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Abstract

Reinforcement learning (RL) methods based on direct policy search (DPS) have
been actively discussed to achieve an efficient approach to complicated Markov
decision processes (MDPs). Although they have brought much progress in prac-
tical applications of RL, there still remains an unsolved problem in DPS related
to model selection for the policy. In this paper, we propose a novel DPS method,
weighted likelihood policy search (WLPS), where a policy is efficiently learned
through the weighted likelihood estimation. WLPS naturally connects DPS to the
statistical inference problem and thus various sophisticated techniques in statis-
tics can be applied to DPS problems directly. Hence, by following the idea of the
information criterion, we develop a new measurement for model comparison in
DPS based on the weighted log-likelihood.

1 Introduction

In the last decade, several direct policy search (DPS) methods have been developed in the field of
reinforcement learning (RL) [1, 2, 3, 4, 5, 6, 7, 8, 9] and have been successfully applied to practical
decision making applications [5, 7, 9]. Unlike classical approaches [10], DPS characterizes a policy
as a parametric model and explores parameters such that the expected reward is maximized in a
given model space. Hence, if one employs a model with a reasonable number of DoF (degrees of
freedom), DPS could find a reasonable policy efficiently even when the target decision making task
has a huge number of DoF. Therefore, the development of an efficient model selection methodology
for the policy is crucial in RL research.

In this paper, we propose weighted likelihood policy search (WLPS): an efficient iterative policy
search algorithm that allows us to select an appropriate model automatically from a set of candidate
models. To this end, we first introduce a log-likelihood function weighted by the discounted sum of
future rewards as the cost function for DPS. In WLPS, the policy parameters are updated by itera-
tively maximizing the weighted log-likelihood for the obtained sample sequence. A key property of
WLPS is that the maximization of weighted log-likelihood corresponds to that of the lower bound of
the expected reward and thus, WLPS is guaranteed to increase the expected reward monotonically at
each iteration. This can be shown to converge to the same solution as the expectation-maximization
policy search (EMPS) [1, 4, 9]. In this way, our framework gives a natural connection between
DPS and the statistical inference problem for maximum likelihood estimation. One benefit of this
approach is that we can directly apply the information criterion scheme [11, 12], which is a familiar
theory in statistics, to the weighted log-likelihood. This enables us to construct a model selection
strategy for the policy by comparing the information criterion based on the weighted log-likelihood.

The contribution of this paper is summarized as follows:
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1. We prove that each update to the policy parameters resulting from the maximization of the
weighted log-likelihood has consistency and asymptotic normality, which have been not
elucidated yet in DPS, and converges to the same solution as EMPS.

2. We introduce prior distribution on the policy parameter, and analyze the asymptotic behav-
ior of the marginal weighted likelihood given by marginalizing out the policy parameter.
We then propose a measure of the goodness of the policy model based on the posterior
probability of the model in a similar way as Bayesian information criterion [12].

The rest of the paper is organized as follows. We first give a formulation of the DPS problem in RL,
and a short overview of EMPS (Section 2). Next, we present our new DPS framework, WLPS, and
investigate the theoretical aspects thereof (Section 3). In addition, we construct the model selection
strategy for the policy (Section 4). Finally, we present a statistical interpretation of WLPS and
discuss future directions of study in this regard (Section 5).
Related Works Several approaches have been proposed for the model selection problem in the
estimation of a state-action value function [13, 14]. [14] derived the PAC-Bayesian bounds for
estimating state-action value functions. [13] developed a complexity regularization based model
selection algorithm from the viewpoint of the minimization of the Bellman error, and investigated its
theoretical aspects. Although these studies allow us to select a good model for a state-value function
with theoretical supports, they cannot be applied to model selection for DPS directly. [15] developed
a model selection strategy for DPS by reusing the past observed sample sequences through the
importance weighted cross-validation (IWCV). However, IWCV requires heavy computational costs
and includes computational instability when estimating the importance sampling weights.

Recently, there are a number of studies that reformulate stochastic optimal control and RL as a
minimization problem of Kullback-Leiblar (KL) divergence [16, 17, 18]. Our approach is closely
related to these works; in fact, WLPS can also be interpreted as the minimization problem of the
reverse form of KL divergence compared with that used in [16, 17, 18].

2 Preliminary: EMPS
We consider discrete-time infinite horizon Markov Decision Processes (MDPs), defined as the
quadruple (X ,U , p, r): X ⊆ Rdx is a state space; U ⊆ Rdu is an action space; p(x′|x, u) is a station-
ary transition distribution to the next state x′ when taking action u at state x; and r : X × U 7→ R+

is a positive reward received with the state transition. Let πθ(u|x) := p(u|x, θ) be the stochastic
parametrized policy followed by the agent, where an m-dimensional vector θ ∈ Θ,Θ ⊆ Rm means
an adjustable parameter. Given initial state x1 and parameter vector θ, the joint distribution of the
sample sequence, {x2:n, u1:n}, of the MDP is described as

pθ(x2:n, u1:n|x1) = πθ(u1|x1)
n∏

i=2

p(xi|xi−1, ui−1)πθ(ui|xi). (1)

We further impose the following assumptions on MDPs.
Assumption 1. For any θ ∈ Θ, the MDP given by Eq. (1), is aperiodic and Harris recurrent. Hence,
MDP (1) is ergodic and has a unique invariant stationary distribution µθ(x), for any θ ∈ Θ [19].
Assumption 2. For any x ∈ X and u ∈ U , reward r(x, u) is uniformly bounded.
Assumption 3. Policy πθ(u|x) is thrice continuously differentiable with respect to parameter θ.
The general goal of DPS is to find an optimal policy parameter θ∗ ∈ Θ that maximizes the expected
reward defined by

η(θ) := lim
n→∞

∫ ∫
pθ(x2:n, u1:n|x1) {Rn}dx2:ndu1:n, (2)

where Rn := Rn(x1:n, u1:n) = (1/n)
∑n

i=1 r(xi, ui). In general, the direct maximization of ob-
jective function (2) forces us to solve a non-convex optimization problem with a high non-linearity.
Thus, instead of maximizing Eq. (2), many of the DPS methods maximize the lower bound on
Eq. (2), which may be much more tractable than the original objective function.

Lemma 1 shows that there is a tight lower bound on objective function (2).
Lemma 1. [1, 4, 9] The following inequality holds for any distribution q(x2:n, u1:n|x1):

ln ηn(θ) ≥ Fn(q, θ) :=

∫ ∫
q(x2:n, u1:n|x1)

{
ln
pθ(x2:n, u1:n|x1)Rn

q(x2:n, u1:n|x1)

}
dx2:ndu1:n, ∀n (3)

2



where ηn(θ) =
∫∫

p(x2:n, u1:n|x1) {Rn}dx2:ndu1:n. The equality holds if q(x2:n, u1:n|x1) is a
maximizer of Fn(q, θ) for some θ, i.e., q∗(x2:n, u1:n|x1) = argmaxqFn(q, θ), which is satisfied
when q∗(x2:n, u1:n|x1) ∝ pθ(x2:n, u1:n|x1){Rn}.

The proof is given in Section 1 in the supporting material. Lemma 1 leads to an effective iterative
algorithm, the so-called EMPS, which breaks down the potentially difficult maximization problem
for the expected reward into two stages: 1) evaluation of the path distribution q∗θ′(x2:n, u1:n|x1) ∝
pθ′(x2:n, u1:n|x1){Rn} at the current policy parameter θ′, and 2) maximization of Fn(q

∗
θ′ , θ) with

respect to parameter θ. This EMPS cycle is guaranteed to increase the value of the expected reward
unless the parameters already correspond to a local maximum [1, 4, 9].

Taking the partial derivative of the policy with respect to parameter θ, a new parameter vector θ̃ that
maximizes Fn(q

∗
θ′ , θ) is found by solving the following equation:∫ ∫

pθ′(x2:n, u1:n|x1)

(
n∑

i=1

ψθ̃(xi, ui)

)
Rndx2:ndu1:n = 0, (4)

where ψ : X × U × Θ denotes a partial derivative of the logarithm of the policy with respect to
parameter θ, i.e., ψθ(x, u) := (∂)/(∂θ) lnπθ(u|x).
Note that if the state transition distribution p(x′|x, u) is known, we can easily derive parameter
θ̄ analytically or numerically. However, p(x′|x, u) is generally unknown, and it is a non-trivial
problem to identify this distribution in large-scale applications. Thus, it is desirable to find parameter
θ̄ in model-free ways, i.e., parameter is estimated from the sample sequences alone, instead of using
p(x′|x, u). Although many variants of model-free EMPS algorithms [4, 6, 9, 15] have hitherto been
developed, their fundamental theoretical properties such as consistency and asymptotic normality at
each iteration have not yet been elucidated. Moreover, it is not even obvious whether they have such
desirable statistical properties.

3 Proposed framework: WLPS
In this section, we newly introduce a weighted likelihood as the objective function for DPS (Def-
inition 1), and derive the WLPS algorithm, executed by iterating two steps: evaluation and maxi-
mization of the weighted log-likelihood function (Algorithm 1). Then, in Section 3.2, we show that
WLPS is guaranteed to increase the expected reward at each iteration, and to converge to the same
solution as EMPS (Theorem 1).

3.1 Overview of WLPS
In this study, we consider the following weighted likelihood function.
Definition 1. Suppose that given initial state x1, a random sequence {x2:n, u1:n} is gener-
ated from model pθ′(x2:n, u1:n|x1) of the MDP. Then, we define a weighted likelihood function
p̂θ′,θ(x2:n, u1:n|x1) and a weighted log-likelihood function Lθ′

n (θ), respectively, as

p̂θ′,θ(x2:n, u1:n|x1) := πθ(u1|x1)Q
β
1

n∏
i=2

πθ(ui|xi)Q
β
i p(xi|xi−1, ui−1) (5)

Lθ′

n (θ) := ln p̂θ′,θ(x2:n, u1:n|x1) :=
n∑

i=1

Qβ
i lnπθ(ui|xi) +

n∑
i=2

ln p(xi|xi−1, ui−1), (6)

where Qβ
i is the discounted sum of the future rewards given by Qβ

i :=
∑n

j=i β
j−ir(xj , uj), and β

is a discounted factor such that β ∈ [0, 1).

Now, let us consider the maximization of weighted log-likelihood function (6). Taking the partial
derivative of weighted log-likelihood (6) with respect to parameter θ, we can obtain the maximum
weighted log-likelihood estimator θ̂n := θ̂(x1:n, u1:n) as a solution of the following estimation
equation:

Gθ′

n (θ̂n) :=
n∑

i=1

ψθ̂n
(xi, ui)Q

β
i =

n∑
i=1

n∑
j=i

βj−iψθ̂n
(xi, ui)r(xj , uj) = 0. (7)
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Note that when policy πθ is modeled by an exponential family, estimating equation (7) can easily
be solved analytically or numerically using convex optimization techniques. In WLPS, the update
of the policy parameter is performed by evaluating estimating equation (7) and finding estimator θ̂n
iteratively from this equation. Algorithm 1 gives an outline of the WLPS procedure.
Algorithm 1 (WLPS).

1. Generate a sample sequence {x1:n, u1:n} by employing the current policy parameter θ,
and evaluate estimating equation (7).

2. Find a new estimator by solving estimating equation (7) and check for convergence. If
convergence is not satisfied, return to step 1.

It should be noted that WLPS guarantees to monotonically increase the expected reward η(θ), and to
converge asymptotically under certain conditions to the same solution as EMPS, given by Eq. (4). In
the next subsection, we discuss the reason why WLPS satisfies such desirable statistical properties.

3.2 Convergence of WLPS

To begin with, we show consistency and asymptotic normality of estimator θ̂n given by Eq. (7)
when β is any constant between 0 and 1. To this end, we first introduce the notion of uniform
mixing, which plays an important role when discussing statistical properties in stochastic processes
[19]. The definition of uniform mixing is given below.
Definition 2. Let {Yi : i = {· · · ,−1, 0, 1, · · · }} be a strictly stationary process on a probabilistic
space (Ω, F, P ), and Fm

k be the σ-algebra generated by {Yk, · · · , Ym}. Then, process {Yi} is said
to be uniform mixing (φ-mixing) if φ(s) → 0 as s→ ∞, where

φ(s) := sup
A∈Fk

−∞,B∈F∞
k+s

|P (B|A)− P (B)| = 0, P (A) ̸= 0.

Function φ(s) is called the mixing coefficient, and if the mixing coefficient converges to zero ex-
ponentially fast, i.e., there exist constants D > 0 and ρ ∈ [0, 1) such that φ(s) < Dρs, then the
stochastic process is called geometrically uniform mixing. Note that if a stochastic process is a
strictly stationary finite-state Markov process and ergodic, the process satisfies the geometrically
uniform mixing conditions [19].

Now, we impose certain conditions for proving the consistency and asymptotic normality of estima-
tor θ̂n, summarized as follows.
Assumption 4. For any θ ∈ Θ, MDP pθ(x2:n, u1:n|x1) is geometrically uniform mixing.
Assumption 5. For any x ∈ X , u ∈ U , and θ ∈ Θ, function ψθ(x, u) is uniformly bounded.
Assumption 6. For any θ ∈ Θ, there exists a parameter value θ̄ ∈ Θ such that

Eπθ
x1∼µθ

ψθ̄(x1, u1)
∞∑
j=1

βj−1r(xj , uj)

 = 0, (8)

where Eπθ
x1∼µθ

[·] denotes the expectation over {x2:∞, u1:∞} with respect to distribution
lim

n→∞
µθ(x1)πθ(u1|x1)

∏n
i=2 p(xi|xi, ui)πθ(ui|xi).

Assumption 7. For any θ ∈ Θ and ϵ > 0,

sup
θ′:|θ′−θ̄|>ϵ

∣∣∣∣∣Eπθ
x1∼µθ

[
ψθ′(x1, u1)

∞∑
j=1

βj−1r(xj , uj)

]∣∣∣∣∣ > 0.

Assumption 8. For any θ ∈ Θ, matrix A := A(θ̄) = Eπθ
x1∼µ1

[
Kθ̄(x1, u1)

∑∞
j=1 β

j−1r(xj , uj)
]

is

invertible, where Kθ(x, u) := ∂θψθ(x, u) = ∂2/(∂θ∂θ⊤) lnπθ(u|x).

Under the conditions given in Assumptions 1-7, estimator θ̂n converges to θ̄ in probability, as shown
in the following lemma.
Lemma 2. Suppose that given initial state x1, a random sequence {x2:n, u1:n} is generated from
model {pθ(x2:n, u1:n|x1)|θ} of the MDP. If Assumptions 1-7 are satisfied, then estimator θ̂n given by
estimating equation (7) shows consistency, i.e., estimator θ̂n converges to parameter θ̄ in probability.
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The proof is given in Section 2 in the supporting material. Note that if the policy is characterized as
an exponential family, we can replace Assumption 7 with Assumption 8 to prove the result in Lemma
3. Next, we show the asymptotic convergence rate of the estimator given a consistent estimator.
Lemma 3 shows that the estimator converges at the rate Op(n

−1/2).
Lemma 3. Suppose that given initial state x1, a random sequence {x2:n, u1:n} is generated from
model pθ′(x2:n, u1:n|x1), and Assumptions 1-6 and 8 are satisfied. If estimator θ̂n, given by esti-
mating equation (7) converges to θ̄ in probability, then we have

√
n(θ̂n − θ̄) = − 1√

n
A−1

n∑
i=1

n∑
j=i

βj−iψθ̄(xi, ui)r(xj , uj) + op(1). (9)

Furthermore, the right hand side of Eq. (9) converges to a Gaussian distri-
bution whose mean and covariance are, respectively, zero and A−1Σ(A−1)⊤,
where Σ := Σ(θ̄) = Γ(θ̄) +

∑∞
i=2 Γi(θ̄) +

∑∞
j=2 Γj(θ̄)

⊤. Here, Γi(θ̄) :=

Eπθ′
x1∼µθ′

[(∑∞
j=1 β

j−1r(xj , uj)
)(∑∞

j′=1+i β
j′−1r(xj′ , uj′)

)
ψθ̄(x1, u1)ψθ̄(xi, ui)

⊤
]
.

The proof is given in Section 3 in the supporting material.

Now we consider the relation between WLPS and EMPS. The following theorem shows that the
estimator θ̂n given by Eq. (7) converges to the same solution as that of EMPS asymptotically, when
taking the limit of β to 1.
Theorem 1. Suppose that Assumptions 1-7 are satisfied. If β approaches to 1 from below, WLPS
leads to the same solution with EMPS given by Eq. (4) as n→ ∞1.

Proof. We introduce the following support lemma.
Lemma 4. Suppose that Assumptions 1-6 are satisfied. Then, the partial derivative of the lower
bound with q∗θ′ satisfies

lim
n→∞

∂

∂θ
Fn(q

∗
θ′ , θ) = lim

β→1−
Eπθ′
x1∼µθ′

[
ψθ(x1, u1)

∞∑
j=1

βj−1r(xj , uj)

]
,

where β → 1− denotes that β converges to 1 from below.

The proof is given in Section 4 in the supporting material. From the results in Lemmas 2 and 4, it
is obvious that the estimator θ̂n given by Eq. (7) converges to the same solution as that of EMPS as
β → 1 from bellow.

Theorem 1 implies that WLPS monotonically increases the expected reward. It should be empha-
sized that WLPS provides us with an important insight into DPS, i.e., the parameter update of EMPS
can be interpreted as a well-studied maximum (weighted) likelihood estimation problem. This al-
lows us to naturally apply various sophisticated techniques for model selection, which are well
established in statistics, to DPS. In the next section, we discuss model selection for policy πθ(u|x).

4 Model selection with WLPS
Common model selection strategies are carried out by comparing candidate models, which are spec-
ified in advance, based on a criterion that evaluates the goodness of fit of the model estimated from
the obtained samples. Since the motivation for RL is to maximize the expected reward given in (2),
it would be natural to seek an appropriate model for the policy through the computation of some
reasonable measure to evaluate the expected reward from the sample sequences. However, since dif-
ferent policy models give different generative models for sample sequences, we need to obtain new
sample sequences to evaluate the measure each time the model is changed. Therefore, employing a
strategy of model selection based directly on the expected reward would be hopelessly inefficient.

1In practice, the constant β is set to an arbitrary value close to one. If we can analyze the finite sample
behavior of the expected reward with the WLPS estimator, we may obtain a better estimator by finding an
optimal β in the sense of the maximization of the expected reward. Some researches have recently tackled to
establish the finite sample analysis for RL based on statistical learning theory [20, 21]. These works might
provide us with some insights into the finite sample analysis of WLPS.
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Instead, to develop a tractable model selection, we focus on the weighted likelihood given by Eq. (5).
As mentioned before, the policy with the maximum weighted log-likelihood must satisfy the max-
imum of the lower bound of the expected reward asymptotically. Moreover, since the weighted
likelihood is defined under a certain fixed generative process for the sample sequences, unlike the
expected reward case, the weighted likelihood can be evaluated using unique sample sequences
even when the model has been changed. These observations lead to the fact that if it were possible
to choose a good model from the candidate models in the sense of the weighted likelihood at each
iteration in WLPS, we could realize an efficient DPS algorithm with model selection that achieves a
monotonic increase in the expected reward.

In this study, we develop a criterion for choosing a suitable model by following the analogy of the
Bayesian information criterion (BIC) [12], designed through asymptotic analysis of the posterior
probability of the models given the data. Let M1,M2, · · · ,Mk be k candidate policy models, and
assume that each model Mj is characterized by a parametric policy πθj (u|x) and the prior distri-
bution p(θj |Mj) of the policy parameter. Also, define the marginal weighted likelihood of the j-th
candidate model p̂θ′,j(x2:n, u1:n|x1) as

p̂θ′,j(x2:n, u1:n|x1) :=
∫
πθj (u1|x1)Q

β
1

n∏
i=1

πθj (ui|xi)Q
β
i p(xi|xi−1, ui−1)p(θj |Mj)dθj . (10)

In a similar manner to the BIC, we now consider the posterior probability of the j-th model given the
sample sequence by introducing the prior probability of the j-th model p(Mj). From the generalized
Bayes’ rule, the posterior distribution of the j-th model is given by

p(Mj |x1:n, u1:n) :=
p̂θ′,j(x2:n, u1:n|x1)p(Mj)∑k

j′=1 p̂θ′,j′(x2:n, u1:n|x1)p(Mj′)
. (11)

and in our model selection strategy, we adopt the model with the largest posterior probability.

For notational simplicity, in the following discussion we omit the subscript that represents the index
indicating the number of models. Assuming that the prior probability is uniform in all models,
the model with the maximum posterior probability corresponds to that of the marginal weighted
likelihood. The behavior of the marginal weighted likelihood can be evaluated when the integrand of
marginal weighted likelihood (10) is concentrated in a neighborhood of the weighted log-likelihood
estimator given by estimating equation (7), as described in the following theorem.
Theorem 2. Suppose that, given an initial state x1, a random sequence {x2:n, u1:n} is generated
from the model pθ′(x2:n, u1:n|x1) of the MDP. Suppose that Assumptions 1-3 and 5 are satisfied. If
the following conditions

(a) The estimator θ̂n given by Eq. (7) converges to θ at the rate of Op(n
−1/2).

(b) The prior distribution p(θ|M) satisfies p(θ̂n|M) = Op(1).

(c) The matrix A(θ) := Eπθ′
x1∼µθ′ [Kθ(x1, u1)

∑∞
j=1 β

j−ir(xj , uj)] is invertible.

(d) For any x ∈ X , u ∈ U and θ ∈ Θ, Kθ(x, u) is uniformly bounded.

are satisfied, the log marginal weighted likelihood can be calculated as

ln p̂θ′(x2:n, u1:n|x1) = Lθ′

n (θ̂n)−
1

2
m lnn+Op(1),

where recall that m denotes the number of dimensional of the model (policy parameter).

The proof is given in Section 5 in the supporting material. Note that the term,∑n
i=2 ln p(xi|xi−1, ui−1) in Lθ′

n (θ̂n), does not depend on the model. Therefore, when evaluat-
ing the posterior probability of the model, it is sufficient to compute the following model selection
criterion:

IC =

n∑
i=1

lnπθ̂n(ui|xi)
Qβ

i − 1

2
m lnn. (12)

As can be seen, this model selection criterion consists of two terms, where the first term is the
weighted log-likelihood of the policy and the second is a penalty term that penalizes highly complex
models. Also, since the first term is larger than the second term, this criterion gives the model with
the maximum weighted log-likelihood asymptotically. Algorithm 2 describes the algorithm flow of
WLPS including the model selection strategy.
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Algorithm 2 (WLPS with model selection).
1. Generate a sample sequence {x1:n, u1:n} by employing the current policy parameter θ.

2. For all models, find estimator θ̂n by solving estimating equation (7) and evaluate model
selection criterion (12).

3. Choose the best model based on model selection criterion (12) and check for convergence.
If convergence is not satisfied, return to 1.

Empirical Example We evaluated the performance of the proposed model-selection method us-
ing a simple one-dimensional linear quadratic Gaussian (LQG) problem. This problem is known
to be sufficiently difficult as an empirical evaluation, while it is analytically solvable. In this
problem, we characterized the state transition distribution p(xi|xi−1, ui−1) as a Gaussian distri-
bution N(xi|x̄i, σ) with mean x̄i = xi−1 + ui−1 and variance σ = 0.52. The reward function
was set to a quadratic function r(xi, ui) = −x2i − u2i + c, where c is a positive scalar value for
preventing the reward r(x, u) being negative. The control signal ui was generated from a Gaus-
sian distribution N(ui|ūi, σ′) with mean ūi and variance σ′ = 0.5. We used a linear model
with polynomial basis functions defined as ūi =

∑k
j=1 θjx

j
j + θ0, where k is the order of the

polynomial. Note that, in this LQG setting, the optimal controller can be represented as a linear
model, i.e., the optimal policy can be obtained when the order of polynomial is selected as k = 1.
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Figure 1: Distribution of order k se-
lected by our model selection criterion
(left bar) and the weighted likelihood
(right bar).

In this experiment, we validated whether the proposed model
selection method can detect the true order of the polyno-
mial. To illustrate how our proposed model selection crite-
rion works, we compared the performance of the proposed
model selection method with a naı̈ve method based on the
weighted log-likelihood (6). The weighted-log-likelihood-
based selection, similarly to the proposed method, was per-
formed by computing the weighted log-likelihood scores (6)
over all candidate models and selecting the model with the
maximum score among the candidates.

Figure 1 shows the distribution on the scores of the selected
polynomial orders k in the learned policies from first to fifth
order by using the weighted log-likelihood and our model se-
lection criterion. The distributions of the scores were obtained by repeating random 1000 trials. A
learning process was performed by 200 iterations of WLPS, each of which contained 200 samples
generated by the current policy. The discounted factor β was set to 0.99. As shown in Figure 1, in
the proposed method, the peak of the selected order was located at the true order k = 1. On the
other hand, in the weighted log-likelihood method, the distribution of the orders converged to a one
with two peaks at k = 1 and k = 4. This result seems to show that the penalized term in our model
selection criterion worked well.

5 Discussion
In this study, we have discussed a DPS problem in the framework of weighted likelihood estimation.
We introduced a weighted likelihood function as the objective function of DPS, and proposed an
incremental algorithm, WLPS, based on the iteration of maximum weighted log-likelihood estima-
tion. WLPS shows desirable theoretical properties, namely, consistency, asymptotic normality, and
a monotonic increase in the expected reward at each iteration. Furthermore, we have constructed a
model selection strategy based on the posterior probability of the model given a sample sequence
through asymptotic analysis of the marginal weighted likelihood.

WLPS framework has a potential to bring a new theoretical insight to DPS, and derive more efficient
algorithms based on the theoretical considerations. In the rest of this paper, we summarize some key
issues that need to be addressed in future research.

5.1 Statistical interpretation of model-free and model-based WLPS
One of the important open issues in RL is how to combine model-free and model-based approaches
with theoretical support. To this end, it is necessary to clarify the difference between model-based
and model-free approaches in the theoretical sense. WLPS provides us with an interesting insight
into the relation between model-free and model-based DPS from the viewpoint of statistics.
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We begin by introducing the model-based WLPS method. Let us specify the state transition distri-
bution p(x′|x, u) as a parametric model pκ(x′|x, u) := p(x′|x, u, κ), where κ is an m′-dimensional
parameter vector. Assuming pκ(x′|x, u) with respect to parameter κ and taking the partial derivative
of the log weighted likelihood (6), we obtain the estimating equation for parameter κ:

n∑
i=2

ξκ̂n(xi−1, ui−1, xi) = 0, (13)

where ξκ(x, u, x′) is the partial derivative of the state transition distribution pκ(x′|x, u) with respect
to κ. As can be seen, estimating equation (13) corresponds to the likelihood equation, i.e., the esti-
mator, κ̂n = κ̂n(x1:n, u1:n−1), given by (13) is the maximum likelihood estimator. This observation
indicates that the weighted likelihood integrates two different objective functions: one for learning
policy πθ(u|x), and the other for the state predictor, pκ(x′|x, u). Having obtained estimator κ̂n
from estimating equation (13), the model-based WLPS estimates the policy parameter by finding
the solution, θ̌n := θ̌(x1:n, u1:n), of the following estimating equation:∫ ∫

pθ′,κ̂n(x2:n, u1:n|x1)

{
n∑

i=1

n∑
j=i

βj−iψθ̌n
(xi, ui)r(xj , uj)

}
dx2:ndu1:n = 0. (14)

Note that estimating equation (14) is derived by taking the integral of Eq. (7) over the sample se-
quence {x2:n, u1:n} based on the current estimated model pθ′,κ̂n(x2:n, u1:n|x1). Thus, the model-
based WLPS converges to the same parameter as the model-free WLPS, if model pκ(x′|x, u) is well
specified2.

We now consider the general treatment for model-free and model-based WLPS from a statistical
viewpoint. Model-based WLPS fully specifies the weighted likelihood by using the parametric
policy and parametric state transition models, and estimates all the parameters that appear in the
parametric weighted likelihood. Hence, model-based WLPS can be framed as a parametric statis-
tical inference problem. Meanwhile, model-free WLPS partially specifies the weighted likelihood
by only using the parametric policy model. This can be seen as a semiparametric statistical model
[22, 23], which includes not only parameters of interest, but also additional nuisance parameters
with possibly infinite DoF, where only the policy is modeled parametrically and the other unspec-
ified part corresponds to the nuisance parameters. Therefore, model-free WLPS can be framed as
a semiparametric statistical inference problem. Hence, the difference between model-based and
model-free WLPS methods can be interpreted as the difference between parametric and semipara-
metric statistical inference. The theoretical aspects of both parametric and semiparametric inference
have been actively investigated and several approaches for combining their estimators have been
proposed [23, 24, 25]. Therefore, by following these works, we have developed a novel hybrid DPS
algorithm that combines model-free and model-based WLPS with desirable statistical properties.

5.2 Variance reduction technique for WLPS
In order to perform fast learning of the policy, it is necessary to find estimators that can reduce the
estimation variance of the policy parameters in DPS. Although variance reduction techniques have
been proposed in DPS [26, 27, 28], these employ indirect approaches, i.e., instead of considering
the estimation variance of the policy parameters, they reduce the estimation variance of the mo-
ments necessary to learn the policy parameter. Unfortunately, these variance reduction techniques
do not guarantee decreasing the estimation variance of the policy parameters, and thus it is desir-
able to develop a direct approach that can evaluate and reduce the estimation variance of the policy
parameters.

As stated above, we can interpret model-free WLPS as a semiparametric statistical inference prob-
lem. This interpretation allows us to apply the estimating function method [22, 23], which has been
well established in semiparametric statistics, directly to WLPS. The estimating function method is
a powerful tool for the design of consistent estimators and the evaluation of the estimation variance
of parameters in a semiparametric inference problem. The advantage of considering the estimating
function is the ability 1) to characterize an entire set of consistent estimators, and 2) to find the opti-
mal estimator with the minimum parameter estimation variance from the set of estimators [23, 29].
Therefore, by applying this to WLPS, we can characterize an entire set of estimators, which maxi-
mizes the expected reward without identifying the state transition distribution, and find the optimal
estimator with the minimum estimation variance.

2In the following discussion, in order to clarify the difference between the model-free and the model-based
manners, we write original WLPS as model-free WLPS.
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