Part of Advances in Neural Information Processing Systems 25 (NIPS 2012)
Konstantinos Tsianos, Sean Lawlor, Michael Rabbat
We study the scalability of consensus-based distributed optimization algorithms by considering two questions: How many processors should we use for a given problem, and how often should they communicate when communication is not free? Central to our analysis is a problem-specific value r which quantifies the communication/computation tradeoff. We show that organizing the communication among nodes as a k-regular expander graph~\cite{kRegExpanders} yields speedups, while when all pairs of nodes communicate (as in a complete graph), there is an optimal number of processors that depends on r. Surprisingly, a speedup can be obtained, in terms of the time to reach a fixed level of accuracy, by communicating less and less frequently as the computation progresses. Experiments on a real cluster solving metric learning and non-smooth convex minimization tasks demonstrate strong agreement between theory and practice.