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Abstract

Most current planners assume complete domain models and focus on generating
correct plans. Unfortunately, domain modeling is a laborious and error-prone task,
thus real world agents have to plan with incomplete domain models. While do-
main experts cannot guarantee completeness, often they are able to circumscribe
the incompleteness of the model by providing annotations as to which parts of the
domain model may be incomplete. In such cases, the goal should be to synthesize
plans that are robust with respect to any known incompleteness of the domain. In
this paper, we first introduce annotations expressing the knowledge of the domain
incompleteness and formalize the notion of plan robustness with respect to an in-
complete domain model. We then show an approach to compiling the problem of
finding robust plans to the conformant probabilistic planning problem, and present
experimental results with Probabilistic-FF planner.

1 Introduction

In the past several years, significant strides have been made in scaling up plan synthesis techniques.
We now have technology to routinely generate plans with hundreds of actions. All this work, how-
ever, makes a crucial assumption—that the action models of an agent are completely known in
advance. While there are domains where knowledge-engineering such detailed models is necessary
and feasible (e.g., mission planning domains in NASA and factory-floor planning), it is increasingly
recognized (c.f. [13]) that there are also many scenarios where insistence on correct and complete
models renders the current planning technology unusable. The incompleteness in such cases arises
because domain writers do not have the full knowledge of the domain physics. One tempting idea is
to wait until the models become complete, either by manual revision or by machine learning. Alas,
the users often don’t have the luxury of delaying their decision making. For example, although there
exist efforts [1, 26] that attempt to either learn models from scratch or revise existing ones, their
operation is contingent on the availability of successful plan traces, or access to execution experi-
ence. There is thus a critical need for planning technology that can get by with partially specified
domain models, and yet generate plans that are “robust” in the sense that they are likely to execute
successfully in the real world.

This paper addresses the problem of formalizing the notion of plan robustness with respect to an
incomplete domain model, and connects the problem of generating a robust plan under such model
to conformant probabilistic planning [15, 11, 2, 4]. Following Garland & Lesh [7], we shall assume
that although the domain modelers cannot provide complete models, often they are able to provide
annotations on the partial model circumscribing the places where it is incomplete.In our framework,
these annotations consist of allowing actions to have possible preconditions and effects (in addition
to the standard necessary preconditions and effects).

As an example, consider a variation of the Gripper domain, a well-known planning benchmark
domain. The robot has one gripper that can be used to pick up balls, which are of two types light and
heavy, from one room and move them to another room. The modeler suspects that the gripper may
have an internal problem, but this cannot be confirmed until the robot actually executes the plan. If
it actually has the problem, the execution of the pick-up action succeeds only with balls that are not
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heavy, but if it has no problem, it can always pickup all types of balls. The modeler can express
this partial knowledge about the domain by annotating the action with a statement representing the
possible precondition that balls should be light.

Incomplete domain models with such possible preconditions and effects implicitly define an expo-
nential set of complete domain models, with the semantics that the real domain model is guaranteed
to be one of these. The robustness of a plan can now be formalized in terms of the cumulative prob-
ability mass of the complete domain models under which it succeeds. We propose an approach that
compiles the problem of finding robust plans into the conformant probabilistic planning problem.
We then present empirical results showing interesting relation between aspects such as the amount
domain incompleteness, solving time and plan quality.

2 Problem Formulation

We define an incomplete domain model D̃ as D̃ = 〈F, A〉, where F = {p1, p2, ..., pm} is a set of
propositions, A is a set of actions a, each might be incompletely specified. We denote T and F as
the true and false truth values of propositions. A state s ⊆ F is a set of propositions. In addition
to proposition sets that are known as its preconditions Pre(a) ⊆ F , add effects Add(a) ⊆ F and
delete effects Del(a) ⊆ F , each action a ∈ A also contains the following annotations:

• Possible precondition set P̃ re(a) ⊆ F \ Pre(a) contains propositions that action a might
need as its preconditions.

• Possible add (delete) effect set Ãdd(a) ⊆ F \ Add(a) (D̃el(a) ⊆ F \ Del(a)) contains
propositions that the action a might add (delete, respectively) after its execution.

In addition, each possible precondition, add and delete effect p of the action a is associated with
a weight wpre

a (p), wadd
a (p) and wdel

a (p) (0 < wpre
a (p), wadd

a (p), wdel
a (p) < 1) representing the

domain writer’s assessment of the likelihood that p will actually be realized as a precondition, add
and delete effect of a (respectively) during plan execution. Possible preconditions and effects whose
likelihood of realization is not given are assumed to have weights of 1

2 . Propositions that are not
listed in those “possible lists” of an action are assumed to be not affecting or being affected by the
action.1

Given an incomplete domain model D̃, we define its completion set 〈〈D̃〉〉 as the set of complete
domain models whose actions have all the necessary preconditions, adds and deletes, and a sub-

set of the possible preconditions, possible adds and possible deletes. Since any subset of P̃ re(a),

Ãdd(a) and D̃el(a) can be realized as preconditions and effects of action a, there are exponen-

tially large number of possible complete domain models Di ∈ 〈〈D̃〉〉 = {D1, D2, ..., D2K }, where

K =
∑

a∈A(|P̃ re(a)| + |Ãdd(a)| + |D̃el(a)|). For each complete model Di, we denote the

corresponding sets of realized preconditions and effects for each action a as Prei(a), Addi(a)
and Deli(a); equivalently, its complete sets of preconditions and effects are Pre(a) ∪ Prei(a),
Add(a) ∪ Addi(a) and Del(a) ∪ Deli(a).

The projection of a sequence of actions π from an initial state I according to an incomplete domain

model D̃ is defined in terms of the projections of π from I according to each complete domain model

Di ∈ 〈〈D̃〉〉:

γ(π, I, D̃) = {γ(π, I, Di) | Di ∈ 〈〈D̃〉〉} (1)

where the projection over complete models is defined in the usual STRIPS way, with one important
difference. Specifically, the result of applying an action a, which is complete in Di, in a state s is
defined as followed:

γ(〈a〉, s, Di) = (s \ (Del(a) ∪ Deli(a))) ∪ (Add(a) ∪ Addi(a)),

if all preconditions of a are satisfied in s, and is taken to be s otherwise (rather than as an undefined
state)—in other words, actions in our setting have “soft” preconditions and thus are applicable in any
state. Such a generous execution semantics (GES) is critical from an application point of view: With

1Our incompleteness annotations therefore can also be used to model domains in which the domain writer
can only provide lists of known preconditions/effects of actions, and optionally specifying those known to be
not in the lists.
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incomplete models, failure of actions should be expected, and the plan needs to be “robustified”
against them during synthesis. The GES facilitates this by ensuring that the plan as a whole does
not have to fail if an individual action fails (without it, failing actions doom the plan and thus cannot
be supplanted). The resulting state of applying a sequence of complete actions π = 〈a1, ..., an〉 in s
with respects to Di is defined as:

γ(π, s, Di) = γ(〈an〉, γ(〈a1, ..., an−1〉, s, Di), Di).

A planning problem with incomplete domain D̃ is P̃ = 〈D̃, I, G〉 where I ⊆ F is the set of
propositions that are true in the initial state (and all the remaining are false), and G is the set of

goal propositions. An action sequence π is considered a valid plan for P̃ if π solves the problem in

at least one completion of 〈〈D̃〉〉. Specifically, ∃Di∈〈〈D̃〉〉γ(π, I, Di) |= G. Given that 〈〈D̃〉〉 can be

exponentially large in terms of possible preconditions and effects, validity is too weak to guarantee
on the quality of the plan. What we need is a notion that π succeeds in most of the highly likely

completions of D̃. We do this in terms of a robustness measure, which will be presented in the next
section.

Figure 1: Decription of incomplete action schema
pick-up in Gripper domain.

Modeling assumptions underlying our for-
mulation: From the modeling point of view,
the possible precondition and effect sets can
be modeled at either the grounded action or
action schema level (and thus applicable to
all grounded actions sharing the same action
schema). From a practical point of view,
however, incompleteness annotations at ground
level hugely increase the burden on domain
writers. In our formal treatment, we therefore
assume that annotations are specified at the schema level.

Since possible preconditions and effects can be represented as random variables, they can in prin-
ciple be modeled using graphical models such as Makov Logic Networks and Bayesian Networks
[14]. Though it appears to be an interesting technical challenge, this would require a significant
additional knowledge input from the domain writer, and thus less likely to be helpful in practice. We
therefore assume that the possible preconditions and effects are uncorrelated, thus can be realized
independently (both within each action schema and across different ones).

Example: Figure 1 shows the description of incomplete action pick-up(?b - ball,?r - room) as
described above at the schema level. In addition to the possible precondition (light ?b) on the weight
of the ball ?b, we also assume that since the modeler is unsure if the gripper has been cleaned or
not, she models it with a possible add effect (dirty ?b) indicating that the action might make the
ball dirty. Those two possible preconditions and effects can be realized independently, resulting
in four possible candidate complete domains (assuming all other action schemas in the domain are
completely described).

3 A Robustness Measure for Plans

The robustness of a plan π for the problem P̃ = 〈D̃, I, G〉 is defined as the cumulative probability

mass of the completions of D̃ under which π succeeds (in achieving the goals). More formally, let
Pr(Di) be the probability distribution representing the modeler’s estimate of the probability that

a given model in 〈〈D̃〉〉 is the real model of the world (such that
∑

Di∈〈〈D̃〉〉 Pr(Di) = 1). The

robustness of π is defined as follows:

R(π, P̃ : 〈D̃, I, G〉)
def
≡

∑

Di∈〈〈D̃〉〉,γ(π,I,Di)|=G

Pr(Di) (2)

It is easy to see that if R(π, P̃) > 0, then π is a valid plan for P̃ .

Note that given the uncorrelated incompleteness assumption, the probability Pr(Di) for a model

Di ∈ 〈〈D̃〉〉 can be computed as the product of the weights wpre
a (p), wadd

a (p), and wdel
a (p) for all

a ∈ A and its possible preconditions/effects p if p is realized in the model (or the product of their
“complement” 1 − wpre

a (p), 1 − wadd
a (p), and 1 − wdel

a (p) if p is not realized).
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Figure 2: Example for a set of complete candidate
domain models, and the corresponding plan sta-
tus. Circles with solid and dash boundary respec-
tively are propositions that are known to be T and
might be F when the plan executes (see more in
text).

Example: Figure 2 shows an example with an

incomplete domain model D̃ = 〈F, A〉 with
F = {p1, p2, p3} and A = {a1, a2} and a
solution plan π = 〈a1, a2〉 for the problem

P̃ = 〈D̃, I = {p2}, G = {p3}〉. The in-

complete model is: Pre(a1) = ∅, P̃ re(a1) =

{p1}, Add(a1) = {p2, p3}, Ãdd(a1) = ∅,

Del(a1) = ∅, D̃el(a1) = ∅; Pre(a2) = {p2},

P̃ re(a2) = ∅, Add(a2) = ∅, Ãdd(a2) = {p3},

Del(a2) = ∅, D̃el(a2) = {p1}. Given that
the total number of possible preconditions and
effects is 3, the total number of completions

(|〈〈D̃〉〉|) is 23 = 8, for each of which the plan
π may succeed or fail to achieve G, as shown
in the table. In the fifth candidate model, for
instance, p1 and p3 are realized as precondition
and add effect of a1 and a2, whereas p1 is not
a delete effect of action a2. Even though a1

could not execute (and thus p3 remains false in
the second state), the goal eventually is achieved by action a2 with respects to this candidate model.
Overall, there are two of eight candidate models where π fails and six for which it succeeds. The
robustness value of the plan is R(π) = 3

4 if Pr(Di) is the uniform distribution. However, if the

domain writer thinks that p1 is very likely to be a precondition of a1 and provides wpre
a1

(p1) = 0.9,

the robustness of π decreases to R(π) = 2 × (0.9 × 0.5 × 0.5) + 4 × (0.1 × 0.5 × 0.5) = 0.55 (as
intutively, the last four models with which π succeeds are very unlikely to be the real one). Note that
under the standard non-generous execution semantics (non-GES) where action failure causes plan
failure, the plan π would be mistakenly considered failing to achieve G in the first two complete
models, since a2 is prevented from execution.

3.1 A Spectrum of Robust Planning Problems

Given this set up, we can now talk about a spectrum of problems related to planning under incom-
plete domain models:

Robustness Assessment (RA): Given a plan π for the problem P̃ , assess the robustness of π.

Maximally Robust Plan Generation (RG∗): Given a problem P̃ , generate the maximally robust
plan π∗.

Generating Plan with Desired Level of Robustness (RGρ): Given a problem P̃ and a robustness
threshold ρ (0 < ρ ≤ 1), generate a plan π with robustness greater than or equal to ρ.

Cost-sensitive Robust Plan Generation (RG∗
c ): Given a problem P̃ and a cost bound c, generate a

plan π of maximal robustness subject to cost bound c (where the cost of a plan π is defined
as the cumulative costs of the actions in π).

Incremental Robustification (RIc): Given a plan π for the problem P̃ , improve the robustness of
π, subject to a cost budget c.

The problem of assessing robustness of plans, RA, can be tackled by compiling it into a weighted
model-counting problem. The following theorem shows that RA with uniform distribution of candi-
date complete models is complete for #P complexity class [22], and thus the robustness assessment
problem is at least as hard as NP-complete.2

Theorem 1. The problem of assessing plan robustness with the uniform distribution of candidate
complete models is #P -complete.

For plan synthesis problems, we can talk about either generating a maximally robust plan, RG∗, or
finding a plan with a robustness value above the given threshold, RGρ. A related issue is that of the

2The proof is based on a counting reduction from the problem of counting satisfying assignments for
MONOTONE-2SAT [23]. We omit it due to the space limit.
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interaction between plan cost and robustness. Often, increasing robustness involves using additional
(or costlier) actions to support the desired goals, and thus comes at the expense of increased plan
cost. We can also talk about cost-constrained robust plan generation problem RG∗

c . Finally, in
practice, we are often interested in increasing the robustness of a given plan (either during iterative
search, or during mixed-initiative planning). We thus also have the incremental variant RIc. In the
next section, we will focus on the problem of synthesizing plans with at least a robustness value ρ.

4 Synthesizing Robust Plans

Given a planning problem P̃ with an incomplete domain D̃, the ultimate goal is to synthesize a plan
having a desired level of robustness, or one with maximal robustness value. In this section, we will
show that the problem of generating plan with at least ρ robustness (0 < ρ ≤ 1), can be compiled
into an equivalent conformant probabilistic planning problem. The most robust plan can then be
found with a sequence of increasing threshold values.

4.1 Conformant Probabilistic Planning

Following the formalism in [4], a domain in conformant probabilistic planning (CPP) is a tuple
D′ = 〈F ′, A′〉, where F ′ and A′ are the sets of propositions and probabilistic actions, respectively.

A belief state b : 2F ′

→ [0, 1] is a distribution of states s ⊆ F ′ (we denote s ∈ b if b(s) > 0). Each
action a′ ∈ A′ is specified by a set of preconditions Pre(a′) ⊆ F ′ and conditional effects E(a′).
For each e = (cons(e), O(e)) ∈ E(a′), cons(e) ⊆ F ′ is the condition set and O(e) determines the
set of outcomes ε = (Pr(ε), add(ε), del(ε)) that will add and delete proposition sets add(ε), del(ε)
into and from the resulting state with the probability Pr(ε) (0 ≤ Pr(ε) ≤ 1 ,

∑
ε∈O(e) Pr(ε) = 1).

All condition sets of the effects in E(a′) are assumed to be mutually exclusive and exhaustive. The
action a′ is applicable in a belief state b if Pre(a′) ⊆ s for all s ∈ b, and the probability of a state
s′ in the resulting belief state is ba′(s′) =

∑
s⊇Pre(a′) b(s)

∑
ε∈O′(e) Pr(ε), where e ∈ E(a′) is

the conditional effect such that cons(e) ⊆ s, and O′(e) ⊆ O(e) is the set of outcomes ε such that
s′ = s ∪ add(ε) \ del(ε).

Given the domain D′, a problem P ′ is a quadruple P ′ = 〈D′, bI , G
′, ρ′〉, where bI is an initial

belief state, G′ is a set of goal propositions and ρ′ is the acceptable goal satisfaction probability. A
sequence of actions π′ = (a′

1, ..., a
′
n) is a solution plan for P ′ if a′

i is applicable in the belief state bi

(assuming b1 ≡ bI ), which results in bi+1 (1 ≤ i ≤ n), and it achieves all goal propositions with at
least ρ′ probability.

4.2 Compilation

Given an incomplete domain model D̃ = 〈F, A〉 and a planning problem P̃ = 〈D̃, I, G〉, we now

describe a compilation that translates the problem of synthesizing a solution plan π for P̃ such

that R(π, P̃) ≥ ρ to a CPP problem P ′. At a high level, the realization of possible preconditions

p ∈ P̃ re(a) and effects q ∈ Ãdd(a), r ∈ D̃el(a) of an action a ∈ A can be understood as

being determined by the truth values of hidden propositions ppre
a , qadd

a and rdel
a that are certain

(i.e. unchanged in any world state) but unknown. Specifically, the applicability of the action in
a state s ⊆ F depends on possible preconditions p that are realized (i.e. ppre

a = T), and their
truth values in s. Similarly, the values of q and r are affected by a in the resulting state only if
they are realized as add and delete effects of the action (i.e., qadd

a = T, rdel
a = T). There are

totally 2|P̃ re(a)|+|Ãdd(a)|+|D̃el(a)| realizations of the action a, and all of them should be considered
simultaneously in checking the applicability of the action and in defining corresponding resulting
states.

With those observations, we use multiple conditional effects to compile away incomplete knowledge
on preconditions and effects of the action a. Each conditional effect corresponds to one realization of
the action, and can be fired only if p = T whenever ppre

a = T, and adding (removing) an effect q (r)

into (from) the resulting state depending on the values of qadd
a (rdel

a , respectively) in the realization.

While the partial knowledge can be removed, the hidden propositions introduce uncertainty into
the initial state, and therefore making it a belief state. Since actions are always applicable in our
formulation, resulting in either a new or the same successor state, preconditions Pre(a) must be
modeled as conditions of all conditional effects. We are now ready to formally specify the resulting
domain D′ and problem P ′.
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For each action a ∈ A, we introduce new propositions ppre
a , qadd

a , rdel
a and their negations nppre

a ,

nqadd
a , nrdel

a for each p ∈ P̃ re(a), q ∈ Ãdd(a) and r ∈ D̃el(a) to determine whether they are

realized as preconditions and effects of a in the real domain.3 Let Fnew be the set of those new
propositions, then F ′ = F ∪ Fnew is the proposition set of D′.

Each action a′ ∈ A′ is made from one action a ∈ A such that Pre(a′) = ∅, and E(a′) consists of

2|P̃ re(a)|+|Ãdd(a)|+|D̃el(a)| conditional effects e. For each conditional effect e:

• cons(e) is the union of the following sets: (i) the certain preconditions Pre(a), (ii) the set
of possible preconditions of a that are realized, and hidden propositions representing their

realization: Pre(a) ∪ {ppre
a |p ∈ Pre(a)} ∪ {nppre

a |p ∈ P̃ re(a) \ Pre(a)}, (iii) the set of
hidden propositions corresponding to the realization of possible add (delete) effects of a:

{qadd
a |q ∈ Add(a)} ∪ {nqadd

a |q ∈ Ãdd(a) \ Add(a)} ({rdel
a |r ∈ Del(a)} ∪ {nrdel

a |r ∈

D̃el(a) \ Del(a)}, respectively);

• the single outcome ε of e is defined as add(ε) = Add(a) ∪ Add(a), del(ε) = Del(a) ∪
Del(a), and Pr(ε) = 1,

where Pre(a) ⊆ P̃ re(a), Add(a) ⊆ Ãdd(a) and Del(a) ⊆ D̃el(a) represent the sets of realized
preconditions and effects of the action. In other words, we create a conditional effect for each subset
of the union of the possible precondition and effect sets of the action a. Note that the inclusion of new

propositions derived from Pre(a), Add(a), Del(a) and their “complement” sets P̃ re(a) \ Pre(a),

Ãdd(a) \ Add(a), D̃el(a) \ Del(a) makes all condition sets of the action a′ mutually exclusive.
As for other cases (including those in which some precondition in Pre(a) is excluded), the action
has no effect on the resulting state, they can be ignored. The condition sets, therefore, are also
exhaustive.

The initial belief state bI consists of 2|Fnew| states s′ ⊆ F ′ such that p ∈ s′ iff p ∈ I (∀p ∈ F ),

each represents a complete domain model Di ∈ 〈〈D̃〉〉 and with the probability Pr(Di), as defined
in Section 3. The specification of bI includes simple Bayesian networks representing the relation
between variables in Fnew, e.g. ppre

a and nppre
a , where the weights w(·) and 1 − w(·) are used

to define conditional probability tables. The goal is G′ = G, and the acceptable goal satisfaction
probability is ρ′ = ρ. Theorem 2 shows the correctness of our compilation. It also shows that a plan

for P̃ with at least ρ robustness can be obtained directly from solutions of the compiled problem P ′.

Theorem 2. Given a plan π = (a1, ..., an) for the problem P̃ , and π′ = (a′
1, ..., a

′
n) where a′

k is the

compiled version of ak (1 ≤ k ≤ n) in P ′. Then R(π, P̃) ≥ ρ iff π′ achieves all goals with at least
ρ probability in P ′.

4.3 Experimental Results

In this section, we discuss the results of the compilation with Probabilistic-FF (PFF) on variants of
the Logistics and Satellite domains, where domain incompleteness is modeled on the preconditions
and effects of actions (respectively). Our purpose here is to observe and explain how plan length and
synthesizing time vary with the amount of domain incompleteness and the robustness threshold.4

Logistics: In this domain, each of the two cities C1 and C2 has an airport and a downtown area.
The transportation between the two distant cities can only be done by two airplanes A1 and A2.
In the downtown area of Ci (i ∈ {1, 2}), there are three heavy containers Pi1, ..., Pi3 that can be
moved to the airport by a truck Ti. Loading those containers onto the truck in the city Ci, however,
requires moving a team of m robots Ri1, ..., Rim (m ≥ 1), initially located in the airport, to the
downtown area. The source of incompleteness in this domain comes from the assumption that each
pair of robots R1j and R2j (1 ≤ j ≤ m) are made by the same manufacturer Mj , both therefore

might fail to load a heavy container.5 The actions loading containers onto trucks using robots made

3These propositions are introduced once, and re-used for all actions sharing the same schema with a.
4The experiments were conducted using an Intel Core2 Duo 3.16GHz machine with 4Gb of RAM, and the

time limit is 15 minutes.
5The uncorrelated incompleteness assumption applies for possible preconditions of action schemas speci-

fied for different manufacturers. It should not be confused here that robots R1j and R2j of the same manufac-
turer Mj can independently have fault.
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by a particular manufacturer (e.g., the action schema load-truck-with-robots-of-M1 using robots of
manufacturer M1), therefore, have a possible precondition requiring that containers should not be
heavy. To simplify discussion (see below), we assume that robots of different manufacturers may
fail to load heavy containers, though independently, with the same probability of 0.7. The goal is
to transport all three containers in the city C1 to C2, and vice versa. For this domain, a plan to
ship a container to another city involves a step of loading it onto the truck, which can be done by a
robot (after moving it from the airport to the downtown). Plans can be made more robust by using
additional robots of different manufacturer after moving them into the downtown areas, with the cost
of increasing plan length.

ρ m = 1 m = 2 m = 3 m = 4 m = 5

0.1 32/10.9 36/26.2 40/57.8 44/121.8 48/245.6
0.2 32/10.9 36/25.9 40/57.8 44/121.8 48/245.6
0.3 32/10.9 36/26.2 40/57.7 44/122.2 48/245.6
0.4 ⊥ 42/42.1 50/107.9 58/252.8 66/551.4
0.5 ⊥ 42/42.0 50/107.9 58/253.1 66/551.1
0.6 ⊥ ⊥ 50/108.2 58/252.8 66/551.1
0.7 ⊥ ⊥ ⊥ 58/253.1 66/551.6
0.8 ⊥ ⊥ ⊥ ⊥ 66/550.9
0.9 ⊥ ⊥ ⊥ ⊥ ⊥

Figure 3: The results of generating robust plans in Logistics
domain.

Satellite: In this domain, there are
two satellites S1 and S2 orbiting the
planet Earth, on each of which there
are m instruments Li1, ..., Lim (i ∈
{1, 2}, m ≥ 1) used to take images
of interested modes at some direction
in the space. For each j ∈ {1, ..., m},
the lenses of instruments Lij’s were
made from a type of material Mj ,
which might have an error affecting
the quality of images that they take.
If the material Mj actually has error,
all instruments Lij’s produce mangled images. The knowledge of this incompleteness is modeled as
a possible add effect of the action taking images using instruments made from Mj (for instance, the
action schema take-image-with-instruments-M1 using instruments of type M1) with a probability of
pj , asserting that images taken might be in a bad condition. A typical plan to take an image using an
instrument, e.g. L14 of type M4 on the satellite S1, is first to switch on L14, turning the satellite S1

to a ground direction from which L14 can be calibrated, and then taking image. Plans can be made
more robust by using additional instruments, which might be on a different satellite, but should be of
different type of materials and can also take an image of the interested mode at the same direction.

ρ m = 1 m = 2 m = 3 m = 4 m = 5

0.1 10/0.1 10/0.1 10/0.2 10/0.2 10/0.2
0.2 10/0.1 10/0.1 10/0.1 10/0.2 10/0.2
0.3 ⊥ 10/0.1 10/0.1 10/0.2 10/0.2
0.4 ⊥ 37/17.7 37/25.1 10/0.2 10/0.3
0.5 ⊥ ⊥ 37/25.5 37/79.2 37/199.2
0.6 ⊥ ⊥ 53/216.7 37/94.1 37/216.7
0.7 ⊥ ⊥ ⊥ 53/462.0 –

0.8 ⊥ ⊥ ⊥ ⊥ –

0.9 ⊥ ⊥ ⊥ ⊥ ⊥

Figure 4: The results of generating robust plans in Satellite
domain.

Table 3 and 4 shows respectively the
results in the Logistics and Satellite
domains with ρ ∈ {0.1, 0.2, ..., 0.9}
and m = {1, 2, ..., 5}. The num-
ber of complete domain models in
the two domains is 2m. For Satellite
domain, the probabilities pj’s range
from 0.25, 0.3,... to 0.45 when m
increases from 1, 2, ... to 5. For
each specific value of ρ and m, we re-
port l/t where l is the length of plan
and t is the running time (in seconds).
Cases in which no plan is found within the time limit are denoted by “–”, and those where it is prov-
able that no plan with the desired robustness exists are denoted by “⊥”.

As the results indicate, for a fixed amount of domain incompleteness (represented by m), the solution
plans in both domains tend to be longer with higher robustness threshold ρ, and the time to synthesize
plans also increases. For instance, in Logistics with m = 5, the plan returned has 48 actions if
ρ = 0.3, whereas 66-length plan is needed if ρ increases to 0.4. On the other hand, we also note that
more than the needed number of actions have been used in many solution plans. In the Logistics
domain, specifically, it is easy to see that the probability of successfully loading a container onto

a truck using robots of k (1 ≤ k ≤ m) different manufacturers is (1 − 0.7k). However, robots of
all five manufacturers are used in a plan when ρ = 0.4, whereas using those of three manufacturers
is enough. The relaxation employed by PFF that ignores all but one condition in effects of actions,
while enables an upper-bound computation for plan robustness, is probably too strong and causes
unnecessary increasing in plan length.

Also as we would expect, when the amount of domain incompleteness (i.e., m) increases, it takes
longer time to synthesize plans satisfying a fixed robustness value ρ. As an example, in the Satellite
domain, with ρ = 0.6 it takes 216.7 seconds to synthesize a 37-length plan when m = 5, whereas it
is only 94.1 seconds for m = 4. Two exceptions can be seen with ρ = 0.7 where no plan is found
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within the time limit when m = 5, although a plan with robustness of 0.7075 exists in the solution
space. A probable explanation for this performance is the costly satisfiability tests and weighted
model-counting for computing resulting belief states during the search.

5 Related Work

There are currently very few research efforts in automated planning literature that explicitly consider
incompletely specified domain models. To our best knowledge, Garland and Lesh [7] were the first
discussing incomplete actions and generating robust plans under incomplete domain models. Their
notion of plan robustness, however, only has tenuous heuristic connections with the likelihood of
successful execution of plans. Weber and Bryce [24] consider a model similar to ours but assume
a non-GES formulation during plan synthesis—the plan fails if any action’s preconditions are not
satisfied. As we mention earlier, this semantics is significantly less helpful from an application point
of view; and it is arguably easier. Indeed, their method for generating robust plans relies on the
propagation of “reasons” for failure of each action, assuming that every action before it successfully
executes. Such a propagation is no longer appliable for GES. Morwood and Bryce [16] studied the
problem of robustness assessment for the same incompleteness formulation in temporal planning
domains, where plan robustness is defined as the number of complete models under which temporal
constraints are consistent. The work by Fox et al [6] also explores robustness of plans, but their
focus is on temporal plans under unforeseen execution-time variations rather than on incompletely
specified domains. Eiter et al [5] introduces language K for planning under incomplete knowledge.
Their formulation is however different from ours in the type of incompleteness (world states v.s.
action models) and the notion of plans (secure/conformant plans v.s. robust plans). Our work can
also be categorized as one particular instance of the general model-lite planning problem, as defined
in [13], in which the author points out a large class of applications where handling incomplete
models is unavoidable due to the difficulty in getting a complete model.

As mentioned earlier, there were complementary approaches (c.f. [1, 26]) that attempt to either learn
models from scratch or revise existing ones, given the access to successful plan traces or execution
experience, which can then be used to solve new planning problems. These works are different
from ours in both the additional knowledge about the incomplete model (execution experience v.s.
incompleteness annotations), and the notion of solutions (correct with respect to the learned model
v.s. to candidate complete models).

Though not directly addressing formulation like ours, the work on k-fault plans for non-deterministic
planning [12] focused on reducing the “faults” in plan execution. It is however based on the context
of stochastic/non-deterministic actions rather than incompletely specified ones. The semantics of
the possible preconditions/effects in our incomplete domain models fundamentally differs from non-
deterministic and stochastic effects (c.f. work by Kushmerick et al [15]). While the probability of
success can be increased by continously executing actions with stochastic effects, the consequence
of unknown but deterministic effects is consistent over different executions.

In Markov Decision Processes (MDPs), a fairly rich body of work has been done for imprecise tran-
sition probabilities [19, 25, 8, 17, 3, 21], using various ways to represent imprecision/incompleteness
in the transition models. These works mainly seek for max-min or min-max optimal policies, assum-
ing that Nature acts optimally against the agent. Much of these work is however done at atomic level
while we focus on factored planning models. Our incompleteness formulation can also be extended
for agent modeling, a topic of interest in multi-agent systems (c.f. [10, 9, 20, 18]).

6 Conclusion and Future Work

In this paper, we motivated the need for synthesizing robust plans under incomplete domain models.
We introduced annotations for expressing domain incompleteness, formalized the notion of plan
robustness, and showed an approach to compile the problem of generating robust plans into confor-
mant probabilistic planning. We presented empirical results showing interesting relation between
aspects such as the amount of domain incompleteness, solving time and plan quality. We are work-
ing on a direct approach reasoning on correctness constraints of plan prefixes and partial relaxed
plans, constrasting it with our compilation method. We also plan to take successful plan traces as a
second type of additional inputs for generating robust plans.
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