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Abstract

Spectral clustering is a fast and popular algorithm for finding clusters in net-
works. Recently, Chaudhuri et al. [1]] and Amini et al. [2] proposed inspired
variations on the algorithm that artificially inflate the node degrees for improved
statistical performance. The current paper extends the previous statistical esti-
mation results to the more canonical spectral clustering algorithm in a way that
removes any assumption on the minimum degree and provides guidance on the
choice of the tuning parameter. Moreover, our results show how the “star shape”
in the eigenvectors—a common feature of empirical networks—can be explained
by the Degree-Corrected Stochastic Blockmodel and the Extended Planted Par-
tition model, two statistical models that allow for highly heterogeneous degrees.
Throughout, the paper characterizes and justifies several of the variations of the
spectral clustering algorithm in terms of these models.

1 Introduction

Our lives are embedded in networks—social, biological, communication, etc.— and many researchers
wish to analyze these networks to gain a deeper understanding of the underlying mechanisms. Some
types of underlying mechanisms generate communities (aka clusters or modularities) in the network.
As machine learners, our aim is not merely to devise algorithms for community detection, but also
to study the algorithm’s estimation properties, to understand if and when we can make justifiable in-
ferences from the estimated communities to the underlying mechanisms. Spectral clustering is a fast
and popular technique for finding communities in networks. Several previous authors have studied
the estimation properties of spectral clustering under various statistical network models (McSherry
[3]], Dasgupta et al. [4], Coja-Oghlan and Lanka [5], Ames and Vavasis [[6], Rohe et al. [7], Sussman
et al. [8] and Chaudhuri et al. [[1]]). Recently, Chaudhuri et al. [1] and Amini et al. [2] proposed two
inspired ways of artificially inflating the node degrees in ways that provide statistical regularization
to spectral clustering.

This paper examines the statistical estimation performance of regularized spectral clustering under
the Degree-Corrected Stochastic Blockmodel (DC-SBM), an extension of the Stochastic Block-
model (SBM) that allows for heterogeneous degrees (Holland and Leinhardt [9], Karrer and New-
man [10]). The SBM and the DC-SBM are closely related to the planted partition model and the
extended planted partition model, respectively. We extend the previous results in the following ways:
(a) In contrast to previous studies, this paper studies the regularization step with a canonical version
of spectral clustering that uses k-means. The results do not require any assumptions on the min-
imum expected node degree; instead, there is a threshold demonstrating that higher degree nodes
are easier to cluster. This threshold is a function of the leverage scores that have proven essential
in other contexts, for both graph algorithms and network data analysis (see Mahoney [11]] and ref-
erences therein). These are the first results that relate leverage scores to the statistical performance



of spectral clustering. (b) This paper provides more guidance for data analytic issues than previous
approaches. First, the results suggest an appropriate range for the regularization parameter. Sec-
ond, our analysis gives a (statistical) model-based explanation for the “star-shaped” figure that often
appears in empirical eigenvectors. This demonstrates how projecting the rows of the eigenvector
matrix onto the unit sphere (an algorithmic step proposed by Ng et al. [[12]]) removes the ancillary
effects of heterogeneous degrees under the DC-SBM. Our results highlight when this step may be
unwise.

Preliminaries: Throughout, we study undirected and unweighted graphs or networks. Define a
graph as G(E,V), where V = {v1, v2,...,vn} is the vertex or node set and E is the edge set. We
will refer to node v; as node . F contains a pair (i, j) if there is an edge between node ¢ and j. The
edge set can be represented by the adjacency matrix A € {0,1}"*". A;; = A;; = 1if (4,7) isin
the edge set and A;; = A;; = 0 otherwise. Define the diagonal matrix D and the normalized Graph

Laplacian L, both elements of RV >V in the following way:
Dy = Z Aij, L= D71/2AD71/2.
J
The following notations will be used throughout the paper: ||- || denotes the spectral norm, and ||-|| 7

denotes the Frobenius norm. For two sequence of variables {zy} and {yn}, we say zn = w(yn)
if and only if yn /2n = o(1). &, is the indicator function where 6, = 1if 2 = y and 6,,, = 0
if z #£ .

2 The Algorithm: Regularized Spectral Clustering (RSC)

For a sparse network with strong degree heterogeneity, standard spectral clustering often fails to
function properly (Amini et al. [2], Jin [13]]). To account for this, Chaudhuri et al. [[1]] proposed the
regularized graph Laplacian that can be defined as

L'r _ D;1/2AD;1/2 c RNXN
where D, = D + 71 for 7 > 0.

The spectral algorithm proposed and studied by Chaudhuri et al. [1] divides the nodes into two
random subsets and only uses the induced subgraph on one of those random subsets to compute
the spectral decomposition. In this paper, we will study the more traditional version of spectral
algorithm that uses the spectral decomposition on the entire matrix (Ng et al. [12]). Define the
regularized spectral clustering (RSC) algorithm as follows:

1. Given input adjacency matrix A, number of clusters K, and regularizer 7, calculate the
regularized graph Laplacian L,. (As discussed later, a good default for 7 is the average
node degree.)

2. Find the eigenvectors X1, ..., Xx € R corresponding to the K largest eigenvalues of L.
Form X = [X1, ..., Xx] € RV*¥ by putting the eigenvectors into the columns.

3. Form the matrix X* € RY*K from X by normalizing each of X’s rows to have
unit length. That is, project each row of X onto the unit sphere of RX (X35 =

Xii /(32 X512,

4. Treat each row of X* as a point in RXE and run k-means with K clusters. This creates K
non-overlapping sets V1, ..., Vg whose union is V.

5. Output V1, ..., Vi. Node ¢ is assigned to cluster r if the i’th row of X* is assigned to V.

This paper will refer to “standard spectral clustering” as the above algorithm with L replacing L.

These spectral algorithms have two main steps: 1) find the principal eigenspace of the (regularized)
graph Laplacian; 2) determine the clusters in the low dimensional eigenspace. Later, we will study
RSC under the Degree-Corrected Stochastic Blockmodel and show rigorously how regularization
helps to maintain cluster information in step (a) and why normalizing the rows of X helps in step
(b). From now on, we use X, and X} instead of X and X* to emphasize that they are related to
L..Let X! and [X*]* denote the ’th row of X, and X*.

The next section introduces the Degree-Corrected Stochastic Blockmodel and its matrix formulation.



3 The Degree-Corrected Stochastic Blockmodel (DC-SBM)

In the Stochastic Blockmodel (SBM), each node belongs to one of K blocks. Each edge corresponds
to an independent Bernoulli random variable where the probability of an edge between any two
nodes depends only on the block memberships of the two nodes (Holland and Leinhardt [9]). The
formal definition is as follows.

Definition 3.1. For a node set {1,2,....N}, let z : {1,2,...., N} — {1,2,..., K'} partition the N
nodes into K blocks. So, z; equals the block membership for node i. Let B be a K x K matrix
where By, € [0,1] for all a,b. Then under the SBM, the probability of an edge between i and j is
Pij = Pj; =B, foranyi,j =1,2,...,n. Given z, all edges are independent.

One limitation of the SBM is that it presumes all nodes within the same block have the same expected
degree. The Degree-Corrected Stochastic Blockmodel (DC-SBM) (Karrer and Newman [10]) is
a generalization of the SBM that adds an additional set of parameters (6; > 0 for each node %)
that control the node degrees. Let B be a K x K matrix where B,;, > 0 for all a,b. Then the
probability of an edge between node i and node j is 6;0,B.,.,, where 0,0;B. .. € [0, 1] for any
i,7 =1,2,...,n. Parameters 6; are arbitrary to within a multiplicative constant that is absorbed into
B. To make it identifiable, Karrer and Newman [10] suggest imposing the constraint that, within
each block, the summation of 6;’s is 1. That is, ), 6,0, , = 1 for any block label r. Under
this constraint, B has explicit meaning: If s # t, By represents the expected number of links
between block s and block ¢ and if s = ¢, Byt is twice the expected number of links within block s.
Throughout the paper, we assume that B is positive definite.

Under the DC-SBM, define «# = EA. This matrix can be expressed as a product of the matrices,
o =0ZBzTe,

where (1) © € RY*¥ is a diagonal matrix whose ii’th element is §; and (2) Z € {0, 1}V*¥ is the
membership matrix with Z;; = 1 if and only if node ¢ belongs to block ¢ (i.e. z; = ?).

3.1 Population Analysis

Under the DC-SBM, if the partition is identifiable, then one should be able to determine the partition
from o7. This section shows that with the population adjacency matrix ./ and a proper regularizer
7, RSC perfectly reconstructs the block partition.

Define the diagonal matrix & to contain the expected node degrees, ¥;; = Zj o;; and define
Py = P + 71 where T > 0 is the regularizer. Then, define the population graph Laplacian . and
the population version of regularized graph Laplacian .%,, both elements of R *¥ | in the following
way:

L =9 2gg=1/2 L =97V 2 P72,

Define Dp € RE*K as a diagonal matrix whose (s, s)’th element is [Dp]ss = > Bst. A couple
lines of algebra shows that [Dp]ss = Wi is the total expected degrees of nodes from block s and
that &;; = 6;[Dp].,.,- Using these quantities, the next Lemma gives an explicit form for .%; as a
product of the parameter matrices.

Lemma 3.2. (Explicit form for Z.) Under the DC-SBM with K blocks with parameters {B, Z,©},
define 07 as:
I B
t Hl-i-T/WZL n Z@ii-i-T.
Let ©, € R™ " be a diagonal matrix whose ii’th entry is 0]. Define By, = D;/ZBD];UQ, then
L. can be written

L =9 g9 —027B,7TO%.

Recall that &7 = ©ZBZ7O. Lemma demonstrates that .Z; has a similarly simple form that
separates the block-related information (By) and node specific information (0©,). Notice that if

r=0,then®, =0Oand ¥ = P 2/P~ % = O3 ZB;ZTO%. The next lemma shows that %,
has rank K and describes how its eigen-decomposition can be expressed in terms of Z and O.



Lemma 3.3. (Eigen-decomposition for £.) Under the DC-SBM with K blocks and parameters
{B, Z,0}, £\ has K positive eigenvalues. The remaining N — K eigenvalues are zero. Denote
the K positive eigenvalues of £, as \y > Ao > ... > Ag > O and let . € RNXK contain the
eigenvector corresponding to \; in its i'th column. Define 27 to be the row-normalized version of
X, similar to X* as defined in the RSC algorithm in Section 2. Then, there exists an orthogonal
matrix U € RE xK depending on T, such that

1. 2 =022(270,2)"/U

2. 27 =2U, Z; # Z; & Z;U # Z;U, where Z; denote the i’th row of the membership
matrix Z.

This lemma provides four useful facts about the matrices 27 and 27*. First, if two nodes 4 and j
belong to the same block, then the corresponding rows of .2~ (denoted as 27" and 27) both point
in the same direction, but with different lengths: || 27}||2 = (%)1/ 2, Second, if two nodes
i and j belong to different blocks, then 2" and 27 are orthogonal to each other. Third, if z; = Zj
then after projecting these points onto the sphere as in 2", the rows are equal: [2*]" = [2*] =
U.,. Finally, if z; # z;, then the rows are perpendicular, [ 2 *]* L [£*]’. Figure 1 illustrates the
geometry of 2 and 2°* when there are three underlying blocks. Notice that running k-means on

the rows of 2" (in right panel of Figure 1) will return perfect clusters.

Note that if © were the identity matrix, then the left panel in Figure 1 would look like the right panel
in Figure 1; without degree heterogeneity, there would be no star shape and no need for a projection
step. This suggests that the star shaped figure often observed in data analysis stems from the degree
heterogeneity in the network.

Figure 1: In this numerical example, 2/ comes from the DC-SBM with three blocks. Each point
corresponds to one row of the matrix .27 (in left panel) or 2°* (in right panel). The different colors
correspond to three different blocks. The hollow circle is the origin. Without normalization (left
panel), the nodes with same block membership share the same direction in the projected space.
After normalization (right panel), nodes with same block membership share the same position in
the projected space.

4 Regularized Spectral Clustering with the Degree Corrected model

This section bounds the mis-clustering rate of Regularized Spectral Clustering under the DC-SBM.
The section proceeds as follows: Theorem @.1| shows that L, is close to .. Theorem [4.2] shows
that X, is close to 2 and that X is close to .2*. Finally, Theorem[4.4]shows that the output from
RSC with L is close to the true partition in the DC-SBM (using Lemma [3.3).

Theorem 4.1. (Concentration of the regularized Graph Laplacian) Let G be a random graph, with
independent edges and pr(v; ~ vj) = p;j. Let § be the minimum expected degree of G, that is
0 = min; 9;;. Forany e > 0, if 6 + 7 > 3In N + 31un(4/¢), then with probability at least 1 — e,

3In(4N/e)

L. — % <4
I <4/ =552

)



Remark: This theorem builds on the results of Chung and Radcliffe [[14] and Chaudhuri et al. [1]
which give a seemingly similar bound on ||L — .#|| and || D' A — 2 1.o7||. However, the previous
papers require that § > c¢In N, where ¢ is some constant. This assumption is not satisfied in a large
proportion of sparse empirical networks with heterogeneous degrees. In fact, the regularized graph
Laplacian is most interesting when this condition fails, i.e. when there are several nodes with very
low degrees. Theorem [4.1]only assumes that § + 7 > 3In N + 31n(4/¢). This is the fundamental
reason that RSC works for networks containing some nodes with extremely small degrees. It shows
that, by introducing a proper regularizer 7, || L, —.%; || can be well bounded, even with ¢ very small.
Later we will show that a suitable choice of 7 is the average degree.

The next theorem bounds the difference between the empirical and population eigenvectors (and
their row normalized versions) in terms of the Frobenius norm.

Theorem 4.2. Let A be the adjacency matrix generated from the DC-SBM with K blocks and pa-
rameters {B,Z,0}. Let \y > X > ... > Ag > 0 be the only K positive eigenvalues of %;.
Let X, and 2, € RN*X contain the top K eigenvectors of L, and £, respectively. Define
m = mini/\{/;min{HXng, || 2|2} } as the length of the shortest row in X, and Z.. Let X* and
2F € RN*E be the row normalized versions of X, and -, as defined in step 3 of the RSC
algorithm.

For any € > 0 and sufficiently large N, assume that
(a) K In(4N/e) < 1

MK, () 6+7>3InN +31In(4/¢),

o+7 T 8/3
then with probability at least 1 — ¢, the following holds,
1 [KIn(4N/e) 1 K 1n(4N/e)
X, —Z:0||lp <co—\|————=, and || X:-Z0||r < .2
H I < ooy St and (X7 =270l < amy [ =2 )

The proof of Theorem can be found in the supplementary materials.

Next we use Theorem [4.2] to derive a bound on the mis-clustering rate of RSC. To define “mis-
clustered”, recall that RSC applies the k-means algorithm to the rows of X*, where each row is a
point in RXE. Each row is assigned to one cluster, and each of these clusters has a centroid from

k-means. Define C1,...,C,, € R¥ such that C; is the centroid corresponding to the ¢’th row of
X*. Similarly, run k-means on the rows of the population eigenvector matrix 2 and define the
population centroids Cy, ...,C, € RX. In essence, we consider node i correctly clustered if C; is

closer to C; than it is to any other C; for all j with Z; # Z;.

The definition is complicated by the fact that, if any of the A\,..., Ak are equal, then only the
subspace spanned by their eigenvectors is identifiable. Similarly, if any of those eigenvalues are
close together, then the estimation results for the individual eigenvectors are much worse that for the
estimation results for the subspace that they span. Because clustering only requires estimation of the
correct subspace, our definition of correctly clustered is amended with the rotation 0T ¢ RExK,
the matrix which minimizes || X*&7T — 2 *||r. This is referred to as the orthogonal Procrustes
problem and [[15]] shows how the singular value decomposition gives the solution.

Definition 4.3. [f C;07 is closer to C; than it is to any other C; for j with Z; # Z, then we say
that node i is correctly clustered. Define the set of mis-clustered nodes:

The next theorem bounds the mis-clustering rate |.#|/N.

Theorem 4.4. (Main Theorem) Suppose A € RN*N is an adjacency matrix of a graph G gener-
ated from the DC-SBM with K blocks and parameters {B,Z,0©}. Let \y > Ao > ... > Ag > 0
be the K positive eigenvalues of ;. Define #, the set of mis-clustered nodes, as in Definition
Let § be the minimum expected degree of G. For any € > 0 and sufficiently large N, assume (a)
and (b) as in Theorem Then with probability at least 1 — €, the mis-clustering rate of RSC with
regularization constant T is bounded,

KIn(N/e)

N<cg————5.
MN < 7z 1 A,

4)



Remark 1 (Choice of 7): The quality of the bound in Theorem depends on 7 through three
terms: (6 + 7), Ak, and m. Setting T equal to the average node degree balances these terms. In
essence, if 7 is too small, there is insufficient regularization. Specifically, if the minimum expected
degree = O(In V), then we need 7 > ¢(e) In N to have enough regularization to satisfy condition
(b) on § + 7. Alternatively, if 7 is too large, it washes out significant eigenvalues.

To see that 7 should not be too large, note that
C=(270.2)"?BL(270,2)'? e RF*K (5)

has the same eigenvalues as the largest K eigenvalues of %, (see supplementary materials for de-
tails). The matrix Z7'©. Z is diagonal and the (s, s)’th element is the summation of 7 within block
s. f EM = w(NInN) where M = ). D, is the sum of the node degrees, then 7 = w(M/N)

sends the smallest diagonal entry of Z7'©., Z to 0, sending \ ¢, the smallest eigenvalue of C, to zero.

The trade-off between these two suggests that a proper range of 7 is (« E—Il\% B %), where 0 < o < 3
are two constants. Keeping 7 within this range guarantees that A is lower bounded by some
constant depending only on K. In simulations, we find that 7 = M/N (i.e. the average node
degree) provides good results. The theoretical results only suggest that this is the correct rate. So,
one could adjust this by a multiplicative constant. Our simulations suggest that the results are not
sensitive to such adjustments.

Remark 2 (Thresholding m): Mahoney [11] (and references therein) shows how the leverage
scores of A and L are informative for both data analysis and algorithmic stability. For L, the leverage
score of node i is || X?||3, the length of the ith row of the matrix containing the top K eigenvectors.
Theorem[d.4]is the first result that explicitly relates the leverage scores to the statistical performance
of spectral clustering. Recall that m? is the minimum of the squared row lengths in .2 and X,
that is the minimum leverage score in both .%; and L. This appears in the denominator of (4). The

. .. ; 9T . .
leverage scores in %, have an explicit form ||.27%||2 = ——=——. So, if node 7 has small expected
T 112 } 075
KA el Rt

degree, then 07 is small, rendering ||.27%||2 small. This can deteriorate the bound in Theorem 4.4
The problem arises from projecting X* onto the unit sphere for a node i with small leverage; it
amplifies a noisy measurement. Motivated by this intuition, the next corollary focuses on the high
leverage nodes. More specifically, let m* denote the threshold. Define S to be a subset of nodes
whose leverage scores in %, and X, || 27%|| and || X || exceed the threshold m*:

S={i:[|27]| = m" [IX7]| = m"}.

Then by applying k-means on the set of vectors {[X*]?,i € S}, we cluster these nodes. The
following corollary bounds the mis-clustering rate on S.

Corollary 4.5. Let Ny = |S| denote the number of nodes in S and define .#1 = M NS as the set of
mis-clustered nodes restricted in S. With the same settings and assumptions as in Theorem let

v > 0 be a constant and set m* = v/~ N. If N/N1 = O(1), then by applying k-means on the set of
vectors {[X*]",i € S}, we have with probability at least 1 — €, there exist constant co independent
of €, such that

K In(Ny/e)
M| /N1 < cg———-. 6
|21/ 1f6272(5+7_)/\%( (6)
In the main theorem (Theorem , the denominator of the upper bound contains m?. Since we do
not make a minimum degree assumption, this value potentially approaches zero, making the bound
useless. Corollary replaces Nm? with the constant 2, providing a superior bound when there
are several small leverage scores.

If Mg (the K'th largest eigenvalue of .%;) is bounded below by some constant and 7 = w(ln N),
then Corollary [4.5)implies that |.#;|/Ny = 0,(1). The above thresholding procedure only clusters
the nodes in S. To cluster all of the nodes, define the thresholded RSC (t-RSC) as follows:

(a) Follow step (1), (2), and (3) of RSC as in section 2.

(b) Apply k-means with K clusters on the set S = {i,||X%|| > ~v/v/N} and assign each of
them to one of V7, ..., V. Let C1, ..., Cx denote the K centroids given by k-means.

(c) Foreachnode i ¢ S, find the centroid C;s such that ||[X}]" — Cs||2 = mini<i<x ||[X7]F —
Ct||2. Assign node i to V. Output V7, ... V.



Remark 3 (Applying to SC): Theorem[4.4]can be easily applied to the standard SC algorithm under
both the SBM and the DC-SBM by setting 7 = 0. In this setting, Theorem [4.4] improves upon the
previous results for spectral clustering.

Define the four parameter Stochastic Blockmodel SBM (p, r, s, K) as follows: p is the probability
of an edge occurring between two nodes from the same block, 7 is the probability of an out-block
linkage, s is the number of nodes within each block, and K is the number of blocks.

Because the SBM lacks degree heterogeneity within blocks, the rows of 2~ within the same block
already share the same length. So, it is not necessary to project X *’s to the unit sphere. Under the
four parameter model, A\x = (K[r/(p — r)] + 1)~ (Rohe et al. [7]). Using Theorem with p
and r fixed and p > r, and applying k-means to the rows of X, we have

KzlnN>

N )

/v =0, (

If K = o(y/ 2% ). then [.#|/N — 0 in probability. This improves the previous results that required

K =0o(N 1 3) (Rohe et al. [7]). Moreover, it makes the results for spectral clustering comparable to
the results for the MLE in Choi et al. [[16].

S Simulation and Analysis of Political Blogs

This section compares five different methods of spectral clustering. Experiment 1 generates net-
works from the DC-SBM with a power-law degree distribution. Experiment 2 generates networks
from the standard SBM. Finally, the benefits of regularization are illustrated on an empirical network
from the political blogosphere during the 2004 presidential election (Adamic and Glance [17]).

The simulations compare (1) standard spectral clustering (SC), (2) RSC as defined in section 2, (3)
RSC without projecting X onto unit sphere (RSC_wp), (4) regularized SC with thresholding (t-
RSC), and (5) spectral clustering with perturbation (SCP) (Amini et al. [2]) which applies SC to the
perturbed adjacency matrix A, = A+ all1?. In addition, experiment 2 compares the performance
of RSC on the subset of nodes with high leverage scores (RSC on S) with the other 5 methods. We
set 7 = M /N, threshold parameter v = 1, and a = M /N? except otherwise specified.

Experiment 1. This experiment examines how degree heterogeneity affects the performance of the
spectral clustering algorithms. The © parameters (from the DC-SBM) are drawn from the power law
distribution with lower bound x,,,;, = 1 and shape parameter 5 € {2,2.25,2.5,2.75,3,3.25,3.5}.
A smaller 3 indicates to greater degree heterogeneity. For each fixed 5, thirty networks are sampled.
In each sample, K = 3 and each block contains 300 nodes (N = 900). Define the signal to noise
ratio to be the expected number of in-block edges divided by the expected number of out-block
edges. Throughout the simulations, the SNR is set to three and the expected average degree is set to
eight.

The left panel of Figure 2 plots /3 against the misclustering rate for SC, RSC, RSC_wp, t-RSC, SCP
and RSC on S. Each point is the average of 30 sampled networks. Each line represents one method.
If a method assigns more than 95% of the nodes into one block, then we consider all nodes to be
misclustered. The experiment shows that (1) if the degrees are more heterogeneous (5 < 3.5),
then regularization improves the performance of the algorithms; (2) if 8 < 3, then RSC and t-
RSC outperform RSC_wp and SCP, verifying that the normalization step helps when the degrees are
highly heterogeneous; and, finally, (3) uniformly across the setting of 3, it is easier to cluster nodes
with high leverage scores.

Experiment 2. This experiment compares SC, RSC, RSC_wp, t-RSC and SCP under the SBM with
no degree heterogeneity. Each simulation has K = 3 blocks and N = 1500 nodes. As in the
previous experiment, SNR is set to three. In this experiment, the average degree has three different
settings: 10, 21, 30. For each setting, the results are averaged over 50 samples of the network.

The right panel of Figure 2 shows the misclustering rate of SC and RSC for the three different
values of the average degree. SCP, RSC_wp, t-RSC perform similarly to RSC, demonstrating that
under the standard SBM (i.e. without degree heterogeneity) all spectral clustering methods perform
comparably. The one exception is that under the sparsest model, SC is less stable than the other
methods.
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Figure 2: Left Panel: Comparison of Performance for SC, RSC, RSC_wp, t-RSC, SCP and (RSC
on S) under different degree heterogeneity. Smaller 5 corresponds to greater degree heterogeneity.
Right Panel: Comparison of Performance for SC and RSC under SBM with different sparsity.

Analysis of Blog Network. This empirical network is comprised of political blogs during the 2004
US presidential election (Adamic and Glance [17]). Each blog has a known label as liberal or
conservative. As in Karrer and Newman [10], we symmetrize the network and consider only the
largest connected component of 1222 nodes. The average degree of the network is roughly 15. We
apply RSC to the data set with 7 ranging from 0 to 30. In the case where 7 = 0, it is standard
Spectral Clustering. SC assigns 1144 out of 1222 nodes to the same block, failing to detect the
ideological partition. RSC detects the partition, and its performance is insensitive to the 7. With
T € [1,30], RSC misclusters (80 & 2) nodes out of 1222.

If RSC is applied to the 90% of nodes with the largest leverage scores (i.e. excluding the nodes
with the smallest leverage scores), then the misclustering rate among these high leverage nodes is
44/1100, which is almost 50% lower. This illustrates how the leverage score corresponding to a
node can gauge the strength of the clustering evidence for that node relative to the other nodes.

We tried to compare these results to the regularized algorithm in [1]. However, because there are
several very small degree nodes in this data, the values computed in step 4 of the algorithm in [1]]
sometimes take negative values. Then, step 5 (b) cannot be performed.

6 Discussion

In this paper, we give theoretical, simulation, and empirical results that demonstrate how a simple
adjustment to the standard spectral clustering algorithm can give dramatically better results for net-
works with heterogeneous degrees. Our theoretical results add to the current results by studying the
regularization step in a more canonical version of the spectral clustering algorithm. Moreover, our
main results require no assumptions on the minimum node degree. This is crucial because it allows
us to study situations where several nodes have small leverage scores; in these situations, regular-
ization is most beneficial. Finally, our results demonstrate that choosing a tuning parameter close to
the average degree provides a balance between several competing objectives.
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