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Abstract

Learning from prior tasks and transferring that experience to improve future per-
formance is critical for building lifelong learning agents. Although results in su-
pervised and reinforcement learning show that transfer may significantly improve
the learning performance, most of the literature on transfer is focused on batch
learning tasks. In this paper we study the problem of sequential transfer in online
learning, notably in the multi—armed bandit framework, where the objective is to
minimize the total regret over a sequence of tasks by transferring knowledge from
prior tasks. We introduce a novel bandit algorithm based on a method-of-moments
approach for estimating the possible tasks and derive regret bounds for it.

1 Introduction

Learning from prior tasks and transferring that experience to improve future performance is a key
aspect of intelligence, and is critical for building lifelong learning agents. Recently, multi-task
and transfer learning received much attention in the supervised and reinforcement learning (RL)
setting with both empirical and theoretical encouraging results (see recent surveys by Pan and Yang,
2010; Lazaric, 2011). Most of these works focused on scenarios where the tasks are batch learning
problems, in which a training set is directly provided to the learner. On the other hand, the online
learning setting (Cesa-Bianchi and Lugosi, 2006), where the learner is presented with samples in
a sequential fashion, has been rarely considered (see Mann and Choe (2012); Taylor (2009) for
examples in RL and Sec. E of Azar et al. (2013) for a discussion on related settings).

The multi—armed bandit (MAB) (Robbins, 1952) is a simple yet powerful framework formalizing
the online learning with partial feedback problem, which encompasses a large number of applica-
tions, such as clinical trials, web advertisements and adaptive routing. In this paper we take a step
towards understanding and providing formal bounds on transfer in stochastic MABs. We focus on a
sequential transfer scenario where an (online) learner is acting in a series of tasks drawn from a sta-
tionary distribution over a finite set of MABs. The learning problem, within each task, can be seen
as a standard MAB problem with a fixed number of steps. Prior to learning, the model parameters
of each bandit problem are not known to the learner, nor does it know the distribution probability
over the bandit problems. Also, we assume that the learner is not provided with the identity of the
tasks throughout the learning. To act efficiently in this setting, it is crucial to define a mechanism
for transferring knowledge across tasks. In fact, the learner may encounter the same bandit prob-
lem over and over throughout the learning, and an efficient algorithm should be able to leverage
the knowledge obtained in previous tasks, when it is presented with the same problem again. To
address this problem one can transfer the estimates of all the possible models from prior tasks to
the current one. Once these models are accurately estimated, we show that an extension of the UCB
algorithm (Auer et al., 2002) is able to efficiently exploit this prior knowledge and reduce the regret
through tasks (Sec. 3).
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The main contributions of this paper are two-fold: (i) we introduce the tUCB algorithm which trans-
fers the model estimates across the tasks and uses this knowledge to achieve a better performance
than UCB. We also prove that the new algorithm is guaranteed to perform as well as UCB in early
episodes, thus avoiding any negative transfer effect, and then to approach the performance of the
ideal case when the models are all known in advance (Sec. 4.4). (ii) To estimate the models we rely
on a new variant of method of moments, robust tensor power method (RTP) (Anandkumar et al.,
2013, 2012b) and extend it to the multi-task bandit setting' :we prove that RTP provides a consistent
estimate of the means of all arms (for all models) as long as they are pulled at least three times
per task and prove sample complexity bounds for it (Sec. 4.2). Finally, we report some preliminary
results on synthetic data confirming the theoretical findings (Sec. 5). An extended version of this
paper containing proofs and additional comments is available in (Azar et al., 2013).

2 Preliminaries

We consider a stochastic MAB problem defined by a set of arms A = {1,..., K}, where each arm
i € A is characterized by a distribution v; and the samples (rewards) observed from each arm are
independent and identically distributed. We focus on the setting where there exists a set of models
© ={0 = (v1,...,vk)},|©| = m, which contains all the possible bandit problems. We denote the
mean of an arm 4, the best arm, and the best value of a model § € O respectively by p;(6), i.(6),
11+(0). We define the arm gap of an arm ¢ for a model 0 as A;(0) = u.(0) — p;(0), while the model
gap for an arm ¢ between two models 0 and ¢’ is defined as T';(0,6") = |u;(0) — p;(6")]. We also
assume that arm rewards are bounded in [0, 1]. We consider the sequential transfer setting where at
each episode j the learner interacts with a task 67, drawn from a distribution p over ©, for n steps.
The objective is to minimize the (pseudo-)regret R ; over J episodes measured as the difference
between the rewards obtained by pulling i, (67) and those achieved by the learner:

J
J=ZR;=ZZT7A (1)
7j=1 J=1i#*

where TZJ », 18 the number of pulls to arm 7 after n steps of episode j. We also introduce some
tensor notation. Let X € RX be a random realization of the rewards of all arms from a ran-
dom model. All the realizations are i.i.d. conditional on a model # and E[X|0 = 0] = M(Q),
where the i-th component of x(#) € R is [u(0)]; = pi(6). Given realizations X', X? and
X3, we define the second moment matrix M, = E[X' ® X?] such that [M]; ; = E[X%X?] and
the third moment tensor Mz = E[X' ® X* ® X°] such that [M,]; ;; = E[X}X3X}]. Since
the realizations are conditionally independent, we have that, for every 8 € ©, E[X e X 2|9] =
E[X!]0] ® E[X?2|0] = u(f) ® p(0) and this allows us to rewrite the second and third moments as
My =", p(0)p(0)®2, M3 =Y, p(0)1(6)®3, where v¥P = v ® v ® - - - v is the p-th tensor power.
Let A be a 3" order member of the tensor product of the Euclidean space RX (as Ms), then we de-
fine the multilinear map as follows. For a set of three matrices {V; € R¥ *MYi<i<s , the (i1, 49,143)
entry in the 3-way array representation of A(Vy, Va, V3) € R™>™*™ s [A(Vy, Va, V3)li; inis =
Do1<gs ogs<n Aingans Vilji i [Valja,ia [Vajs,i5- We also use different norms: the Euclidean norm
|| - || the Frobenius norm || - || 7; the matrix max-norm || A||max = max;; |[A];;]-

3 Multi-arm Bandit with Finite Models

Before consi.dering th? Fransfer problem, we Require: Set of models ©, number of steps n
show that a simple variation to UCB allows us fort=1,...,ndo

to effectively exploit the knowledge of © and Build ©; = {0 : V4, |1i(0) — fuie] < eis}
obtain a significant reduction in the regret. The Select 0, = arg maxgceo, fix(0)

mUCB (model-UCB) algorithm in Fig. 1 takes Pull arm I; = 4, (6:)

as input a set of models © including the current Observe sample z 7, and update
(unknown) model 6. At each step ¢, the algo- end for

rithm computes a subset ©; C © containing
only the models whose means y; () are com- ~
patible with the current estimates fi; ¢+ of the means y;(0) of the current model, obtained averaging

Figure 1: The mUCB algorithm.

"Notice that estimating the models involves solving a latent variable model estimation problem, for which
RTP is the state-of-the-art.



T; + pulls, and their uncertainty €;; (see Eq. 2 for an explicit definition of this term). Notice that it
is enough that one arm does not satisfy the compatibility condition to discard a model . Among
all the models in ©,, mUCB first selects the model with the largest optimal value and then it pulls
its corresponding optimal arm. This choice is coherent with the optimism in the face of uncertainty
principle used in UCB-based algorithms, since mUCB always pulls the optimal arm corresponding
to the optimistic model compatible with the current estimates [, ;. We show that mUCB incurs a
regret which is never worse than UCB and it is often significantly smaller.

We denote the set of arms which are optimal for at least a model in a set ©' as A,(©") = {i € A :
30 € © : 4,.(0) = i}. The set of models for which the arms in .A’ are optimal is ©(A') = {# € O :
3 € A’ :4.(0) = i}. The set of optimistic models for a given model 6 is O = {6 € © : . (0) >
1+ (0)}, and their corresponding optimal arms A, = A,(© ). The following theorem bounds the
expected regret (similar bounds hold in high probability). The lemmas and proofs (using standard
tools from the bandit literature) are available in Sec. B of Azar et al. (2013).

Theorem 1. If mUCB is run with 6 = 1/n, a set of m models © such that the 0 €O and

i = \/log(mn2/6)/(2T; 1), @)
where T; ;1 is the number of pulls to arm i at the beginning of step t, then its expected regret is
0)log (mn 2log (mn3)
| <K+ K+ —, 3
ZzEAJr I‘ﬂlnge@Jr ,Ti(0, 9 2= Ziev‘br mingeo, ; T;(6,0) )

where A, = A.(0©) is the set of arms which are optimal for at least one optimistic model © 1 and
Oy, ={0 € ©4 :i.(0) = i} is the set of optimistic models for which i is the optimal arm.

Remark (comparison to UCB). The UCB algorithm incurs a regret

E[R,(UCB) <O( Y lféﬁ) =0 (Kmxllganw))

We see that mUCB displays two major improvements. The regret in Eq. 3 can be written as

E[R,,(mUCB)] < 0( 3

logn logn
— ) <0 — ).
i€Ar mingeo, , I'i(0, 9)) - (|A+‘ min; mingece,, , I's(6, 9))

This result suggests that mUCB tends to discard all the models in ©, from the most optimistic
down to the actual model 6 which, with high-probability, is never discarded. As a result, even if
other models are still in O, the optimal arm of 6 is pulled until the end. This significantly reduces
the set of arms which are actually pulled by mUCB and the previous bound only depends on the
number of arms in A, which is | A4 | < |A.(O)| < K. Furthermore, for all arms 4, the minimum
gap mingee, , [';(0,0) is guaranteed to be larger than the arm gap A;(f) (see Lem. 4 in Sec. B
of Azar et al. (2013)), thus further improving the performance of mUCB w.r.t. UCB.

4 Online Transfer with Unknown Models

We now consider the case when the set of models is unknown and the regret is cumulated over
multiple tasks drawn from p (Eq. 1). We introduce tUCB (transfer-UCB) which transfers estimates
of ©, whose accuracy is improved through episodes using a method-of-moments approach.

4.1 The transfer-UCB Bandit Algorithm

Fig. 2 outlines the structure of our online transfer bandit algorithm tUCB (transfer-UCB). The al-
gorithm uses two sub-algorithms, the bandit algorithm umUCB (uncertain model-UCB), whose ob-
jective is to minimize the regret at each episode, and RTP (robust tensor power method) which at
each episode j computes an estimate {/i}(f)} of the arm means of all the models. The bandit al-
gorithm umUCB in Fig. 3 is an extension of the mUCB algorithm. It first computes a set of models
©7 whose means fi;(6) are compatible with the current estimates fi; ;. However, unlike the case
where the exact models are available, here the models themselves are estimated and the uncertainty
¢’ in their means (provided as input to umUCB) is taken into account in the definition of ©7. Once



Require: set of models ©7, num. steps
Require: number of arms K, number of Pull each arm three times
models m, constant C'(6). fort=3K +1,...,ndo
Iniltialize estimated mode}]s }91 = Build ©7 = {6 : Vi, | () — ﬂi (| <eir+el}
t{(ﬁ'i (.0)}1’9ésampljsd§ € R Compute B (i;0) = min { (i (0) +&7), (fuit +ei)}
Rjun R :1.11.n7UCB(@j n) Compute ! = arg maxeeej max; B (i;6)
Run @' = RTP(R, m, K, j, §) Pull arm [; = arg max; BY (i;67)
end for Observe sample R(I¢, Ti,t) = x5, and update
end for
return Samples R

Figure 2: The tUCB algorithm. Figure 3: The umUCB algorithm.

Require: samples R € R?*"™, number of models m and arms K, episode j
Estimate the second and third moment M> and Ms using the reward samples from R (Eq 4)
Compute DeR™ ™ and U € RK xm (m largest eigenvalues and elgenvectors of Mz resp.)
Compute the whitening mapping W = UD~'/2 and the tensor T = M3(W W W)
Plug 7 in Alg. 1 of Anandkumar et al. (2012b) and compute eigen-vectors/values {5(6)}, {A(6)}
Compute 727 (6) = N(0)(WT)T5(0) forall 6 € ©
return O/ = {77 (9) : 0 € B}

Figure 4: The robust tensor power (RTP) method (Anandkumar et al., 2012b).

the active set is computed, the algorithm computes an upper-confidence bound on the value of each
arm ¢ for each model 6 and returns the best arm for the most optimistic model. Unlike in mUCB,
due to the uncertainty over the model estimates, a model § might have more than one optimal arm,
and an upper-confidence bound on the mean of the arms fi;(#) + &7 is used together with the upper-
confidence bound fi; ¢+ + €;,¢, which is directly derived from the samples observed so far from arm
1. This guarantees that the B-values are always consistent with the samples generated from the ac-
tual model 6. Once umUCB terminates, RTP (Fig. 4) updates the estimates of the model means
@ (0) = {il(0)}; € RE using the samples obtained from each arm i. At the beginning of each task
umUCB pulls all the arms 3 times, since RTP needs at least 3 samples from each arm to accurately
estimate the 2" and 3¢ moments (Anandkumar et al., 2012b). More precisely, RTP uses all the
reward samples generated up to episode j to estimate the 2™ and 3™ moments (see Sec. 2) as

— ‘7 J o _ — o Joo_ _ _
My =3~} 21:1 Hp @ fgp, and Mz =j! 21:1 P @ gy @ gy, “)

where the vectors Jiy;, fiy;, s, € RE are obtained by dividing the Tl », samples observed from arm
i in episode [ in three batches and taking their average (e.g., [fi1;]; is the average of the first i{n /3
samples).? Since 7i;, iy, fi; are independent estimates of ('), Mg and M3 are consistent esti-
mates of the second and third moments M5 and Ms. RTP relies on the fact that the model means
1(0) can be recovered from the spectral decomposition of the symmetric tensor 7' = M3z (W, W, W),
where W is a whitening matrix for Mo, ie., Ma(W, W) = I™*™ (see Sec. 2 for the defini-
tion of the mapping A(V1, V2, V3)). Anandkumar et al. (2012b) (Thm. 4.3) have shown that un-
der some mild assumption (see later Assumption 1) the model means {x(6)}, can be obtained as
w(@) = A(0)Bv(6), where (A(f),v(0)) is a pair of eigenvector/eigenvalue for the tensor 7" and

B := (WT)* .Thus the RTP algorithm estimates the eigenvectors v(@) and the eigenvalues X(G), of
the m x m x m tensor T := Mz(W, W, W).3 Once 9(0) and A(6) are computed, the estimated
mean vector 71/ (6) is obtained by the inverse transformation 17 () = X(F))B\ﬁ(ﬁ) where B is the
pseudo inverse of WT(for a detailed description of RTP algorithm see Anandkumar et al., 2012b).

*Notice that 1/3([,ull] + [Aali + [By)i) = ,uZ n» the empirical mean of arm 4 at the end of episode [.

xThe matrix W € RE*™ is such that MQ(W W) =I"%" je., W is the whitening matrix of Ms. In
general W is not unique. Here, we choose W = UD '/, where D € R™ ™ isa diagonal matrix consisting
of the m largest eigenvalues of Mg and U € RE*™ has the corresponding eigenvectors as its columns.



4.2 Sample Complexity of the Robust Tensor Power Method

umUCB requires as input el i.e., the uncertainty of the model estimates. Therefore we need sam-
ple complexity bounds on the accuracy of {/i;(0)} computed by RTP. The performance of RTP is
directly affected by the error of the estimates ]\//[\2 and ]\/4\3 w.r.t. the true moments. In Thm. 2 we
prove that, as the number of tasks j grows, this error rapidly decreases with the rate of \/m . This
result provides us with an upper-bound on the error £/ needed for building the confidence intervals
in umUCB. The following definition and assumption are required for our result.

Definition 1. Let 3y, = {01,09,...,0.,} be the set of m largest eigenvalues of the matrix M.
Define omin = Milges,,, 0, Omax = MaXgex,,, 0 aNd Apax 1= Maxy A(0). Define the minimum
gap between the distinct eigenvalues of My as ', := ming, 2, (|o; — oy)).

Assumption 1. The mean vectors {1(6) }o are linear independent and p(8) > 0 for all § € ©.

We now state our main result which is in the form of a high probability bound on the estimation
error of mean reward vector of every model § € ©.

Theorem 2. Pick § € (0,1). Let C(©) := C3Amax\/Omax/To i, (Omax/Lo + 1/0min + 1/0max)s
where C3 > 0 is a universal constant. Then under Assumption 1 there exist constants Cy > 0 and a
permutation T on O, such that for all 6 € ©, we have w.p. 1 — 9

. 5 6
[16(0) = B (m(O)| < & & C(O)KZom?\[REFEL after j > e Bms [ (5)

min " min

Remark (computation of C(0)). As illustrated in Fig. 3, umUCB relies on the estimates i/ (§) and
on their accuracy 7. Although the bound reported in Thm. 2 provides an upper confidence bound
on the error of the estimates, it contains terms which are not computable in general (e.g., o yin). In
practice, C'(©) should be considered as a parameter of the algorithm.This is not dissimilar from the
parameter usually introduced in the definition of €; ; in front of the square-root term in UCB.

4.3 Regret Analysis of umUCB

We now analyze the regret of umUCB when an estimated set of models ©7 is provided as input. At
episode j, for each model 6 we define the set of non-dominated arms (i.e., potentially optimal arms)

as AL(0) = {i € A: P, 00 (0) + &7 < jil,(9) — &/}, Among the non-dominated arms, when the
actual model is 67, the set of optimistic arms is A% (6;67) = {i € AL(0) : 4] (0) + &7 > p*(67)}.
As a result, the set of optimistic models is ©% (67) = {6 € © : A’ (6;67) # 0}. In some cases,

because of the uncertainty in the model estimates, unlike in mUCB, not all the models 6 # 67 can be
discarded, not even at the end of a very long episode. Among the optimistic models, the set of models

that cannot be discarded is defined as éi_ (07) ={0 ¢ @ﬂ_ (67) :Vi € .Ai_ (0;67), |7 (0) — i (67)] <
¢’}. Finally, when we want to apply the previous definitions to a set of models ©' instead of single
model we have, e.g., A%(0;67) = Uy, AL(6;67).

The proof of the following results are available in Sec. D of Azar et al. (2013), here we only report
the number of pulls, and the corresponding regret bound.

Corollary 1. If at episode j umUCB is run with €; 1 as in Eq. 2 and ¢’ as in Eq. 5 with a parameter
§' = §/2K, then for any armi € A, i # i.(07) is pulled T; ,, times such that

2log (2mKn®/§ log (2mKn®/§ ;

Ti,ngmm{ o8 Gmin'/s) __log Gmin /9) }+1 ifi € Al
Aq(69) 2m1n969g’+(§j)1¥(9;0])2

Ty < 2log (2mEn®/8) /(A:(67)°) + 1 ifi € A}

Tim =0 otherwise

w.p. 1 — 6, where @g’Jr(éj) = {0 € @i(@j) i € A4 (0;07)} is the set of models for which i is
among Athfii,r olzfimistic non-dominated arms, T';(0;09) = Li(0,07)/2—e, Al = Aﬂr (@ﬂr (67); éj)—
Al(©7.(67);607) (ie., set of arms only proposed by models that can be discarded), and A} =
.Ai (@f|r (67);079) (i.e., set of arms only proposed by models that cannot be discarded).



The previous corollary states that arms which cannot be optimal for any optimistic model (i.e.,
the optimistic non-dominated arms) are never pulled by umUCB, which focuses only on arms in

1€ Ai ((9Zr (67);67). Among these arms, those that may help to remove a model from the active set
(ie., i € A{) are potentially pulled less than UCB, while the remaining arms, which are optimal for
the models that cannot be discarded (i.e., i € Ag), are simply pulled according to a UCB strategy.
Similar to mUCB, umUCB first pulls the arms that are more optimistic until either the active set @'tj

changes or they are no longer optimistic (because of the evidence from the actual samples). We are
now ready to derive the per-episode regret of umUCB.

Theorem 3. [fumUCB is run for n steps on the set of models ©7 estimated by RTP after j episodes
with 6 = 1/n, and the actual ‘model is 07, then its expected regret (w.r.t. the random realization in
episode j and conditional on 67) is

J 3y 75 \2 . B p. 332 i
E[R]] < K+ZieA{ log (2mKn )mm{Q/Ai(@]) ,1/(2m1n9€ez’+(§J)Fi(9, 67) )}Ai(ej)

+ Z'eAj 2log (ZmKnS)/Ai(éj).
1eAY

Remark (negative transfer). The transfer of knowledge introduces a bias in the learning process
which is often beneficial. Nonetheless, in many cases transfer may result in a bias towards wrong
solutions and a worse learning performance, a phenomenon often referred to as negative transfer.
The first interesting aspect of the previous theorem is that umUCB is guaranteed to never perform
worse than UCB itself. This implies that tUCB never suffers from negative transfer, even when the
set ©7 contains highly uncertain models and might bias umUCB to pull suboptimal arms.

Remark (improvement over UCB). In Sec. 3 we showed that mUCB exploits the knowledge of ©
to focus on a restricted set of arms which are pulled less than UCB. In umUCB this improvement is
not as clear, since the models in © are not known but are estimated online through episodes. Yet,
similar to mUCB, umUCB has the two main sources of potential improvement w.r.t. to UCB. As
illustrated by the regret bound in Thm. 3, umUCB focuses on arms in A{ U Aé which is potentially
a smaller set than A. Furthermore, the number of pulls to arms in A{ is smaller than for UCB
whenever the estimated model gap ﬁ-(é); 67) is bigger than A;(67). Eventually, umUCB reaches
the same performance (and improvement over UCB) as mUCB when j is big enough. In fact, the
set of optimistic models reduces to the one used in mUCB (i.e., @i(éj ) = ©,(67)) and all the
optimistic models have only optimal arms (i.e., for any § € ©_ the set of non-dominated optimistic
arms is A (0;67) = {i.(0)}), which corresponds to A} = A, (0 (67)) and A} = {i.(67)}, which
matches the condition of mUCB. For instance, for any model 6, in order to have A.(0) = {i.(0)},
for any arm i # i, (6) we need that i} () + &/ < ﬂf*(g)(ﬂ) — &J. Thus after

20(0)

min min_ min; A;(6)
€0 €0, ()

Jj= + 1.

2

episodes, all the optimistic models have only one optimal arm independently from the actual identity
of the model 67. Although this condition may seem restrictive, in practice umUCB starts improving
over UCB much earlier, as illustrated in the numerical simulation in Sec. 5.

4.4 Regret Analysis of tUCB

Given the previous results, we derive the bound on the cumulative regret over J episodes (Eq. 1).

Theorem 4. If tUCB is run over J episodes of n steps in which the tasks 67 are drawn from a fixed
distribution p over a set of models O, then its cumulative regret is

J 2log (2mKn?/5) log (2mKn? /) .
< mi - (§I
CIESTED S0 S mm{ S e W} (@)

)
2 min i
0ee]  (

2log (2mKn®/§)

g (
T e AE)

w.p. 1 — § w.rt. the randomization over tasks and the realizations of the arms in each episode.
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This result immediately follows from Thm. 3 and it shows a linear dependency on the number of
episodes J. This dependency is the price to pay for not knowing the identity of the current task 67.
If the task was revealed at the beginning of the task, a bandit algorithm could simply cluster all the
samples coming from the same task and incur a much smaller cumulative regret with a logarithmic
dependency on episodes and steps, i.e., log(nJ). Nonetheless, as discussed in the previous section,
the cumulative regret of tUCB is never worse than for UCB and as the number of tasks increases it
approaches the performance of mUCB, which fully exploits the prior knowledge of ©.

5 Numerical Simulations

In this section we report preliminary results of tUCB on synthetic data. The objective is to illustrate
and support the previous theoretical findings. We define a set © of m = 5 MAB problems with
K = 7 arms each, whose means {;(0)}; ¢ are reported in Fig. 5 (see Sect. F in Azar et al. (2013)
for the actual values), where each model has a different color and squares correspond to optimal arms
(e.g., arm 2 is optimal for model #5). This set of models is chosen to be challenging and illustrate
some interesting cases useful to understand the functioning of the algorithm.* Models 6, and 6,
only differ in their optimal arms and this makes it difficult to distinguish them. For arm 3 (which is
optimal for model 83 and thus potentially selected by mUCB), all the models share exactly the same
mean value. This implies that no model can be discarded by pulling it. Although this might suggest
that mUCB gets stuck in pulling arm 3, we showed in Thm. 1 that this is not the case. Models 6
and 05 are challenging for UCB since they have small minimum gap. Only 5 out of the 7 arms are
actually optimal for a model in ©. Thus, we also report the performance of UCB+ which, under the
assumption that © is known, immediately discards all the arms which are not optimal (i ¢ A*) and
performs UCB on the remaining arms. The model distribution is uniform, i.e., p(6) = 1/m.

Before discussing the transfer results, we compare UCB, UCB+, and mUCB, to illustrate the ad-
vantage of the prior knowledge of © w.r.t. UCB. Fig. 7 reports the per-episode regret of the three

“Notice that although © satisfies Assumption 1, the smallest singular value omin = 0.0039 and T', =
0.0038, thus making the estimation of the models difficult.



algorithms for episodes of different length n (the performance of tUCB is discussed later). The re-
sults are averaged over all the models in © and over 200 runs each. All the algorithms use the same
confidence bound ¢; +. The performance of mUCB is significantly better than both UCB, and UCB+,
thus showing that mUCB makes an efficient use of the prior of knowledge of ©. Furthermore, in
Fig. 6 the horizontal lines correspond to the value of the regret bounds up to the n dependent terms
and constants’ for the different models in © averaged w.r.t. p for the three algorithms (the actual
values for the different models are in the supplementary material). These values show that the im-
provement observed in practice is accurately predicated by the upper-bounds derived in Thm. 1.

We now move to analyze the performance of tUCB. In Fig. 8 we show how the per-episode regret
changes through episodes for a transfer problem with J = 5000 tasks of length n = 5000. In
tUCB we used ¢’ as in Eq. 5 with C(©) = 2. As discussed in Thm. 3, UCB and mUCB define
the boundaries of the performance of tUCB. In fact, at the beginning tUCB selects arms according
to a UCB strategy, since no prior information about the models © is available. On the other hand,
as more tasks are observed, tUCB is able to transfer the knowledge acquired through episodes and
build an increasingly accurate estimate of the models, thus approaching the behavior of mUCB. This
is also confirmed by Fig. 6 where we show how the complexity of tUCB changes through episodes.
In both cases (regret and complexity) we see that tUCB does not reach the same performance of
mUCB. This is due to the fact that some models have relatively small gaps and thus the number of
episodes to have an accurate enough estimate of the models to reach the performance of mUCB is
much larger than 5000 (see also the Remarks of Thm. 3). Since the final objective is to achieve a
small global regret (Eq. 1), in Fig. 7 we report the cumulative regret averaged over the total number
of tasks (J) for different values of J and n. Again, this graph shows that tUCB outperforms UCB
and that it tends to approach the performance of mUCB as J increases, for any value of n.

6 Conclusions and Open Questions

In this paper we introduce the transfer problem in the multi—armed bandit framework when a tasks
are drawn from a finite set of bandit problems. We first introduced the bandit algorithm mUCB
and we showed that it is able to leverage the prior knowledge on the set of bandit problems © and
reduce the regret w.r.t. UCB. When the set of models is unknown we define a method-of-moments
variant (RTP) which consistently estimates the means of the models in © from the samples collected
through episodes. This knowledge is then transferred to umUCB which performs no worse than UCB
and tends to approach the performance of mUCB. For these algorithms we derive regret bounds, and
we show preliminary numerical simulations. To the best of our knowledge, this is the first work
studying the problem of transfer in multi-armed bandit. It opens a series of interesting directions,
including whether explicit model identification can improve our transfer regret.

Optimality of tUCB. At each episode, tUCB transfers the knowledge about © acquired from previous
tasks to achieve a small per-episode regret using umUCB. Although this strategy guarantees that the
per-episode regret of tUCB is never worse than UCB, it may not be the optimal strategy in terms of
the cumulative regret through episodes. In fact, if J is large, it could be preferable to run a model
identification algorithm instead of umUCB in earlier episodes so as to improve the quality of the
estimates [1;(0). Although such an algorithm would incur a much larger regret in earlier tasks (up
to linear), it could approach the performance of mUCB in later episodes much faster than done by
tUCB. This trade-off between identification of the models and transfer of knowledge may suggest
that different algorithms than tUCB are possible.

Unknown model-set size. In some problems the size of model set m is not known to the learner and
needs to be estimated. This problem can be addressed by estimating the rank of matrix M, which
equals to m (Kleibergen and Paap, 2006). We also note that one can relax the assumption that p(f)
needs to be positive (see Assumption 1) by using the estimated model size as opposed to m, since
M5 depends not on the means of models with p(#) = 0.
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