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Abstract

Multi-armed bandit problems formalize the exploration-exploitation trade-offs
arising in several industrially relevant applications, such as online advertisement
and, more generally, recommendation systems. In many cases, however, these
applications have a strong social component, whose integration in the bandit al-
gorithm could lead to a dramatic performance increase. For instance, content may
be served to a group of users by taking advantage of an underlying network of
social relationships among them. In this paper, we introduce novel algorithmic
approaches to the solution of such networked bandit problems. More specifically,
we design and analyze a global recommendation strategy which allocates a bandit
algorithm to each network node (user) and allows it to “share” signals (contexts
and payoffs) with the neghboring nodes. We then derive two more scalable vari-
ants of this strategy based on different ways of clustering the graph nodes. We
experimentally compare the algorithm and its variants to state-of-the-art methods
for contextual bandits that do not use the relational information. Our experiments,
carried out on synthetic and real-world datasets, show a consistent increase in
prediction performance obtained by exploiting the network structure.

1 Introduction

The ability of a website to present personalized content recommendations is playing an increasingly
crucial role in achieving user satisfaction. Because of the appearance of new content, and due to
the ever-changing nature of content popularity, modern approaches to content recommendation are
strongly adaptive, and attempt to match as closely as possible users’ interests by learning good map-
pings between available content and users. These mappings are based on “contexts”, that is sets of
features that, typically, are extracted from both contents and users. The need to focus on content
that raises the user interest and, simultaneously, the need of exploring new content in order to glob-
ally improve the user experience creates an exploration-exploitation dilemma, which is commonly
formalized as a multi-armed bandit problem. Indeed, contextual bandits have become a reference
model for the study of adaptive techniques in recommender systems (e.g, [5, 7, 15] ). In many cases,
however, the users targeted by a recommender system form a social network. The network struc-
ture provides an important additional source of information, revealing potential affinities between
pairs of users. The exploitation of such affinities could lead to a dramatic increase in the quality of
the recommendations. This is because the knowledge gathered about the interests of a given user
may be exploited to improve the recommendation to the user’s friends. In this work, an algorithmic
approach to networked contextual bandits is proposed which is provably able to leverage user simi-
larities represented as a graph. Our approach consists in running an instance of a contextual bandit
algorithm at each network node. These instances are allowed to interact during the learning process,
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sharing contexts and user feedbacks. Under the modeling assumption that user similarities are prop-
erly reflected by the network structure, interactions allow to effectively speed up the learning process
that takes place at each node. This mechanism is implemented by running instances of a linear con-
textual bandit algorithm in a specific reproducing kernel Hilbert space (RKHS). The underlying
kernel, previously used for solving online multitask classification problems (e.g., [8]), is defined in
terms of the Laplacian matrix of the graph. The Laplacian matrix provides the information we rely
upon to share user feedbacks from one node to the others, according to the network structure. Since
the Laplacian kernel is linear, the implementation in kernel space is straightforward. Moreover, the
existing performance guarantees for the specific bandit algorithm we use can be directly lifted to
the RKHS, and expressed in terms of spectral properties of the user network. Despite its crispness,
the principled approach described above has two drawbacks hindering its practical usage. First,
running a network of linear contextual bandit algorithms with a Laplacian-based feedback sharing
mechanism may cause significant scaling problems, even on small to medium sized social networks.
Second, the social information provided by the network structure at hand need not be fully reliable
in accounting for user behavior similarities. Clearly enough, the more such algorithms hinge on
the network to improve learning rates, the more they are penalized if the network information is
noisy and/or misleading. After collecting empirical evidence on the sensitivity of networked bandit
methods to graph noise, we propose two simple modifications to our basic strategy, both aimed at
circumventing the above issues by clustering the graph nodes. The first approach reduces graph
noise simply by deleting edges between pairs of clusters. By doing that, we end up running a scaled
down independent instance of our original strategy on each cluster. The second approach treats each
cluster as a single node of a much smaller cluster network. In both cases, we are able to empirically
improve prediction performance, and simultaneously achieve dramatic savings in running times.
We run experiments on two real-world datasets: one is extracted from the social bookmarking web
service Delicious, and the other one from the music streaming platform Last.fm.

2 Related work

The benefit of using social relationships in order to improve the quality of recommendations is
a recognized fact in the literature of content recommender systems —see e.g., [5, 13, 18] and the
survey [3]. Linear models for contextual bandits were introduced in [4]. Their application to person-
alized content recommendation was pioneered in [15], where the LinUCB algorithm was introduced.
An analysis of LinUCB was provided in the subsequent work [9]. To the best of our knowledge,
this is the first work that combines contextual bandits with the social graph information. However,
non-contextual stochastic bandits in social networks were studied in a recent independent work [20].
Other works, such as [2, 19], consider contextual bandits assuming metric or probabilistic dependen-
cies on the product space of contexts and actions. A different viewpoint, where each action reveals
information about other actions’ payoffs, is the one studied in [7, 16], though without the context
provided by feature vectors. A non-contextual model of bandit algorithms running on the nodes of
a graph was studied in [14]. In that work, only one node reveals its payoffs, and the statistical infor-
mation acquired by this node over time is spread across the entire network following the graphical
structure. The main result shows that the information flow rate is sufficient to control regret at each
node of the network. More recently, a new model of distributed non-contextual bandit algorithms
has been presented in [21], where the number of communications among the nodes is limited, and
all the nodes in the network have the same best action.

3 Learning model

We assume the social relationships over users are encoded as a known undirected and connected
graph G = (V,E), where V = {1, . . . , n} represents a set of n users, and the edges in E represent
the social links over pairs of users. Recall that a graph G can be equivalently defined in terms
of its Laplacian matrix L =

[
Li,j

]n
i,j=1

, where Li,i is the degree of node i (i.e., the number of
incoming/outgoing edges) and, for i 6= j, Li,j equals −1 if (i, j) ∈ E, and 0 otherwise. Learning
proceeds in a sequential fashion: At each time step t = 1, 2, . . . , the learner receives a user index
it ∈ V together with a set of context vectors Cit = {xt,1,xt,2, . . . ,xt,ct} ⊆ Rd. The learner then
selects some kt ∈ Cit to recommend to user it and observes some payoff at ∈ [−1, 1], a function
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of it and x̄t = xt,kt . No assumptions whatsoever are made on the way index it and set Cit are
generated, in that they can arbitrarily depend on past choices made by the algorithm.1

A standard modeling assumption for bandit problems with contextual information (one that is also
adopted here) is to assume that rewards are generated by noisy versions of unknown linear func-
tions of the context vectors. That is, we assume each node i ∈ V hosts an unknown parame-
ter vector ui ∈ Rd, and that the reward value ai(x) associated with node i and context vector
x ∈ Rd is given by the random variable ai(x) = u>i x + εi(x), where εi(x) is a conditionally
zero-mean and bounded variance noise term. Specifically, denoting by Et[ · ] the conditional expec-
tation E

[
·
∣∣ (i1, Ci1 , a1), . . . , (it−1, Cit−1 , at−1)

]
, we take the general approach of [1], and assume

that for any fixed i ∈ V and x ∈ Rd, the variable εi(x) is conditionally sub-Gaussian with vari-
ance parameter σ2 > 0, namely, Et

[
exp(γ εi(x))

]
≤ exp

(
σ2 γ2/2

)
for all γ ∈ R and all x, i.

This implies Et[εi(x)] = 0 and Vt
[
εi(x)

]
≤ σ2, where Vt[·] is a shorthand for the conditional

variance V
[
·
∣∣ (i1, Ci1 , a1), . . . , (it−1, Cit−1 , at−1)

]
. So we clearly have Et[ai(x)] = u>i x and

Vt
[
ai(x)

]
≤ σ2. Therefore, u>i x is the expected reward observed at node i for context vector x.

In the special case when the noise εi(x) is a bounded random variable taking values in the range
[−1, 1], this implies Vt[ai(x)] ≤ 4.

The regret rt of the learner at time t is the amount by which the average reward of the best choice in
hindsight at node it exceeds the average reward of the algorithm’s choice, i.e.,

rt =

(
max
x∈Cit

u>itx

)
− u>it x̄t .

The goal of the algorithm is to bound with high probability (over the noise variables εit ) the cumu-
lative regret

∑T
t=1 rt for the given sequence of nodes i1, . . . , iT and observed context vector sets

Ci1 , . . . , CiT . We model the similarity among users in V by making the assumption that nearby
users hold similar underlying vectors ui, so that reward signals received at a given node it at time
t are also, to some extent, informative to learn the behavior of other users j connected to it within
G. We make this more precise by taking the perspective of known multitask learning settings (e.g.,
[8]), and assume that ∑

(i,j)∈E

‖ui − uj‖2 (1)

is small compared to
∑
i∈V ‖ui‖2, where ‖ ·‖ denotes the standard Euclidean norm of vectors. That

is, although (1) may possibly contain a quadratic number of terms, the closeness of vectors lying
on adjacent nodes in G makes this sum comparatively smaller than the actual length of such vec-
tors. This will be our working assumption throughout, one that motivates the Laplacian-regularized
algorithm presented in Section 4, and empirically tested in Section 5.

4 Algorithm and regret analysis

Our bandit algorithm maintains at time t an estimate wi,t for vector ui. Vectors wi,t are updated
based on the reward signals as in a standard linear bandit algorithm (e.g., [9]) operating on the
context vectors contained in Cit . Every node i of G hosts a linear bandit algorithm like the one
described in Figure 1. The algorithm in Figure 1 maintains at time t a prototype vector wt which
is the result of a standard linear least-squares approximation to the unknown parameter vector u
associated with the node under consideration. In particular, wt−1 is obtained by multiplying the
inverse correlation matrix Mt−1 and the bias vector bt−1. At each time t = 1, 2, . . . , the algorithm
receives context vectors xt,1, . . . ,xt,ct contained in Ct, and must select one among them. The
linear bandit algorithm selects x̄t = xt,kt as the vector in Ct that maximizes an upper-confidence-
corrected estimation of the expected reward achieved over context vectors xt,k. The estimation
is based on the current wt−1, while the upper confidence level CBt is suggested by the standard
analysis of linear bandit algorithms —see, e.g., [1, 9, 10]. Once the actual reward at associated with
x̄t is observed, the algorithm uses x̄t for updating Mt−1 to Mt via a rank-one adjustment, and bt−1

to bt via an additive update whose learning rate is precisely at. This algorithm can be seen as a
version of LinUCB [9], a linear bandit algorithm derived from LinRel [4].

1 Formally, it and Cit can be arbitrary (measurable) functions of past rewards a1, . . . , at−1, indices
i1, . . . , it−1, and sets Ci1 , . . . , Cit−1 .
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Init: b0 = 0 ∈ Rd andM0 = I ∈ Rd×d;
for t = 1, 2, . . . , T do

Setwt−1 = M−1
t−1 bt−1;

Get context Ct = {xt,1, . . . ,xt,ct};
Set

kt = argmax
k=1,...,ct

(
w
>
t−1xt,k + CBt(xt,k)

)
where

CBt(xt,k) =
√
x>t,kM

−1
t−1xt,k

σ
√

ln
|Mt|
δ

+ ‖u‖


Set x̄t = xt,kt ;
Observe reward at ∈ [−1, 1];
Update

• Mt = Mt−1 + x̄tx̄
>
t ,

• bt = bt−1 + atx̄t .
end for

Figure 1: Pseudocode of the linear bandit algo-
rithm sitting at each node i of the given graph.

Init: b0 = 0 ∈ Rdn andM0 = I ∈ Rdn×dn;
for t = 1, 2, . . . , T do

Setwt−1 = M−1
t−1 bt−1;

Get it ∈ V , context Cit = {xt,1, . . . ,xt,ct};
Construct vectors φit

(xt,1), . . . ,φit
(xt,ct ), and modi-

fied vectors φ̃t,1, . . . , φ̃t,ct
, where

φ̃t,k = A
−1/2
⊗ φit

(xt,k), k = 1, . . . , ct;

Set kt = argmax
k=1,...,ct

(
w
>
t−1φ̃t,k + CBt(φ̃t,k)

)
where

CBt(φ̃t,k) =

√
φ̃
>
t,kM

−1
t−1φ̃t,k

σ
√

ln
|Mt|
δ

+ ‖Ũ‖


Observe reward at ∈ [−1, 1] at node it;
Update

• Mt = Mt−1 + φ̃t,kt
φ̃
>
t,kt

,

• bt = bt−1 + atφ̃t,k .
end for

Figure 2: Pseudocode of the GOB.Lin algo-
rithm.

We now turn to describing our GOB.Lin (Gang Of Bandits, Linear version) algorithm. GOB.Lin lets
the algorithm in Figure 1 operate on each node i of G (we should then add subscript i throughout,
replacing wt by wi,t, Mt by Mi,t, and so forth). The updates Mi,t−1 → Mi,t and bi,t−1 → bi,t
are performed at node i through vector x̄t both when i = it (i.e., when node i is the one which the
context vectors in Cit refer to) and to a lesser extent when i 6= it (i.e., when node i is not the one
which the vectors in Cit refer to). This is because, as we said, the payoff at received for node it is
somehow informative also for all other nodes i 6= it. In other words, because we are assuming the
underlying parameter vectors ui are close to each other, we should let the corresponding prototype
vectors wi,t undergo similar updates, so as to also keep the wi,t close to each other over time.

With this in mind, we now describe GOB.Lin in more detail. It is convenient to introduce first some
extra matrix notation. Let A = In + L, where L is the Laplacian matrix associated with G, and
In is the n × n identity matrix. Set A⊗ = A ⊗ Id, the Kronecker product2 of matrices A and Id.
Moreover, the “compound” descriptor for the pairing (i,x) is given by the long (and sparse) vector
φi(x) ∈ Rdn defined as

φi(x)> =
(

0, . . . , 0︸ ︷︷ ︸
(i−1)d times

,x>, 0, . . . , 0︸ ︷︷ ︸
(n−i)d times

)
.

With the above notation handy, a compact description of GOB.Lin is presented in Figure 2, where
we deliberately tried to mimic the pseudocode of Figure 1. Notice that in Figure 2 we overloaded
the notation for the confidence bound CBt, which is now defined in terms of the Laplacian L of G.
In particular, ‖u‖ in Figure 1 is replaced in Figure 2 by ‖Ũ‖, where Ũ = A

1/2
⊗ U and we define

U = (u>1 ,u
>
2 , . . . ,u

>
n )> ∈ Rdn. Clearly enough, the potentially unknown quantities ‖u‖ and ‖Ũ‖

in the two expressions for CBt can be replaced by suitable upper bounds.

We now explain how the modified long vectors φ̃t,k = A
−1/2
⊗ φit(xt,k) act in the update of matrix

Mt and vector bt. First, observe that if A⊗ were the identity matrix then, according to how the
long vectors φit(xt,k) are defined, Mt would be a block-diagonal matrix Mt = diag(D1, . . . , Dn),
whose i-th block Di is the d × d matrix Di = Id +

∑
t : kt=i

xtx
>
t . Similarly, bt would be the

dn-long vector whose i-th d-dimensional block contains
∑
t : kt=i

atxt. This would be equivalent
to running n independent linear bandit algorithms (Figure 1), one per node of G. Now, because
A⊗ is not the identity, but contains graph G represented through its Laplacian matrix, the selected
vector xt,kt ∈ Cit for node it gets spread via A−1/2

⊗ from the it-th block over all other blocks,
thereby making the contextual information contained in xt,kt available to update the internal status

2 The Kronecker product between two matrices M ∈ Rm×n and N ∈ Rq×r is the block matrix M ⊗N of
dimension mq × nr whose block on row i and column j is the q × r matrix Mi,jN .
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of all other nodes. Yet, the only reward signal observed at time t is the one available at node it. A
theoretical analysis of GOB.Lin relying on the learning model of Section 3 is sketched in Section 4.1.

GOB.Lin’s running time is mainly affected by the inversion of the dn×dn matrix Mt, which can be
performed in time of order (dn)2 per round by using well-known formulas for incremental matrix
inversions. The same quadratic dependence holds for memory requirements. In our experiments, we
observed that projecting the contexts on the principal components improved performance. Hence,
the quadratic dependence on the context vector dimension d is not really hurting us in practice. On
the other hand, the quadratic dependence on the number of nodes n may be a significant limitation
to GOB.Lin’s practical deployment. In the next section, we show that simple graph compression
schemes (like node clustering) can conveniently be applied to both reduce edge noise and bring the
algorithm to reasonable scaling behaviors.

4.1 Regret Analysis

We now provide a regret analysis for GOB.Lin that relies on the high probability analysis contained
in [1] (Theorem 2 therein). The analysis can be seen as a combination of the multitask kernel
contained in, e.g., [8, 17, 12] and a version of the linear bandit algorithm described and analyzed
in [1].
Theorem 1. Let the GOB.Lin algorithm of Figure 2 be run on graph G = (V,E), V = {1, . . . , n},
hosting at each node i ∈ V vector ui ∈ Rd. Define

L(u1, . . . ,un) =
∑
i∈V
‖ui‖2 +

∑
(i,j)∈E

‖ui − uj‖2 .

Let also the sequence of context vectors xt,k be such that ‖xt,k‖ ≤ B, for all k = 1, . . . , ct, and
t = 1, . . . , T . Then the cumulative regret satisfies

T∑
t=1

rt ≤ 2

√
T

(
2σ2 ln

|MT |
δ

+ 2L(u1, . . . ,un)

)
(1 +B2) ln |MT |

with probability at least 1− δ.

Compared to running n independent bandit algorithms (which corresponds to A⊗ being the identity
matrix), the bound in the above theorem has an extra term

∑
(i,j)∈E ‖ui − uj‖2, which we assume

small according to our working assumption. However, the bound has also a significantly smaller
log determinant ln |MT | on the resulting matrix MT , due to the construction of φ̃t,k via A−1/2

⊗ . In
particular, when the graph is very dense, the log determinant in GOB.Lin is a factor n smaller than
the corresponding term for the n independent bandit case (see, e.g.,[8], Section 4.2 therein). To make
things clear, consider two extreme situations. When G has no edges then TR(MT ) = TR(I) + T =
nd+T , hence ln |MT | ≤ dn ln(1+T/(dn)). On the other hand, WhenG is the complete graph then
TR(MT ) = TR(I) + 2t/(n+ 1) = nd+ 2T/(n+ 1), hence ln |MT | ≤ dn ln(1 + 2T/(dn(n+ 1))).
The exact behavior of ln |Mt| (one that would ensure a significant advantage in practice) depends
on the actual interplay between the data and the graph, so that the above linear dependence on dn is
really a coarse upper bound.

5 Experiments

In this section, we present an empirical comparison of GOB.Lin (and its variants) to linear ban-
dit algorithms which do not exploit the relational information provided by the graph. We run
our experiments by approximating the CBt function in Figure 1 with the simplified expression

α
√
x>t,kM

−1
t−1xt,k log(t+ 1), and the CBt function in Figure 2 with the corresponding expression

in which xt,k is replaced by φ̃t,k. In both cases, the factor α is used as tunable parameter. Our
preliminary experiments show that this approximation does not affect the predictive performances
of the algorithms, while it speeds up computation significantly. We tested our algorithm and its
competitors on a synthetic dataset and two freely available real-world datasets extracted from the
social bookmarking web service Delicious and from the music streaming service Last.fm. These
datasets are structured as follows.
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4Cliques. This is an artificial dataset whose graph contains four cliques of 25 nodes each to which
we added graph noise. This noise consists in picking a random pair of nodes and deleting or creating
an edge between them. More precisely, we created a n×n symmetric noise matrix of random num-
bers in [0, 1], and we selected a threshold value such that the expected number of matrix elements
above this value is exactly some chosen noise rate parameter. Then we set to 1 all the entries whose
content is above the threshold, and to zero the remaining ones. Finally, we XORed the noise matrix
with the graph adjacency matrix, thus obtaining a noisy version of the original graph.

Last.fm. This is a social network containing 1,892 nodes and 12,717 edges. There are 17,632 items
(artists), described by 11,946 tags. The dataset contains information about the listened artists, and
we used this information in order to create the payoffs: if a user listened to an artist at least once the
payoff is 1, otherwise the payoff is 0.

Delicious. This is a network with 1,861 nodes and 7,668 edges. There are 69,226 items (URLs)
described by 53,388 tags. The payoffs were created using the information about the bookmarked
URLs for each user: the payoff is 1 if the user bookmarked the URL, otherwise the payoff is 0.

Last.fm and Delicious were created by the Information Retrieval group at Universidad Autonoma
de Madrid for the HetRec 2011 Workshop [6] with the goal of investigating the usage of heteroge-
neous information in recommendation systems.3 These two networks are structurally different: on
Delicious, payoffs depend on users more strongly than on Last.fm. In other words, there are more
popular artists, whom everybody listens to, than popular websites, which everybody bookmarks —
see Figure 3. This makes a huge difference in practice, and the choice of these two datasets allow
us to make a more realistic comparison of recommendation techniques. Since we did not remove
any items from these datasets (neither the most frequent nor the least frequent), these differences do
influence the behavior of all algorithms —see below.

Some statistics about Last.fm and Delicious are reported in Table 1. In Figure 3 we plotted the
distribution of the number of preferences per item in order to make clear and visible the differences
explained in the previous paragraphs.4
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Figure 3: Plot of the number of prefer-
ences per item (users who bookmarked
the URL or listened to an artist). Both
axes have logarithmic scale.

LAST.FM DELICIOUS
NODES 1892 1867
EDGES 12717 7668
AVG. DEGREE 13.443 8.21
ITEMS 17632 69226
NONZERO PAYOFFS 92834 104799
TAGS 11946 53388

Table 1: Main statistics for Last.fm and Delicious. ITEMS
counts the overall number of items, across all users, from
which Ct is selected. NONZERO PAYOFFS is the number
of pairs (user, item) for which we have a nonzero payoff.
TAGS is the number of distinct tags that were used to de-
scribe the items.

We preprocessed datasets by breaking down the tags into smaller tags made up of single words. In
fact, many users tend to create tags like “webdesign tutorial css”. This tag has been splitted into
three smaller tags corresponding to the three words therein. More generally, we splitted all com-
pound tags containing underscores, hyphens and apexes. This makes sense because users create tags
independently, and we may have both “rock and roll” and “rock n roll”. Because of this splitting
operation, the number of unique tags decreased from 11,946 to 6,036 on Last.fm and from 53,388
to 9,949 on Delicious. On Delicious, we also removed all tags occurring less than ten times.5 The

3 Datasets and their full descriptions are available at www.grouplens.org/node/462.
4 In the context of recommender systems, these two datasets may be seen as representatives of two “markets”

whose products have significantly different market shares (the well-known dichotomy of hit vs. niche products).
Niche product markets give rise to power laws in user preference statistics (as in the blue plot of Figure 3).

5 We did not repeat the same operation on Last.fm because this dataset was already extremely sparse.
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Table 2: Normalized cumulated reward for different levels of graph noise (expected fraction of
perturbed edges) and payoff noise (largest absolute value of noise term ε) on the 4Cliques dataset.
Graph noise increases from top to bottom, payoff noise increases from left to right. GOB.Lin is
clearly more robust to payoff noise than its competitors. On the other hand, GOB.Lin is sensitive to
high levels of graph noise. In the last row, graph noise is 41.7%, i.e., the number of perturbed edges
is 500 out of 1200 edges of the original graph.

algorithms we tested do not use any prior information about which user provided a specific tag. We
used all tags associated with a single item to create a TF-IDF context vector that uniquely represents
that item, independent of which user the item is proposed to. In both datasets, we only retained
the first 25 principal components of context vectors, so that xt,k ∈ R25 for all t and k. We gen-
erated random context sets Cit of size 25 for Last.fm and Delicious, and of size 10 for 4Cliques.
In practical scenarios, these numbers would be varying over time, but we kept them fixed so as
to simplify the experimental setting. In 4Cliques we assigned the same unit norm random vector
ui to every node in the same clique i of the original graph (before adding graph noise). Payoffs
were then generated according to the following stochastic model: ai(x) = u>i x + ε, where ε (the
payoff noise) is uniformly distributed in a bounded interval centered around zero. For Delicious
and Last.fm, we created a set of context vectors for every round t as follows: we first picked it
uniformly at random in {1, . . . , n}. Then, we generated context vectors xt,1, . . . ,xt,25 in Cit by
picking 24 vectors at random from the dataset and one among those vectors with nonzero payoff
for user it. This is necessary in order to avoid a meaningless comparison: with high probability, a
purely random selection would result in payoffs equal to zero for all the context vectors in Cit . In
our experimental comparison, we tested GOB.Lin and its variants against two baselines: a baseline
LinUCB-IND that runs an independent instance of the algorithm in Figure 1 at each node (this is
equivalent to running GOB.Lin in Figure 2 with A⊗ = Idn) and a baseline LinUCB-SIN, which
runs a single instance of the algorithm in Figure 1 shared by all the nodes. LinUCB-IND turns to be
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Figure 4: Cumulative reward for all the bandit algorithms introduced in this section.

a reasonable comparator when, as in the Delicious dataset, there are many moderately popular items.
On the other hand, LinUCB-SIN is a competitive baseline when, as in the Last.fm dataset, there are
few very popular items. The two scalable variants of GOB.Lin which we empirically analyzed are
based on node clustering,6 and are defined as follows.

GOB.Lin.MACRO: GOB.Lin is run on a weighted graph whose nodes are the clusters of the origi-
nal graph. The edges are weighted by the number of inter-cluster edges in the original graph. When
all nodes are clustered together, then GOB.Lin.MACRO recovers the baseline LinUCB-SIN as a
special case. In order to strike a good trade-off between the speed of the algorithms and the loss of
information resulting from clustering, we tested three different cluster sizes: 50, 100, and 200. Our
plots refer to the best performing choice.

GOB.Lin.BLOCK: GOB.Lin is run on a disconnected graph whose connected components are the
clusters. This makes A⊗ and Mt (Figure 2) block-diagonal matrices. When each node is clustered
individually, then GOB.Lin.BLOCK recovers the baseline LinUCB-IND as a special case. Similar
to GOB.Lin.MACRO, in order to trade-off running time and cluster sizes, we tested three different
cluster sizes (5, 10, and 20), and report only on the best performing choice.

As the running time of GOB.Lin scales quadratically with the number of nodes, the computational
savings provided by the clustering are also quadratic. Moreover, as we will see in the experiments,
the clustering acts as a regularizer, limiting the influence of noise. In all cases, the parameter α in
Figures 1 and 2 was selected based on the scale of instance vectors x̄t and φ̃t,kt , respectively, and
tuned across appropriate ranges. Table 2 and Figure 4 show the cumulative reward for each algo-
rithm, as compared (“normalized”) to that of the random predictor, that is

∑
t(at − āt), where at is

the payoff obtained by the algorithm and āt is the payoff obtained by the random predictor, i.e., the
average payoff over the context vectors available at time t. Table 2 (synthetic datasets) shows that
GOB.Lin and LinUCB-SIN are more robust to payoff noise than LinUCB-IND. Clearly, LinUCB-
SIN is also unaffected by graph noise, but it never outperforms GOB.Lin. When the payoff noise is
low and the graph noise grows GOB.Lin’s performance tends to degrade. Figure 4 reports the results
on the two real-world datasets. Notice that GOB.Lin and its variants always outperform the baselines
(not relying on graphical information) on both datasets. As expected, GOB.Lin.MACRO works best
on Last.fm, where many users gave positive payoffs to the same few items. Hence, macro nodes
apparently help GOB.Lin.MACRO to perform better than its corresponding baseline LinUCB-SIN.
In fact, GOB.Lin.MACRO also outperforms GOB.Lin, thus showing the regularization effect of us-
ing macro nodes. On Delicious, where we have many moderately popular items, GOB.Lin.BLOCK
tends to perform best, GOB.Lin being the runner-up. As expected, LinUCB-IND works better than
LinUCB-SIN, since the former is clearly more prone to personalize item recommendation than the
latter. Future work will consider experiments against different methods for sharing contextual and
feedback information in a set of users, such as the feature hashing technique of [22].
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[1] Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári. Improved algorithms for linear stochastic bandits. Advances

in Neural Information Processing Systems, 2011.

[2] K. Amin, M. Kearns, and U. Syed. Graphical models for bandit problems. Proceedings of the Twenty-
Seventh Conference Uncertainty in Artificial Intelligence, 2011.

[3] D. Asanov. Algorithms and methods in recommender systems. Berlin Institute of Technology, Berlin,
Germany, 2011.

[4] P. Auer. Using confidence bounds for exploration-exploitation trade-offs. Journal of Machine Learning
Research, 3:397–422, 2002.

[5] T. Bogers. Movie recommendation using random walks over the contextual graph. In CARS’10: Pro-
ceedings of the 2nd Workshop on Context-Aware Recommender Systems, 2010.

[6] I. Cantador, P. Brusilovsky, and T. Kuflik. 2nd Workshop on Information Heterogeneity and Fusion in
Recommender Systems (HetRec 2011). In Proceedings of the 5th ACM Conference on Recommender
Systems, RecSys 2011. ACM, 2011.

[7] S. Caron, B. Kveton, M. Lelarge, and S. Bhagat. Leveraging side observations in stochastic bandits. In
Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence, pages 142–151, 2012.

[8] G. Cavallanti, N. Cesa-Bianchi, and C. Gentile. Linear algorithms for online multitask classification.
Journal of Machine Learning Research, 11:2597–2630, 2010.

[9] W. Chu, L. Li, L. Reyzin, and R. E. Schapire. Contextual bandits with linear payoff functions. In Pro-
ceedings of the International Conference on Artificial Intelligence and Statistics, pages 208–214, 2011.

[10] K. Crammer and C. Gentile. Multiclass classification with bandit feedback using adaptive regularization.
Machine Learning, 90(3):347–383, 2013.

[11] I. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts without eigenvectors a multilevel approach.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 29(11):1944–1957, 2007.

[12] T. Evgeniou and M. Pontil. Regularized multi–task learning. In Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and data mining, KDD ’04, pages 109–117, New York,
NY, USA, 2004. ACM.

[13] I. Guy, N. Zwerdling, D. Carmel, I. Ronen, E. Uziel, S. Yogev, and S. Ofek-Koifman. Personalized
recommendation of social software items based on social relations. In Proceedings of the Third ACM
Conference on Recommender Sarxiv ystems, pages 53–60. ACM, 2009.

[14] S. Kar, H. V. Poor, and S. Cui. Bandit problems in networks: Asymptotically efficient distributed allo-
cation rules. In Decision and Control and European Control Conference (CDC-ECC), 2011 50th IEEE
Conference on, pages 1771–1778. IEEE, 2011.

[15] L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach to personalized news
article recommendation. In Proceedings of the 19th International Conference on World Wide Web, pages
661–670. ACM, 2010.

[16] S. Mannor and O. Shamir. From bandits to experts: On the value of side-observations. In Advances in
Neural Information Processing Systems, pages 684–692, 2011.

[17] C. A. Micchelli and M. Pontil. Kernels for multi–task learning. In Advances in Neural Information
Processing Systems, pages 921–928, 2004.

[18] A. Said, E. W. De Luca, and S. Albayrak. How social relationships affect user similarities. In Proceedings
of the 2010 Workshop on Social Recommender Systems, pages 1–4, 2010.

[19] A. Slivkins. Contextual bandits with similarity information. Journal of Machine Learning Research –
Proceedings Track, 19:679–702, 2011.

[20] B. Swapna, A. Eryilmaz, and N. B. Shroff. Multi-armed bandits in the presence of side observations in
social networks. In Proceedings of 52nd IEEE Conference on Decision and Control (CDC), 2013.
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