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Abstract

Multiple Kernel Learning (MKL) generalizes SVMs to the setting where one
simultaneously trains a linear classifier and chooses an optimal combination of
given base kernels. Model complexity is typically controlled using various norm
regularizations on the base kernel mixing coefficients. Existing methods neither
regularize nor exploit potentially useful information pertaining to how kernels in
the input set ‘interact’; that is, higher order kernel-pair relationships that can be
easily obtained via unsupervised (similarity, geodesics), supervised (correlation
in errors), or domain knowledge driven mechanisms (which features were used
to construct the kernel?). We show that by substituting the norm penalty with an
arbitrary quadratic function Q � 0, one can impose a desired covariance struc-
ture on mixing weights, and use this as an inductive bias when learning the con-
cept. This formulation significantly generalizes the widely used 1- and 2-norm
MKL objectives. We explore the model’s utility via experiments on a challeng-
ing Neuroimaging problem, where the goal is to predict a subject’s conversion to
Alzheimer’s Disease (AD) by exploiting aggregate information from many dis-
tinct imaging modalities. Here, our new model outperforms the state of the art
(p-values� 10−3). We briefly discuss ramifications in terms of learning bounds
(Rademacher complexity).

1 Introduction
Kernel learning methods (such as Support Vector Machines) are conceptually simple, strongly rooted
in statistical learning theory, and can often be formulated as a convex optimization problem. As a
result, SVMs have come to dominate the landscape of supervised learning applications in bioinfor-
matics, computer vision, neuroimaging, and many other domains. A standard SVM-based ‘learning
system’ may be conveniently thought of as a composition of two modules [1, 2, 3, 4]: (1) Feature
pre-processing, and (2) a core learning algorithm. The design of a kernel (feature pre-processing)
may involve using different sets of extracted features, dimensionality reductions, or parameteriza-
tions of the kernel functions. Each of these alternatives produces a distinct kernel matrix. While
much research has focused on efficient methods for the latter (i.e., support vector learning) step,
specific choices of feature pre-processing are frequently a dominant factor in the system’s overall
performance as well, and may involve significant user effort. Multi-kernel learning [5, 6, 7] trans-
fers a part of this burden from the user to the algorithm. Rather than selecting a single kernel, MKL
offers the flexibility of specifying a large set of kernels corresponding to the many options (i.e., ker-
nels) available, and additively combining them to construct an optimized, data-driven Reproducing
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Kernel Hilbert Space (RKHS) – while simultaneously finding a max-margin classifier. MKL has
turned out to be very successful in many applications: on several important Vision problems (such
as image categorization), some of the best known results on community benchmarks come from
MKL-type methods [8, 9]. In the context of our primary motivating application, the current state of
the art in multi-modality neuroimaging-based Alzheimer’s Disease (AD) prediction [10] is achieved
by multi-kernel methods [3, 4], where each imaging modality spawns a kernel, or set of kernels.

In allowing the user to specify an arbitrary number of base kernels for combination MKL provides
more expressive power, but this comes with the responsibility to regularize the kernel mixing coef-
ficients so that the classifier generalizes well. While the importance of this regularization cannot be
overstated, it is also a fact that commonly used `p norm regularizers operate on kernels separately,
without explicitly acknowledging dependencies and interactions among them. To see how such de-
pendencies can arise in practice, consider our neuroimaging learning problem of interest: the task
of learning to predict the onset of AD. A set of base kernels K1, . . . ,KM are derived from sev-
eral different medical imaging modalities (MRI; PET), image processing methods (morphometric;
anatomical modelling), and kernel functions (linear; RBF). Some features may be shared between
kernels, or kernel functions may use similar parameters. As a result we expect the kernels’ behaviors
to exhibit some correlational, or other cluster structure according to how they were constructed. (See
Fig. 2 (a) and related text, for a concrete discussion of these behaviors in our problem of interest.)
We will denote this relationship as Q ∈ RM×M .

Ideally, the regularizer should reflect these dependencies encoded by Q, as they can significantly
impact the learning characteristics of a linearly combined kernel. Some extensions work at the level
of group membership (e.g., [11]), but do not explicitly quantify these interactions. Instead, rather
than penalizing covariances or inducing sparsity among groups of kernels, it may be beneficial to
reward such covariances, so as to better reflect a latent cluster structure between kernels. In this
paper, we show that a rich class of regularization schemes are possible under a new MKL formulation
which regularizes on Q directly – the model allows one to exploit domain knowledge (as above) and
statistical measures of interaction between kernels, employ estimated error covariances in ways that
are not possible with `p-norm regularization, or, encourage sparsity, group sparsity or non-sparsity
as needed – all within a convex optimization framework. We call this form of multi-kernel learning,
Q-norm MKL or “Q-MKL”. This paper makes the following contributions: (a) presents our new
Q-MKL model which generalizes 1- (and 2-) norm MKL models, (b) provides a learning theoretic
result showing that Q-MKL can improve MKL’s generalization error rate, (c) develops efficient
optimization strategies (to be distributed with the Shogun toolbox), and (d) provides empirical results
demonstrating statistically significant gains in accuracy on the important AD prediction problem.

Background. The development of MKL methods began with [5], which showed that the problem
of learning the right kernel for an input problem instance could be formulated as a Semi-Definite
Program (SDP). Subsequent papers have focused on designing more efficient optimization methods,
which have enabled its applications to large-scale problem domains. To this end, the model in [5]
was shown to be solvable as a Second Order Cone Program [12], a Semi-Infinite Linear Program
[6], and via gradient descent methods in the dual and primal [7, 13]. More recently, efforts have
focused on generalizing MKL to arbitrary p-norm regularizers where p > 1 [13, 14] while main-
taining overall efficiency. In [14], the authors briefly mentioned that more general norms may be
possible, but this issue was not further examined. A non-linear “hyperkernel” method was proposed
[15] which implicitly maps the kernels themselves to an implicit RKHS, however this method is
computationally very demanding, (it has 4th order interactions among training examples). The au-
thors of [16] proposed to first select the sub-kernel weights by minimizing an objective function
derived from Normalized Cuts, and subsequently train an SVM on the combined kernel. In [17, 2],
a method was proposed for selecting an optimal finite combination from an infinite parameter space
of kernels. Contemporary to these results, [18] showed that if a large number of kernels had a desir-
able shared structure (e.g., followed directed acyclic dependencies), extensions of MKL could still
be applied. Recently in [8], a set of base classifiers were first trained using each kernel and were
then boosted to produce a strong multi-class classifier. At this time, MKL methods [8, 9] provide
some of the best known accuracy on image categorization datasets such as Caltech101/256 (see
www.robots.ox.ac.uk/˜vgg/software/MKL/). Next, we describe in detail the motiva-
tion and theoretical properties of Q-MKL .
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2 From MKL to Q-MKL
MKL Models. Adding kernels corresponds to taking a direct sum of Reproducing Kernel Hilbert
spaces (RKHS), and scaling a kernel by a constant c scales the axes of it’s RKHS by

√
c. In the

MKL setting, the SVM margin regularizer 1
2‖w‖

2 becomes a weighted sum 1
2

∑M
m=1

‖wm‖2Hm

βm
over

contributions from RKHS’s H1, . . . ,HM , where the vector of mixing coefficients β scales each
respective RKHS [14]. A norm penalty on β ensures that the units in which the margin is measured
are meaningful (provided the base kernels are normalized). The MKL primal problem is given as

min
w,b,β≥0,ξ≥0

1

2

M∑
m

‖wm‖2Hm

βm
+ C

n∑
i

ξi + ‖β‖2p s.t. yi

(
M∑
m

〈wm, φm(xi)〉Hm + b

)
≥ 1− ξi, (1)

where φm(x) is the (potentially unknown) transformation from the original data space to the mth

RKHSHm. As in SVMs, we turn to the dual problem to see the role of kernels:

max
0≤α≤C

αT1− 1

2
‖G‖q, G ∈ RM ;Gm = (α ◦ y)TKm(α ◦ y), (2)

where ◦ denotes element-wise multiplication, and the dual q-norm follows the identity 1
p + 1

q = 1.
Note that the primal norm penalty ‖β‖2p becomes a dual-norm on the vector G. At optimality,

wm = βm(α ◦ y)Tφm(X), and so the term Gm = (α ◦ y)TKm(α ◦ y) =
‖wm‖2Hm

β2
m

is the vector
of scaled classifier norms. This shows that the dual norm is tied to how MKL measures the margin
in each RKHS.

The Q-MKL model. The key characteristic of Q-MKL is that the standard (squared) `p-norm
penalty on β, along with the corresponding dual-norm penalty in (2), is substituted with a more
general class of quadratic penalty functions, expressed as βTQβ = ‖β‖2Q. ‖β‖Q =

√
βTQβ is a

Mahalanobis (matrix-induced) norm so long as Q � 0. In this framework, the burden of choosing
a kernel is deferred to a choice of Q-function. This approach gives the algorithm greater flexibility
while controlling model complexity, as we will discuss shortly. The model we optimize is,

min
w,b,β≥0,ξ≥0

1

2

M∑
m

||wm||2Hm

βm
+ C

n∑
i

ξi + βTQβ s.t. yi

(
M∑
m

〈wm, φm(xi)〉Hm + b

)
≥ 1− ξi, (3)

where the last objective term provides a bias relative to βTQβ. The dual problem becomes
maxα α

T1 − 1
2

√
GTQ−1G. It is easy to see that if Q = 1M×M , we obtain the p = 1 form

of (1), i.e., 1-norm MKL, as a special case because βT1M×Mβ = ‖β‖21. On the other hand, setting
Q to IM×M (identity), reduces to 2-norm MKL.

3 The case for Q-MKL
Extending the MKL regularizer to arbitrary quadratics Q � 0 significantly expands the richness
of the MKL framework; yet we can show that for reasonable choices of Q, this actually decreases
MKL’s learning-theoretic complexity. Joachims et al. [19] derived a theoretical generalization error
bound on kernel combinations which depends on the degree of redundancy between support vectors
in SVMs trained on base kernels individually. Using this type of correlational structure, we can
derive a Q function between kernels to automatically select a combination of kernels which will
maximize this bound. This type of Q function can be shown to have lower Rademacher complexity,
(see below,) while simultaneously decreasing the error bound from [19], which does not directly
depend on Rademacher complexity.

3.1 Virtual Kernels, Rademacher Complexity and Renyi Entropy
If we decompose Q into its component eigen-vectors, we can see that each eigen-vector defines
a linear combination of kernels. This observation allows us to analyze Q-MKL in terms of these
objects, which we will refer to as Virtual Kernels. We first show that as Q−1’s eigen-values decay,
so do the traces of the virtual kernels. Assuming Q−1 has a bounded, non-uniform spectrum, this
property can then be used to analyze, (and bound), Q-MKL’s Rademacher complexity, which has
been shown to depend on the traces of the base kernels. We then offer a few observations on how
Q−1’s Renyi entropy [20] relates to these learning theoretic bounds.
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Virtual Kernels. In the following, assume that Q � 0, and has eigen-decomposition Q = V ΛV ,
with V = {v1, · · · , vM}. First, observe that because Q’s eigen-vectors provide an orthonormal basis
of RM , β ∈ RM can be expressed as a linear combination in this basis with γ as its coefficients:
β =

∑
i γivi = V γ. Substituting in βTQβ we have

βTQβ = (γTV T )V ΛV T (V γ) = γT (V TV )Λ(V TV )γ = γTΛγ =
∑
i

γ2
i λi (4)

This simple observation offers an alternate view of what Q-MKL is actually optimizing. Each
eigen-vector vi of Q can be used to define a linear combination of kernels, which we will refer to as
virtual kernel K̃i =

∑
m vi(m)Km. Note that if K̃i � 0, ∀ i, then they each define an independent

RKHS. This can be ensured by choosing Q in a specific way, if desired. This leads to the following
result:
Lemma 1. If K̃i � 0,∀i, then Q-MKL is equivalent to 2-norm MKL using virtual kernels instead
of base kernels.

Proof. Let µi = γi
√
λi. Then βTQβ = ‖µ‖22, (eq. 4) and K∗ =

∑
m βmKm

=
∑M
m

∑M
i γivi(m)Km =

∑M
i µiλ

− 1
2

∑M
m vi(m)Km =

∑M
i µiK̃i, where K̃i =

λ−
1
2

∑M
m vi(m)Km is the ith virtual kernel. The learned kernel K∗ is a weighted combination

of virtual kernels, and the coefficients are regularized under a squared 2-norm.

Rademacher Complexity in MKL. With this result in hand, we can now evaluate the Rademacher
complexity of Q-MKL by using a recent result for p-norm MKL. We first state a theorem from [21],
which relates the Rademacher complexity of MKL to the traces of its base kernels.
Theorem 1. ([21]) The empirical Rademacher complexity on a sample set S of size n, with M base
kernels is given as follows (with η0 = 23

22 ),

RS(HMp) ≤
√
η0q‖u‖q
n

(5)

where u = [Tr(K1), · · · ,Tr(KM )]
T and 1

p + 1
q = 1.

The bound in (5) shows that the Rademacher complexity RS(·) depends on ‖u‖q , a norm on the base
kernels’ traces. Assuming they are normalized to have unit trace, the bound for p = q = 2-norm
MKL is governed by ‖u‖2 =

√
M . However, in Q-MKL the virtual kernels traces are not equal,

and are in fact given by Tr(K̃i) = 1T vi√
λi

. With this expression for the traces of the virtual kernels,
we can now prove that the bound given in (5) is strictly decreased as long as the eigen-values ψi of
Q−1 are in the range (0, 1]. (Adding 1 to the diagonal of Q is sufficient to guarantee this.)

Theorem 2. If Q−1 6= IM×M and K̃i � 0 ∀i then the bound on Rademacher complexity given in
(5) is strictly lower for Q-MKL than for 2-norm MKL.

Proof. By Lemma 1, we have that the bound in (5) will decrease if ‖u‖2, the norm on the virtual
kernel traces, decreases. As shown above, the virtual kernel traces are given as Tr(K̃i) =

√
ψi1

T vi,
meaning that ‖u‖22 =

∑N
i ψi(1

T vi)
2 =

∑N
i ψi1

T viv
T
i 1 = 1TQ−11. Clearly, this sum is maxi-

mal for ψi = 1, ∀i, which is true if and only if Q−1 = IM×M . This means that when Q 6= IM×M ,
then the bound in (5) is strictly decreased.

Note that requiring the virtual kernels to be p.s.d., while achievable (see supplements,) is somewhat
restrictive. In practice, such a Q matrix may not differ substantially from IN×N . We therefore
provide the following result which frees us from this restriction, and has more practical significance.
Theorem 3. Q-MKL is equivalent to the following model:

min
w,b,µ,ξ≥0

1

2

M∑
m

‖wm‖2Vm
µm

+ C

n∑
i

ξi + ‖µ‖22 (6)

s.t. yi

(
M∑
m

〈wm, φm(xi)〉Vm + b

)
≥ 1− ξi, Q−

1
2 µ ≥ 0,

where φm() is the feature transform mapping data space to the mth virtual kernel, denoted as Vm.
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While the virtual kernels themselves may be indefinite, recall that µ = Q
1
2 β, and so the constraint

Q−
1
2µ ≥ 0 is equivalent to β ≥ 0, guaranteeing that the combined kernel will be p.s.d. This

formulation is slightly different than the 2-norm MKL formulation, however it does not alter the
theoretical guarantee of [21], providing a stronger result.

Renyi Entropy. Renyi entropy [20] significantly generalizes the usual notion of Shannon entropy
[22, 23, 24], has applications in Statistics and many other fields, and has recently been proposed as
an alternative to PCA [22]. Thm. 2 points to an intuitive explanation of where the benefit from a
Q regularizer comes from as well, if we analyze the Renyi entropy of the distribution on kernels
defined by Q−1, if we treat Q−1 as a kernel density estimator. The quadratic Renyi entropy of a
probability measure is given as,

H(p) = − log

∫
p2(x)dx.

Now, if we use a kernel function (i.e., Q−1), and a finite sample (i.e., base kernels), as a kernel
density estimator, (cf. [15],) then with some normalization we can derive an estimate of the un-
derlying probability p̂, which is a distribution over base kernels. We can then interpret its Renyi
entropy as a complexity measure on the space of combined kernels. Eq. (5.2) in [23] relates the
virtual kernel traces to the Renyi entropy estimator of Q−1 as

∫
p̂2(x)dx = 1

N21
TQ−11,1 which

leads to a nice connection to Thm. 2. This view informs us that setting Q−1 = IM×M , (i.e., 2-norm
MKL), has maximal Renyi entropy because it is maximally uninformative; adding structure to Q−1

concentrates p̂, reducing both its Renyi entropy, and Rademacher complexity together.

This series of results suggests an entirely new approach to analyzing the Rademacher complexity of
MKL methods. The proof of Thm. 2 relies on decreasing a norm on the virtual kernel traces, which
we now see directly relates to the Renyi entropy of Q−1, as well as with decreasing the Rademacher
complexity of the search space of combined kernels. It is even possible that by directly analyzing
Renyi entropy in a multi-kernel setting, this conjecture may be useful in deriving analogous bounds
in, e.g., Indefinite Kernel Learning [25], because the virtual kernels are indefinite in general.

3.2 Special Cases: Q-SVM and relative margin
Before describing our optimization strategy, we discuss several variations on the Q-MKL model.

Q-SVM. An interesting special case of Q-MKL is Q-SVM, which generalizes several recent, (but
independently developed,) models in the literature [26, 27]. If the base kernels are rank-1, (i.e.,
singleton features,) then each coefficient βm effectively becomes a feature weight, and a 2-norm
penalty on β is a penalty on weights. Q-MKL therefore reduces to a form of SVM in which ‖w‖2
becomes wTQw. Thus, in such cases we can reduce the Q-MKL model to a simple QP, which we
call Q-SVM . Please refer to the supplements for details, and some experimental results.

Relative Margin. Several interesting extensions to the SVM and MKL frameworks have been
proposed which focus on the relative margin methods [28, 29] which maximize the margin relative
to the spread of the data. In particular Q-MKL can be easily modified to incorporate the Relative
Margin Machine (RMM) model [28] by replacing Module 1 as in (7) with the RMM objective. Our
alternating optimization approach, (described next,) is not affected by this addition; however, the
additional constraints would mean that SMO-based strategies would not be applicable.

4 Optimization
We now present the core engine to solve (3). Most MKL implementations make use of an alternating
minimization strategy which first minimizes the objective in terms of the SVM parameters, and
then with respect to the sub-kernel weights β. Since the MKL problem is convex, this method
leads to global convergence [7, 14] and minor modifications to standard SVM implementations are
sufficient. Q-MKL generalizes ‖β‖2p to arbitrary convex quadratic functions, while the feasible set
is the same as for MKL. This directly gives that the Q-MKL model in (3) is convex. We will broadly
follow this strategy, but as will become clear shortly, interaction between sub-kernel weights makes
the optimization of β more involved (than [6, 14]), and requires alternative solution mechanisms.
We may consider this process as a composition of two modules: one which solves for SVM dual
parameters (α) with fixed β, and the other for solving for β with fixed α:

1Note that this involves a Gaussian assumption, but [24] provides extensions to non-Gauss kernels.
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(Module 1) (Module 2)

max
0≤α≤C

αT1− αTY KY α s.t.αT y = 0 (7) min
β≥0

∑
m

‖wm‖2

βm
s.t.βTQβ ≤ 1 (8)

Using a result from [14] we can replace the βTQβ objective term with a quadratic constraint, which
gives the problem in (8). Notice that (8) has a sum of ratios with optimization variables in the de-
nominator, while the constraint is quadratic – this means that standard convex optimization toolkits
may not be able to solve this problem without significant reformulation from its canonical form in
(8). Our approach is to search for a stationary point by representing the gradient as a non-linear
system. Writing the gradient in terms of the Lagrange multiplier δ, and setting it equal to 0 gives:

‖wm‖2Hm

β2
m

− δ(Qβ)m = 0, ∀m ∈ {1, · · · ,M}. (9)

We now seek to eliminate δ so that the non-linear system will be limited to quadratic terms in
β, allowing us to use a non-linear system solver. Let W = Diag(‖w1‖2H1

, . . . , ‖wM‖2HM
), and

β−2 = (β−21 , . . . , β−2M ). We can then write Wβ−2 = δ(Qβ). Now, solving for β (on the right hand
side) gives

β =
1

δ
Q−1Wβ−2 (10)

Because Q � 0, and β ≥ 0, at optimality the constraint βTQβ ≤ 1 must be active. So, we can
plug in the above identity to solve for δ,

1 =

(
1

δ
Q−1Wβ−2

)T
Q

(
1

δ
Q−1Wβ−2

)
δ =

√
(Wβ−2)TQ−1(Wβ−2) = ‖Wβ−2‖Q−1 , (11)

which shows that δ effectively normalizes Wβ−2 according to Q−1. We can now solve (10) in
terms of β using a nonlinear root finder, such as the GNU Scientific Library; in practice this method
is quite efficient, typically requiring 10 to 20 outer iterations. Putting these parts together, we can
propose following algorithm for optimizing Q-MKL:

Algorithm 1. Q-MKL
Input: Kernels {K1, · · · ,KM}; Q � 0 ∈ RM×M ; labels y ∈ {±1}N .
Outputs: α, b, β
β(0) = 1

M
; t = 0 (iterations)

while not optimal do
K(t) ←

∑
m β

(t)
m Km

α(t), b(t) ← SVM(K(t), C, y) (Module 1, (7))
Wmm = α(t)TK

(t)
m α(t)(β

(t)
m )2

β(t+1) ← arg min (Problem(8)) (Module 2, (8))
t = t+ 1

end while

4.1 Convergence
We can show that our model can be solved optimally by noting that Module 2 can be precisely
optimized at each step. If Module 2 cannot be solved precisely, then Algorithm 1 may not converge.
The following result assures us that indeed Module 2 can be solved precisely by reducing it to a
convex Semi-Definite Program (SDP).
Theorem 4. The solution to Problem (8) is the same as the solution to the following SDP:

min
ν≥0,β≥0,Z∈RM×M

wT ν (12)

subject to
[
νm 1
1 βm

]
� 0, ∀m

[
1 βT

β Z

]
� 0, Tr(QZ) ≤ 1. (13)

Proof. The first PSD constraint (13) requires that νm = β−1m , meaning that objective (12) is the
same as that of Problem (8). From the second we have Z = ββT , and so Tr(QZ) = βTQβ;
therefore the feasible sets are equivalent.
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(a) (b) (c) (d)

Figure 1: Comparison of spatial smoothness of weights chosen by Q-SVM and SVM with gray matter (GM)
density maps. Left (a-b): weights given by a standard SVM; Right (c-d): weights given by Q-SVM .

The last PSD constraint is only necessary to ensure that βTQβ ≤ 1, and can be replaced with that
quadratic constraint. Doing so yields a Second-Order Cone Program (SOCP) which is also amenable
to standard solvers. Note that it is not necessary to solve for β as an SDP, though it may nevertheless
be an effective solution mechanism, depending on the size and characteristics of the problem.

5 Experiments
We performed extensive experiments to validate Q-MKL, examine the effect it has on β, and to
assess its advantages in the context of our motivating neuroimaging application. In these main
experiments, we demonstrate how domain knowledge can be adapted to improve the algorithm’s
performance. Our focus on a practical application is intended as a demonstration of how domain
knowledge can be seamlessly incorporated into a learning model, giving significant gains in accu-
racy. We also performed experiments on the UCI repositories, which are described in detail in the
supplements. Briefly, in these experiments Q-MKL performed as well as, or better than, 1- and
2-norm MKL on most datasets, showing that even in the absence of significant domain knowledge,
Q-MKL can still perform about as well as existing MKL methods.

Image preprocessing. In out main experiments we used brain scans of AD patients and Cognitively
Normal healthy controls (CN) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [30]
in a set of cross-validation experiments. ADNI is a landmark study sponsored by the NIH, major
pharmaceuticals and others to determine the extent to which multi-modal brain imaging can help pre-
dict on-set, and monitor progression of, AD. To this end, MKL-type methods have already defined
the state of the art for this application [3, 4]. For our experiments, 48 AD subjects and 66 controls
were chosen who had both T1-weighted MR scans and Fluoro-Deoxy-Glucose PET (FDG-PET)
scans at two time-points two years apart. Standard diffeomorphic methods, known generally as
Voxel-Based Morphometry (VBM), (see SPM, www.fil.ion.ucl.ac.uk/spm/) were used
to register scans to a common template and calculate Gray Matter (GM) densities at each voxel in
the MR scans. We also used Tensor-Based Morphometry (TBM) to calculate maps of longitudinal
voxel-wise expansion or contraction over a two year period. Feature selection was performed sep-
arately in each set of images by sorting voxels by t-statistic (calculated using training data), and
choosing the highest 2000, 5000, 10000,. . . ,250000 voxels in 8 stages. We used linear, quadratic,
and Gaussian kernels: a total of 24 kernels per set, (GM maps, TBM maps, baseline FDG-PET,
FDG-PET at 2-year follow up) for a total of 96 kernels. For Q-matrix we used the Laplacian of
covariance between single-kernel α parameters, (recall the motivation from [19] in Section 3,) plus
a block-diagonal representing clusters of kernels derived from the same imaging modalities.

5.1 Spatial SVM
Before describing out main experiments, we first return to the Q-SVM model briefly mentioned
in 3.2. To demonstrate that Q-regularizers indeed influence the learned classifier, we performed
classification experiments with the Laplacian of the inverse distance between voxels as a Q matrix,
and voxel-wise GM density (VBM) as features. Using 10-fold cross-validation with 10 realizations,
Q-SVM ’s accuracy was 0.819, compared to the regular SVM’s accuracy of 0.792. These accuracies
are significantly different at the α = 0.0005 level under a paired t-test. In Fig. 1 we show a
comparison of weights trained by a regular SVM (a–b), and those trained by a spatially regularized
SVM, (c–d). Note the greater spatial smoothness, and lower incidence of isolated “pockets”.
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5.2 Multi-modality Alzheimer’s disease (AD) prediction

Regularizer Acc. Sens. Spec.
‖β‖1-MKL 0.864 0.771 0.931
‖β‖1.5-MKL 0.875 0.790 0.936
‖β‖2-MKL 0.875 0.789 0.938

Covα 0.884 0.780 0.942
Lap.(Covα) 0.884 0.785 0.955

Lap.(Covα) + diag 0.888 0.786 0.956

Table 1: Comparison of Q-MKL & MKL. Bold
numerals indicate methods not differing from the
best at the 0.01 level using a paired t-test. Lap. =
“Laplacian”; diag = “Block-diagonal”.

Next, we performed multi-modality AD prediction
experiments using all 96 kernels across two modal-
ities: MR provides structural information, while
FDG-PET assesses hypo-metabolism. Further, we
may use several image processing pipelines. Due
to the inherent similarities in how the various ker-
nels are derived, there are clear cluster structures /
behaviors among the kernels, which we would like
to exploit using Q-MKL. We used 10-fold cross-
validation with 30 realizations, for a total of 300
folds. Accuracy, sensitivity and specificity were av-
eraged over all folds. For comparison we also exam-
ined 1-, 1.5-, and 2-norm MKL. As MKL methods
have emerged as the state of the art in this domain [3, 4], and have performed favorably in exten-
sive evaluations against various baselines such as single-kernel methods, and naı̈ve combinations,
we therefore focus our analysis on comparison with existing MKL methods. Results are shown in
Table 1. Q-MKL had the highest performance overall, reducing the error rate from 12.5% to 11.2%.
(Significant at the α = 0.001 level.) Note that the in vivo diagnostic error rate for AD is believed to
be near 8–10%, meaning that this improvement is quite significant. The primary benefit of current
sparse MKL methods is that they effectively filter out uninformative or noisy kernels, however, the
kernels used in these experiments are all derived from clinically relevant neuroimaging data, and are
thus highly reliable. Q-MKL’s performance suggests that it boosts the overall accuracy.

Virtual kernel analysis. We next turn to an analysis of the covariance structures found in the data
empirically as a concrete demonstration of the type of patterns towards which the Q-MKL regular-
izer biases β. Recall that Q’s eigen-vectors can show which patterns are encouraged or deterred,
in proportion to their eigen-values. In Fig. 2, we compare the Q matrix used in the ADNI exper-
iments, based on the correlations of single-kernel α parameters (a), the 3 least eigenvectors of its
graph Laplacian (b–d), and the β vector optimized by Q-MKL . In (a), we can see that while the
VBM (first block of 24 kernels) and TBM (second block of kernels) are highly correlated, they ap-
pear to be fairly uncorrelated to one another. The FDG-PET kernels (last 48 kernels) are much more
strongly interrelated. Interestingly, the first eigenvector is almost entirely devoted to two large blocks
of kernels – those which come from MRI data, and those which come from FDG-PET data. The
positive elements in the off-diagonal encourage sparsity within these two super-blocks of kernels.
Somewhat to the contrary, the next two eigenvecors have negative weights in the region between
TBM and VBM kernels, encouraging non-sparsity between these two blocks. In (e) we see that the
optimized β discards most TBM kernels, (but not all,) putting the strongest weight on a few VBM
kernels, and keeps a wider distribution of the FDG-PET kernels.

Conclusion. MKL is an elegant method for aggregating multiple data views, and is being exten-
sively adopted for a variety of problems in machine learning, computer vision, and neuroimaging.
Q-MKL extends this framework to exploit higher order interactions between kernels using super-
vised, unsupervised, or domain-knowledge driven measures. This flexibility can impart greater
control over how the model utilizes cluster structure among kernels, and effectively encourage can-
cellation of errors wherever possible. We have presented a convex optimization model to efficiently
solve the resultant model, and shown experiments on a challenging problem of identifying AD
based on multi modal brain imaging data (obtaining statistically significant improvements). Our im-
plementation will be made available within the Shogun toolbox (www.shogun-toolbox.org).

(a) (b) (c) (d) (e)

Figure 2: Cov. Q used in AD experiments (a); three least graph Laplacian eigen-vectors (b-d); outer product
of optimized β (e). Note the block structure in (a–d) relating to the imaging modalities and kernel functions.
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