming as computing the determinant.

3

To save time on computingL−1
Y ′ , we incrementally update the inverse through blockwise matrix in-

version. Suppose that the matrixL−1
Y has already been computed at the current iteration of the chain.

First, consider the case when an elementu is added (‘if’ clause). The new inverseL−1
Y ∪{u} must be

updated from the currentL−1
Y . This is achieved by the following block-inversion formula [6]:

L−1
Y ∪{u} =

(

LY bu
b⊤u cu

)−1

=

(

L−1
Y + L−1

Y bub
⊤
uL

−1
Y /du −L−1

Y bu/du
−b⊤uL−1

Y /du du

)

, (3)

wheredu = cu− b⊤uL
−1
Y bu is the Schur complement ofLY . SinceL−1

Y is already given, computing
each block of the new inverse matrix costsO(|Y |2), which is an order faster than theO(|Y |3)
complexity required by the determinant. Moreover, only half of the entries may be computed, due
to symmetry.

Next, consider the case when an elementu is removed (‘else’ clause) from the current setY . The
matrix to be updated isL−1

Y \{u}, and is given by the rank-1 update formula. We first represent the

current inverseL−1
Y as

L−1
Y =

(

LY \{u} bu
b⊤u cu

)−1

,

(

D e
e⊤ f

)

,

whereD ∈ R
(|Y |−1)×(|Y |−1), e ∈ R

|Y |−1, andf ∈ R. Then, the inverse of the submatrixLY \{u}

is given by

L−1
Y \{u} = D − ee⊤

f
. (4)

Again, updatingL−1
Y \{u} only requires matrix arithmetic, and hence costsO(|Y |2).

However, the initialL−1
Y , from which all subsequent inverses are updated, must be computed in full

at the beginning of the chain. This complexity can be reduced by restricting the size of the initialY .
That is, we first randomly initializeY with a small size, sayo(n1/3), and compute the inverseL−1

Y .
As we proceed with the chain, updateL−1

Y using Equations 3 and 4 when an insertion or a deletion
proposal is accepted, respectively. Therefore, the average complexity of acquiring a sample from a
distribution that isǫ-close toPL is O(T 2n log(n/ǫ)), whereT is the average size ofY encountered
during the progress of chain. In Section 3, we introduce a scheme to maintain a small-sizedY .

2.2 Extension tok-DPPs

The idea of constructing a Markov chain to obtain a sample can be extended tok-DPPs. The only
known algorithm so far for sampling from ak-DPP also requires the eigen-decomposition ofL.
Extending the previous idea, we provide a Markov chain sampling algorithm similar to Algorithm 1
that samples fromP k

L.
The main idea behind thek-DPP chain is to propose a new configuration by choosing two elements:
one to remove from the current set, and another to add. We accept this move according to the
probability defined by the ratio of the proposed determinant to the current determinant. This is
equivalent to selecting a row and column ofLX , and replacing it with the ones corresponding to the
element to be added.i.e., for X = Y ∪ {u}

LX=Y ∪{u} =

(

LY bu
b⊤u cu

)

⇒ LX′=Y ∪{v} =

(

LY bv
b⊤v cv

)

,

whereu andv are the elements being removed and added, respectively. Following Equation 2, we
set the transition probability as the ratio of the determinants of the two matrices.

det(LX′)

det(LX)
=

cv − b⊤v L
−1
Y bv

cu − b⊤uL
−1
Y bu

.

The final procedure is given in Algorithm 2.

Similarly to Algorithm 1, we present the analysis on the stationary distribution and the mixing time
of Algorithm 2.

Proposition 2. The Markov chain in Algorithm 2 has a stationary distribution P k
L .

4

Algorithm 2 Markov chain for sampling fromP k
L

Require: ItemsetS = [n], similarity matrixL ≻ 0

Randomly initialize stateX ⊆ S, s.t. |X | = k
while Not mixeddo

Sampleu ∈ X, andv ∈ S \X u.a.r.
LettingY = X \ {u}, set

p← min

{

1,
cv − b⊤v L

−1
Y bv

cu − b⊤uL
−1
Y bu

}

. (5)

X ← Y ∪ {v} with prob.p
end while
return X

Theorem 2. The Markov chain in Algorithm 2 has a mixing time τ (ǫ) = O(k log(k/ǫ)).

The main computational bottleneck of Algorithm 2 is the inversion ofLY . SinceLY is a(k − 1)×
(k−1) matrix, the per-iteration cost isO(k3). However, this complexity can be reduced by applying
Equation 3 on every iteration to update the inverse. This leads to the final sampling complexity of
O(k3 log(k/ǫ)), which dominates theO(k3) cost of computing the intitial inverse, for acquiring a
single sample from the chain. In many cases,k will be a constant much smaller thann, so our
algorithm is efficient in general.

3 Application to Clustering

Finally, we show how our algorithms lead to an efficient heuristic for ak-means clustering problem
when the number of clusters is not known. First, we briefly overview thek-means problem.

Given a set of pointsP = {xi ∈ R
d}ni=1, the goal of clustering is to construct a partitionC =

{C1, · · · , Ck|Ci ⊆ P} of P such that thedistortion

DC =

k
∑

i=1

∑

x∈Ci

‖x−mi‖22 (6)

is minimized, wheremi is thecentroid of clusterCi. It is known that the optimal centroid is the mean
of the points ofCi. i.e., mi = (

∑

x∈Ci
x)/|Ci|. Iteratively minimizing this expression converges

to a local optimum, and is hence the preferred approach in many works. However, determining the
number of clustersk is the factor that makes this problem NP-hard [7]. Note that the problem of
unknownk prevails in other types of clustering algorithm, such as kernelk-means [5] and spectral
clustering [8]: Kernelk-means is exactly the same as regulark-means except that the inner-products
are substituted with a positive semi-definite kernel function, and spectral clustering uses regular
k-means clustering as a subroutine. Some common techniques to determinek include performing
a density-based analysis of the data [9], or selectingk that minimizes the Bayesian information
criterion (BIC) [10].
In this work, we propose to sample the initial centroids of the clustering via our DPP sampling
algorithms. The similarity matrixL will be the Gram matrix determined byL(i, j) = κ(xi, xj),
whereκ(·) is simply the inner-product for regulark-means, and a specified kernel function for
kernelk-means. Since DPPs naturally capture the notion of diversity, the sampled points will tend
to be more diverse, and thus serve better as initial representatives for each cluster. Once we have a
sample, we perform a Voronoi partition around the elements of the sample to obtain a clustering3.
Note that it is not necessary to determinek beforehand as it can be obtained from the DPP samples.
This approach is closely related to the MAP inference problem for DPPs [11], which is known to be
NP-Hard as well. We use the proposed algorithms to sample the representative points that have high
probability underPL, and cluster the rest of the points around the sample. Subsequently, standard
(kernel)k-means algorithms can be applied to improve this initial clustering.

3The distance betweenx andy is defined as
p

κ(x, x)− 2κ(x, y) + κ(y, y), for any positive semi-definite
kernelκ

5

Since DPPs model both size and diversity, it seems that we could simply collect samples from
Algorithm 1 directly, and use those samples as representatives. However, as pointed out by [2],
modeling both properties simultaneously can negatively bias the quality of diversity. To reduce this
possible negative influence, we adopt a two-step sampling strategy: First, we gatherC samples from
Algorithm 1 and construct a histogramH over the sizes of the samples. Next, we sample from
k-DPPs, by Algorithm 2, on ak acquired fromH . This last sample is the representatives we use to
cluster.

Another problem we may encounter in this scheme is the sensitivity to outliers. The presence of an
outlier inP can cause the DPP in the first phase to favor the inclusion of that outlier, resulting in a
possibly bad clustering. To make our approach more robust to outliers, we introduce the following
cardinality-penalized DPP:

PL;λ(Y = Y) ∝ exp(tr(log(LY))− λ|Y |) = det(LY)

exp(λ|Y |) ,

whereλ ≥ 0 is a hyper-parameter that controls the weight to be put on|Y |. This regularization
scheme smoothes the originalPL by exponentially discounting the size ofY ’s. This does not in-
crease the order of the mixing time of the induced chain, since only a constant factor ofexp(±λ) is
multiplied to the transition probabilities. Algorithm 3 describes the overall procedure of our DPP-
based clustering.

Algorithm 3 DPP-based Clustering
Require: L ≻ 0, λ ≥ 0, R > 0, C > 0

Gather{S1, · · · , SC |Si ∼ PL;λ} (Algorithm 1)
Construct histogramH = {|Si|}Ci=1 on the sizes ofSi’s
for j = 1, · · · , R do

SampleMj ∼ P
kj

L (Algorithm 2), wherekj ∼ H
Voronoi partition aroundMj

end for
return clustering with lowest distortion (Equation 6)

Choosing the right value ofλ usually requires a priori knowledge of the data set. Since this informa-
tion is not always available, one may use a small subset ofP to heuristically chooseλ. For example,
examine the BIC of the initial clustering with respect to the centroids sampled fromO(

√
n) ran-

domly chosen elementsP ′ ⊂ P , with λ = 0. Then, increaseλ by 1 until we encounter the point
where the BIC hits the local maximum to choose the final value. An additional binary search step
may be used betweenλ andλ+ 1 to further fine-tune its value. Because we only useO(

√
n) points

to sample from the DPP, each search step has at most linear complexity, allowing for ample time
to choose betterλ’s. This procedure may not appear to have an apparent advantage over a standard
BIC-based model selection to choose the number of clustersk. However, tuningλ not only allows
one to determinek, but also gives better initial partitions in terms of distortion.

4 Experiments

In this section, we empirically demonstrate how our proposed method, denoted DPP-MC, of choos-
ing an initial clustering compares to other methods, in terms of distortion and running time. The
methods we compare against include:

• DPP-Full: Sample using full DPP sampling procedure as given in [4].

• DPP-MAP: Sample the initial centroids according to the MAP configuration, using the
algorithm of [11].

• KKM: Plain kernelk-means clustering given by [5], run on the “true” number of clusters.

DPP-Full and DPP-MAP were used only in the first phase of Algorithm 3. To summarize the testing
procedure, DPP-MC, DPP-Full, DPP-MAP were used to choose the initial centroids. After this
initialization, KKM was carried out to improve the initial partitioning. Hence, the only difference
between the algorithms tested and KKM is the initialization.

6

The real-world data sets we use are the letter recognition data set [12] (LET), and a subset of the
power consumption data set [13] (PWC), The LET set is represented as 10,000 points inR

16, and
the PWC set 10,000 points inR7. While the LET set has 26 ground-truth clusters, the PWC set is
only labeled with timestamps. Hence, we manually divided all points into four clusters, based on
the month of timestamps. Since this partitioning is not the ground truth given by the data collector,
we expected the KKM algorithm to perform badly on this set.
In addition, we also tested our algorithm on an artificially-generated set consisting of 15,000 points
in R

10 from five mixtures of Gaussians (MG). However, this task is made challenging by roughly
merging the five Gaussians so that it is more likely to discover fewer clusters. The purpose of this set
is to examine how well our algorithm finds the appropriate number of clusters. For the MG set, we
present the result of DBSCAN [9]: another clustering algorithm that does not requirek beforehand.

We used a simple polynomial kernel of the formκ(x, y) = (x · y + 0.05)3 for the real-world data
sets, and a dot product for the artificial set. Algorithm 3 was run withτ1 = n log(n/0.01) and
τ2 = k log(k/0.01) mixing steps for first and second phases, respectively, andC = R = 10.
The running time of our algorithm includes the time taken to heuristically search forλ using the
following BIC [14]:

BICk ,
∑

x∈P

logPr(x|{mi}ki=1, σ)−
kd

2
log n,

whereσ is the average of each cluster’s distortion, andd is the dimension of the data set. The tuning
procedure is the same as the one given at the end of the previous section, without using binary
search.

4.1 Real-World Data Sets

The plots of the distortion and time for the LET set over the clustering iterations are given in
Figure 1. Recall that KKM was run with the true number of clusters as its input, so one may expect it
to perform relatively better, in terms of distortion and running time, than the other algorithms, which
must computek. The plots show that this is indeed the case, with our DPP-MC outperforming its
competitors. Both DPP-Full and DPP-MAP require long running time for the eigen-decomposition
of the similarity matrix. It is interesting to note that DPP-MAP does not perform better than a
plain DPP-Full. We conjecture that this phenomenon is due to the approximate nature of the MAP
inference.

1 2 3 4 5 6 7 8 9 10
3

3.5

4

4.5

Iterations

D
is

to
rt

io
n

(×
 1

04)

DPP−MC
KKM
DPP−Full
DPP−MAP

1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

2500

3000

3500

Iterations

C
um

ul
at

iv
e

tim
e

(s
ec

.)

DPP−MC
KKM
DPP−Full
DPP−MAP

Figure 1: Distortion (left) and cumulated runtime (right) of the clustering induced by the competing
algorithms on the LET set.

In Table 1, we give a summary of the DPP-based initialization procedures. The reported values are
the immediate results of the initialization. For DPP-MC, the running time includes the automatedλ
tuning. Taking this fact into account, DPP-MC was able to recover the true value ofk quickly.

In Figure 2, we show the same results on the PWC set. As in the previous case, DPP-MC exhibits
the lowest distortion with the fastest running time. For this set, we have omitted the results for DPP-

7

DPP-MC DPP-Full DPP-MAP DPP-MC DPP-Full DPP-MAP
Distortion 36020 42841 43719 9.78 20.15 150
Time (sec.) 20 820 2850 15 50 220

k 26 6 16 13 6 1
λ 2 - - 4 - -

Table 1: Comparison among the DPP-based initializations for the LET set (left) and the PWC set
(right).

MAP, as it yielded a degenereate result of a single cluster. Nevertheless, we give the final result in
Table 1.

1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

Iterations

D
is

to
rt

io
n

DPP−MC
KKM
DPP−Full

1 2 3 4 5 6 7 8 9
0

200

400

600

800

1000

1200

1400

Iterations

C
um

ul
at

iv
e

tim
e

(s
ec

.)

DPP−MC
KKM
DPP−Full

Figure 2: Distortion (left) and time (right) of the clustering induced by the competing algorithms on
the PWC set.

4.2 Artificial Data Set

Finally, we present results on clustering the artificial MG set. In this set, we compare our algorithm
with another clustering algorithm DBSCAN that does not requirek a priori. Due to page constraints,
we summarize the result in Table 2.

DPP-MC DBSCAN
Distortion 6.127 35.967
Time (sec.) 416 60

k 34 1

Table 2: Comparison among the DPP-based initializations for the PWC set.

Due to the merged configuration of the MG set, DBSCAN is not able to successfuly discover multi-
ple clusters, and ends up with a singleton clustering. On the other hand, DPP-MC managed to find
many distinct clusters in a way the distortion is lowered.

5 Discussion and Future Works
We have proposed a fast method for sampling from anǫ-close DPP distribution and its application to
kernelized clustering. Although the exact computational complexity of sampling (O(T 2n log(n/ǫ))
is not explicitly superior to the previous approach (O(n3)), we emperically show thatT is generally
small enough to account for our algorithm’s efficiency. Furthermore, the extension tok-DPP
sampling yields very fast speed-up compared to the previous sampling algorithm.
However, one must keep in mind that the mixing time analysis is for a single sample only:i.e., we
must mix the chain for each sample we need. For a small number of samples, this may compensate
for the cubic complexity of the previous approach. For a larger number of samples, we must further

8

investigate the effect of sample correlation after mixing in order to prove long-term efficiency.

References

[1] A. Kulesza and B. Taskar. Determinantal point processes for machine learning.ArXiv, 2012.

[2] A. Kulesza and B. Taskar.k-DPPs: Fixed-size determinantal point processes. InProceedings
of ICML, 2011.

[3] A. Kulesza and B. Taskar. Learning determinantal point processes. InProceedings of UAI,
2011.

[4] J.B. Hough, M. Krishnapur, Y. Peres, and B. Virág. Determinantal processes and independence.
Probability Surveys, 3, 2006.

[5] I. Dhillon, Y. Guan, and B. Kulis. Kernelk-means, spectral clustering and normalized cuts. In
Proceedings of ACM SIGKDD, 2004.

[6] G. Golub and C. van Loan.Matrix Computations. Johns Hopkins University Press, 1996.

[7] A. Daniel, D. Amit, H. Pierre, and P. Preyas. NP-hardness of euclidean sum-of-squares clus-
tering. Machine Learning, 75:245–248, 2009.

[8] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In
Proceedings of NIPS, 2001.

[9] M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters
in large spatial databases with noise. InProceedings of KDD, 1996.

[10] C. Fraley and A. E. Raftery. How many clusters? which clustering method? answers via
model-based cluster analysis.The Computer Journal, 41(8), 1998.

[11] J. Gillenwater, A. Kulesza, and B. Taskar. Near-optimal MAP inference for determinantal
point processes. InProceedings of NIPS, 2012.

[12] D. Slate. Letter recognition data set. http://archive.ics.uci.edu/ml/
datasets/Letter+Recognition, 1991.

[13] G. Hébrail and A. B́erard. Individual household electric power consumption data set.
http://archive.ics.uci.edu/ml/datasets/Individual+household+
electric+power+consumption, 2012.

[14] C. Goutte, L. K. Hansen, M. G. Liptrot, and E. Rostrup. Feature-space clustering for fMRI
meta-analysis.Human Brain Mapping, 13, 2001.

9

