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Abstract
First-order probabilistic models combine the power of first-order logic, the de
facto tool for handling relational structure, with probabilistic graphical models,
the de facto tool for handling uncertainty. Lifted probabilistic inference algorithms
for them have been the subject of much recent research. The main idea in these
algorithms is to improve the accuracy and scalability of existing graphical models’
inference algorithms by exploiting symmetry in the first-order representation. In
this paper, we consider blocked Gibbs sampling, an advancedMCMC scheme,
and lift it to the first-order level. We propose to achieve this by partitioning the
first-order atoms in the model into a set of disjoint clusterssuch that exact lifted
inference is polynomial in each cluster given an assignmentto all other atoms not
in the cluster. We propose an approach for constructing the clusters and show how
it can be used to trade accuracy with computational complexity in a principled
manner. Our experimental evaluation shows that lifted Gibbs sampling is superior
to the propositional algorithm in terms of accuracy, scalability and convergence.

1 Introduction

Modeling large, complex, real-world domains requires the ability to handle both rich relational struc-
ture and large amount of uncertainty. Unfortunately, the two existing representation and reasoning
tools of choice – probabilistic graphical models (PGMs) andfirst-order logic – are unable to effec-
tively handle both. PGMs can compactly represent and reasonabout uncertainty. However, they are
propositional and thus ill-equipped to handle relational structure. First-order logic can effectively
handle relational structure. However, it has no representation for uncertainty. Therefore, combin-
ing the representation and reasoning power of first-order logic with PGMs is a worthwhile goal.
Statistical relational learning (SRL) [7] is an emerging field which attempts to do just that.

The key task in SRL is inference - the problem of answering a query given an SRL model. In prin-
ciple, we can simply ground (propositionalize) the given SRL model to yield a PGM and thereby
solve the inference problem in SRL by reducing it to inference over PGMs. This approach is prob-
lematic and impractical, however, because the PGMs obtained by grounding a SRL model can be
substantially large, having millions of variables and billions of features; existing inference algo-
rithms for PGMs are unable to handle problems at this scale. An alternative approach, which has
gained prominence since the work of Poole [25] is lifted or first-order inference. The main idea,
which is similar to theorem proving in first-order logic, is to take a propositional inference algo-
rithm and exploit symmetry in its execution by performing inference over a group of identical or
interchangeable random variables. The algorithms are called lifted algorithms because they identify
symmetry by consulting the first-order representation without grounding the model.

Several lifted algorithms have been proposed to date. Prominent exact algorithms are first-order
variable elimination [25] and its extensions [2, 23], whichlift the variable elimination algorithm, and
probabilistic theorem proving (PTP) [8] which lifts the weighted model counting algorithm [1, 29].
Notable approximate inference algorithms are lifted Belief propagation [30] and lifted importance
sampling [8, 9], which lift belief propagation [20] and importance sampling respectively.
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In this paper, we lift blocked Gibbs sampling, an advanced MCMC technique. Blocked Gibbs
sampling improves upon the Gibbs sampling algorithm by grouping variables (each group is called
a block) and then jointly sampling all variables in the block[10, 16]. Blocking improves the mixing
time and as a result improves both the accuracy and convergence of Gibbs sampling. The difficulty
is that to jointly sample variables in a block, we need to compute a joint distribution over them. This
is typically exponential in the treewidth of the ground network projected on the block.

Several earlier papers have attempted to exploit relational or first-order structure in MCMC sam-
pling. Notable examples are lazy MC-SAT [27], Metropolis-Hastings MCMC for Bayesian logic
(BLOG) [18], typed MCMC [14] and orbital MCMC [21]. Unfortunately, none of the aforemen-
tioned techniques are truly lifted. In particular, they do not exploit first-order structure to the fullest
extent. In fact, lifting a generic MCMC technique is difficult because at each point in order to ensure
convergence to the desired stationary distribution one hasto maintain an assignment to all random
variables in the ground network. We circumvent these issuesby lifting the blocked Gibbs sampling
algorithm, which as we show is more amenable to lifting.

Our main idea in applying the blocking approach to SRL modelsis to partition the set of first-order
atoms in the model into disjoint clusters such that PTP (an exact lifted inference scheme) is feasible
in each cluster given an assignment to all other atoms not in the cluster. Given such a set of clusters,
we show that Gibbs sampling is essentially a message passingalgorithm over the cluster graph
formed by connecting clusters that have atoms that are in theMarkov blanket of each other. Each
message from a sender to a receiving cluster is a truth assignment to all ground atoms that are in the
Markov blanket of the receiving cluster. We show how to storethis message compactly by taking
advantage of the first-order representation yielding a lifted MCMC algorithm.

We present experimental results comparing the performanceof lifted blocked Gibbs sampling with
(propositional) blocked Gibbs sampling, MC-SAT [26, 27] and Lifted BP [30] on various bench-
mark SRL models. Our experiments show that lifted Gibbs sampling is superior to blocked Gibbs
sampling and MC-SAT in terms of convergence, accuracy and scalability. It is also more accurate
than lifted BP on some instances.

2 Notation and Preliminaries

In this section, we describe notation and preliminaries on propositional logic, first-order logic,
Markov logic networks and Gibbs sampling. For more details,refer to [3, 13, 15].

The language of propositional logic consists of atomic sentences called propositions or atoms, and
logical connectives such as∧ (conjunction),∨ (disjunction),¬ (negation),⇒ (implication) and⇔
(equivalence). Each proposition takes values from the binary domain{False,True} (or {0, 1}).
A propositional formulaf is an atom, or any complex formula that can be constructed from atoms
using logical connectives. For example,A, B andC are propositional atoms andf = A ∨ ¬B ∧ C is a
propositional formula. Aknowledge base(KB) is a set of formulas. Aworld is a truth assignment
to all atoms in the KB.

First-order logic (FOL) generalizes propositional logic by allowing atoms to have internal structure;
an atom in FOL is a predicate that represents relations between objects. A predicate consists of a
predicate symbol, denoted by Monospace fonts, e.g.,Friends, Smokes, etc., followed by a paren-
thesized list of arguments calledterms. A term is a logical variable, denoted by lower case letters
such asx, y, z, etc., or a constant, denoted by upper case letters such asX , Y , Z, etc. We assume
that each logical variable, e.g.,x is typed and takes values over a finite set∆x. The language of FOL
also includes two quantifiers:∀ (universal) and∃ (existential) which express properties of an entire
collection of objects. A formula in first order logic is a predicate (atom), or any complex sentence
that can be constructed from atoms using logical connectives and quantifiers. For example, the for-
mula∀x Smokes(x) ⇒ Asthma(x) states that all persons who smoke have asthma.∃x Cancer(x)
states that there exists a personx who has cancer. Afirst-order KBis a set of first-order formulas.

In this paper, we use a subset of FOL which has no function symbols, equality constraints or existen-
tial quantifiers. We also assume that domains are finite (and therefore function-free) and that there is
a one-to-one mapping between constants and objects in the domain (Herbrand interpretations). We
assume that each formulaf is of the form∀x f , wherex are the set of variables inf andf is a
conjunction or disjunction of literals; each literal beingan atom or its negation. For brevity, we will
drop∀ from all the formulas. Given variablesx = {x1, . . . , xn} and constantsX = {X1, . . . , Xn}
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whereXi ∈ ∆xi
, f [X/x] is obtained by substituting every occurrence of variablexi in f with Xi.

A ground formula is a formula obtained by substituting all ofits variables with a constant. A ground
KB is a KB containing all possible groundings of all of its formulas. For example, the grounding
of a KB containing one formula,Smokes(x) ⇒ Asthma(x) where∆x = {Ana,Bob}, is a KB
containing two formulas:Smokes(Ana) ⇒ Asthma(Ana) andSmokes(Bob) ⇒ Asthma(Bob). A
world in FOL is a truth assignment to all atoms in its grounding.

Markov logic [3] extends FOL by softening the hard constraints expressed by the formulas and
is arguably the most popular modeling language for SRL. A soft formula or a weighted formula
is a pair(f, w) wheref is a formula in FOL andw is a real-number. A Markov logic network
(MLN), denoted byM, is a set of weighted formulas(fi, wi). Given a set of constants that represent
objects in the domain, a Markov logic network defines a Markovnetwork or a log-linear model. The
Markov network is obtained by grounding the weighted first-order knowledge base and represents
the following probability distribution.

PM(ω) =
1

Z(M)
exp

(
∑

i

wiN(fi, ω)

)
(1)

whereω is a world,N(fi, ω) is the number of groundings offi that evaluate toTrue in the world
ω andZ(M) is a normalization constant or the partition function.

In this paper, we assume that the input MLN to our algorithm isin normal form [11, 19]. We
require this for simplicity of exposition. Our main algorithm can be easily modified to work with
other canonical forms such as parfactors [25] and first orderCNFs with substitution constraints [8].
However, its specification becomes much more complicated and messy. AnormalMLN [11] is an
MLN that satisfies the following two properties: (1) There are no constants in any formula, and (2)
If two distinct atoms with the same predicate symbol have variablesx andy in the same position
then∆x = ∆y. Note that in a normal MLN, we assume that the terms in each atom are ordered and
therefore we can identify each term by its position in the order.

2.1 Gibbs Sampling and Blocking

Given an MLN, a set of query atoms and evidence, we can adapt the basic (propositional) Gibbs sam-
pling [6] algorithm for computing the marginal probabilities of query atoms given evidence as fol-
lows. First, we ground all the formulas in the MLN, yielding aMarkov network. Second, we instan-
tiate all the evidence atoms in the network. Assume that the resulting evidence-instantiated network
is defined over a set of variablesX. Third, we generateN samples(x̄(1), . . . , x̄(N)) (a sample is a
truth assignment to all random variables in the Markov network) as follows. We begin with a random
assignment to all variables, yieldinḡx(0). Then fort = 1, . . . , N , we perform the following steps.
Let (X1, . . . , Xn) be an arbitrary ordering of variables inX. Then, fori = 1 ton, we generate a new
valuex̄(t)

i for Xi by sampling a value from the distributionP (Xi|x̄t
1, . . . , x̄

t
i−1, x̄

(t−1)
i+1 , . . . , x̄

(t−1)
n ).

(This is often called systematic scan Gibbs sampling. An alternative approach is random scan Gibbs
sampling which often converges faster than systematic scanGibbs sampling). For conciseness, we
will write P (Xi|x̄

(t)
−i) = P (Xi|x̄t

1, . . . , x̄
t
i−1, x̄

(t−1)
i+1 , . . . , x̄

(t−1)
n ). Once the requiredN samples

are generated, we can use them to answer any query over the model. In particular, the marginal
probability for each variable can be estimated by averagingthe conditional marginals:

P̂ (x̄i) =
1

N

N∑

t=1

P (x̄i|x̄
(t)
−i)

Note that in Markov networks,P (Xi|x̄
(t)
−i) = P (Xi|x̄

(t)
−i,MB(Xi)

) whereMB(Xi) is the Markov

Blanket (the set of variables that share a function withXi) of Xi andx̄(t)
−i,MB(Xi)

is the projection

of x̄(t)
−i onMB(Xi).

The sampling distribution of Gibbs sampling converges to the posterior distribution (the distribu-
tion associated with the evidence instantiated Markov network) as the number of samples increases
because the resulting Markov chain is guaranteed to be aperiodic and ergodic (see [15] for details).

The main idea in blocked Gibbs sampling [10] is grouping variables to form a block, and then
jointly sampling all variables in a block given an assignment to all other variables not in the block.
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Blocking improves mixing yielding a more accurate samplingalgorithm [15]. However, the compu-
tational complexity of jointly sampling all variables in a block typically increases with the treewidth
of the Markov network projected on the block. Thus, in practice, given time and memory resource
constraints, the main issue in blocked Gibbs sampling is finding the right balance between compu-
tational complexity and accuracy.

3 Our Approach

We illustrate the key ideas in our approach using an example MLN having two weighted formulas:
R(x, y) ∨ S(y, z), w1 andS(y, z) ∨ T(z, u), w2. Note that the problem of computing the partition
function of this MLN for arbitrary domain sizes is non-trivial; it cannot be polynomially solved
using existing exact lifted approaches such as PTP [8] and lifted VE [2].

Our main idea is to partition the set of atoms into disjoint blocks (clusters) such that PTP is poly-
nomial in each cluster and then sample all atoms in the cluster jointly. PTP is polynomial if we can
recursively apply its two lifting rules (defined next), thepower ruleand thegeneralized binomial
rule, until the treewidth of the remaining ground network is bounded by a constant.

The power rule is based on the concept of a decomposer. Given anormal MLNM, a set of logical
variables, denoted byx, is called adecomposerif it satisfies the following two conditions: (i) Every
atom inM contains exactly one variable fromx, and (ii) For any predicate symbolR, there exists a
position s.t. variables fromx only appear at that position in atoms ofR. Given a decomposerx, it
is easy to show thatZ(M) = [Z(M[X/x])]|∆x| wherex ∈ x andM[X/x] is the MLN obtained
by substituting all logical variablesx in M by the same constantX ∈ ∆x and then converting the
resulting MLN to a normal MLN. Note that for any two variablesx, y in x, ∆x = ∆y by normality.

The generalized binomial rule is used to sample singleton atoms efficiently (the rule also re-
quires that the atom is not involved in self-joins, i.e., it does not appear more than once in
the same formula). Given a normal MLNM having a singleton atomR(x), we can show that
Z(M) =

∑|∆x|
i=0

(
|∆x|
i

)
Z(M|R̄i)w(i)2p(i) whereR̄i is a sample ofR s.t. exactlyi tuples are set to

True. M|R̄i is the MLN obtained fromM by performing the following steps in order: (i) Ground
all R(x) and set its groundings to have the same assignment asR

i, (ii) Delete formulas that evaluate
to eitherTrue or False, (iii) Delete all groundings ofR(x) and (iv) Convert the resulting MLN
to a normal MLN.w(i) is the exponentiated sum of the weights of formulas that evaluate toTrue
andp(i) is the number of ground atoms that are removed from the MLN as aresult of removing
formulas (these are essentially don’t care atoms which can be assigned to eitherTrue or False).

R(x, y) S(y, z)

T(z, u)

y

z

(a) Clustering 1

R(x,y)
S(y,z)

T(z, u)

z

(b) Clustering 2
Figure 1: Two possible clusterings for
lifted blocked Gibbs sampling on the exam-
ple MLN having two weighted formulas.

Now, let us apply the clustering idea to our example
MLN. Let us put each first-order atom in a cluster by
itself, namely we have three clusters:R(x, y), S(y, z)
andT(z, u) (see Figure 1(a)). Note that each (first-order)
cluster represents all groundings of all atoms in the
cluster. To perform Gibbs sampling over this clustering,
we need to compute three conditional distributions:
P (R(x, y)|S̄(y, z), T̄(z, u)), P (S(y, z)|R̄(x, y), T̄(z, u))
and P (T(z, u)|R̄(x, y), S̄(y, z)) where R̄(x, y) denotes
a truth assignment to all possible groundings ofR. Let
the domain size of each variable ben. Naively, given an
assignment to all other atoms not in the cluster, we will
needO(2n

2

) time and space for computing and specifying
the joint distribution at each cluster. This is because there aren2 ground atoms associated with each
cluster. Notice however that all groundings of each first-order atom are conditionally independent
of each other given a truth assignment to all other atoms. In other words, we can apply PTP here
and compute each conditional distribution inO(n3) time and space (since there aren3 groundings
of each formula and we need to process each ground formula at least once). Thus, the complexity
of sampling all atoms in all clusters isO(n3). Note that the complexity of sampling all variables
using propositional Gibbs sampling is alsoO(n3).

Now, let us consider an alternative clustering in which we have two clusters as shown in Figure
1(b). Intuitively, this clustering is likely to yield better accuracy than the previous one because more
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atoms will be sampled jointly. Counter-intuitively, however, as we show next, Clustering 2 will yield
a blocked sampler having smaller complexity than the one based on Clustering 1.

To perform blocked Gibbs sampling over Clustering 2, we needto compute two distribu-
tions P (R(x, y), S(y, z)|T̄(z, u)), P (T(z, u)|R̄(x, y), S̄(y, z)). Let us see how PTP will compute
P (R(x, y), S(y, z)|T̄(z, u)). If we instantiate all groundings ofT, we get the following reduced
MLN {R(x, y) ∨ S(y, Zi), w1}ni=1 and{S(y, Zi), kiw2}ni=1 whereZi ∈ ∆z andki is the number
of False groundings ofT(y, Zi). This MLN contains a decomposery. PTP will now apply the
power rule, yielding formulas of the form{R(x, Y ) ∨ S(Y, Zi), w1}ni=1 and{S(Y, Zi), kiw2}ni=1
whereY ∈ ∆y. R(x, Y ) is a singleton atom and therefore applying the generalized binomial rule,
we will get n + 1 reduced MLNs, each containingn atoms of the form{S(Y, Zi)}ni=1. These
atoms are conditionally independent of each other and a distribution over them can be computed
in O(n) time. Thus, the complexity of computingP (R(x, y), S(y, z)|T̄(z, u)) is O(n2). Samples
for R andS can be generated fromP (R(x, y), S(y, z)|T̄(z, u)) in O(n2) time as well. Notice that
P (T(z, u)|R̄(x, y), S̄(y, z)) = P (T(z, u)|S̄(y, z)) becauseR is not in the Markov blanket ofT. This
distribution can also be computed inO(n2) time. Therefore, the complexity of sampling all atoms
using the clustering shown in Figure 1(b) isO(n2).

Space Complexity: For Clustering 2, notice that to compute the conditional distribution
P (R(x, y), S(y, z)|T̄(z, u)), we only need to know how many groundings ofT(Zi, u) are True in
T̄(z, u) for all Zi ∈ ∆z. ClusterT(z, u) can share this information with its neighbor using only
O(n) space. Similarly, to computeP (T(z, u)|S̄(y, z)) we only need to know how many groundings
of S(y, Zi) are True in̄S(y, z) for all Zi ∈ ∆z. This requiresO(n) space and thus the overall space
complexity of Clustering 2 isO(n). On the other hand, the space complexity of Gibbs sampling
over Clustering 1 isO(n2).

4 The Lifted Blocked Gibbs Sampling Algorithm

Next, we will formalize the discussion in the previous section yielding a lifted blocked Gibbs sam-
pling algorithm. We begin with some required definitions.

We define aclusteras a set of first order atoms (these atoms will be sampled jointly in a lifted Gibbs
sampling iteration). Given a set of disjoint clusters{C1, . . . , Cm}, the Markov blanket of a cluster
Ci is the set of clusters that have at least one atom that is in theMarkov blanket of an atom inCi.
Given a MLNM, theGibbs cluster graphis a graphG (each vertex ofG is a cluster) such that: (i)
Each atom in the MLN is in exactly one cluster ofG (ii) Two clustersCi andCj in G are connected
by an edge ifCj is in the Markov blanket ofCi. Note that by definition ifCi is in the Markov
blanket ofCj , thenCj is in the Markov blanket ofCi.

Algorithm 1 : Lifted Blocked Gibbs Sampling
Input : A normal MLN M, a Gibbs cluster graphG, an

integerN and a set of query atoms
Output : A Marginal Distribution over the query atoms
begin1

for t = 1 toN do2

Let (C1, . . . , Cm) be an arbitrary ordering of3

clusters ofG
// Gibbs iteration
for i = 1 tom do4

M(Ci) = MLN obtained by instantiating the5

Markov Blanket ofCi based on the incoming
messages
ComputeP (Ci) by running PTP onM(Ci)6

Sample a truth assignment to all atoms inCi7

from P (Ci)
Update the estimate of all query atoms inCi8

Update all outgoing messages fromCi9

end10

The lifted blocked Gibbs sampling algorithm (see
Algorithm 1) can be envisioned as a message
passing algorithm over a Gibbs cluster graphG.
Each edge(Ci, Cj) in G stores two messages in
each direction. The message fromCi to Cj con-
tains the current truth assignment to all ground-
ings of all atoms (we will discuss how to rep-
resent the truth assignment in a lifted manner
shortly) that are in the Markov blanket of one or
more atoms inCi. We initialize the messages ran-
domly. Then at each Gibbs iteration, we generate
a sample over all atoms by sampling the clusters
along an ordering(C1, . . . , Cm) (Steps 3-10). At
each cluster, we first use PTP to compute a condi-
tional joint distribution over all atoms in the clus-
ter given an assignment to atoms in their Markov
blanket. This assignment is derived using the in-
coming messages. Then, we sample all atoms in

the cluster from the joint distribution and update the estimate for query atoms in the cluster as well
as all outgoing messages. We can prove that:
Theorem 1. The Markov chain induced by Algorithm 1 is ergodic and aperiodic and its stationary
distribution is the distribution represented by the input normal MLN.
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4.1 Lifted Message Representation

We say that a representation of truth assignments to the groundings of an atom is lifted if we only
specify the number of true (or false) assignments to its fullor partial grounding.
Example 1. Consider an atomR(x, y), where∆x = {X1, X2} and∆y = {Y1, Y2}. We can
represent the truth assignment(R(X1, Y1) = 1, R(X1, Y2) = 0, R(X2, Y1) = 1, R(X2, Y2) = 0) in a
lifted manner using either an integer2 or a vector([Y1, 2], [Y2, 0]). The first representation says that
2 groundings ofR(x, y) are true while the second representation says that2 groundings ofR(x, Y1)
and0 groundings ofR(x, Y2) are true.

Next, we state sufficient conditions for representing a message in a lifted manner while ensur-
ing correctness, summarized in Theorem 2. We begin with a required definition. Given an atom
R(x1, . . . , xp) and a subset of atoms{S1, . . . , Sk} from its Markov blanket, we say that a term at
positioni in R is ashared termw.r.t. {S1, . . . , Sk} if there exists a formulaf such that inf , a logical
variable appears at positioni in R and in one or more atoms in{S1, . . . , Sk}. For instance, in our
running example,y (position 2) is a shared term ofR w.r.t. {S} butx (position 1) is not.
Theorem 2(Sufficient Conditions for a Lifted Message Representation). Given a Gibbs cluster
graphG and an MLNM, let R be an atom inCi and letCj be a neighbor ofCi in G. LetSR,Cj

be
the set of atoms formed by taking an intersection between theMarkov blanket ofR and the union of
the Markov blanket of atoms inCj . Let x be the set of shared terms ofR w.r.t. SR,Cj

∪ Cj andy
be the set of remaining terms inR. Let the outgoing message fromCi to Cj be represented using a
vector of|∆x| pairs of the form[Xk, rk] where∆x is the Cartesian product of the domains of all
terms inx, Xk ∈ ∆x is thek-th element in∆x andrk is the number of groundings ofR(Xk,y) that
are true in the current assignment. If all messages in the lifted Blocked Gibbs sampling algorithm
(Algorithm 1) use the aforementioned representation, thenthe stationary distribution of the Markov
chain induced by the algorithm is the distribution represented by the input normal MLN.

Proof. (Sketch). The generalized Binomial rule states that all MLNs obtained by conditioning on a
singleton atomS with exactlyk of its groundings set to true are equivalent to each other. Inother
words, in order to compute the distribution represented by the MLN conditioned onS, we only need
to know how many groundings ofS are set to true. Next, we will show that the atom obtained by
(partially) grounding the shared termsx of an atomR in clusterCi, namelyR(Xk,y) (wherey is
the set of terms ofR that are not shared) is equivalent to a singleton atom and therefore knowing the
number of groundings ofR(Xk,y) that are set to true is sufficient to compute the joint distribution
over the atoms in clusterCj , whereCi andCj are neighbors inG.

Consider the MLNM′ which is obtained fromM by first removing all formulas that do not mention
atoms inCj and then (partially) grounding all the shared terms ofR. Lety′ be a logical variable such
that its domain∆y′ = ∆y, where∆y is the Cartesian product of the domains of all variables iny

and letR′k(y
′) = R(Xk,y) whereXk ∈ ∆x is thek-th element in∆x. Notice that we can replace

each atomR(Xk,y) in M′ by R′k(y
′) without changing the associated distribution. Moreover, each

atomR
′
k(y

′) is a singleton and therefore it follows from the generalizedBinomial rule that in order
to compute the distribution associated withM′ conditioned onR′k(y

′), we only need to know how
many of its possible groundings are true. SinceCi sends precisely this information toCj using the
message defined in the statement of this theorem, it follows that the lifted Blocked Gibbs sampling
algorithm which uses a lifted message representation is equivalent to the algorithm (Algorithm 1)
that uses a propositional representation. Since Algorithm1 converges to the distribution represented
by the MLN (Theorem 1), the proof follows.

4.2 Complexity

Theorem 2 provides a method for representing the messages succinctly by taking advantage of the
symmetry at inference time. It also generalizes the ideas presented in the previous section (last
paragraph) and helps us bound the space complexity of each message. Formally,
Theorem 3 (Space Complexity of a Message).Given a Gibbs cluster graphG and an MLNM,
let the outgoing message from clusterCi to clusterCj in G be defined over the set{R1, . . . , Rk} of
atoms. Letxi denote the set of shared terms ofRi that satisfy the conditions outlined in Theorem 2.
Then, the space complexity of representing the message isO(

∑k

i=1 |∆xi
|).

Note that the time/space requirements of the algorithm is the sum of the time/space required to run
PTP for a cluster and the time/space for the message from the cluster. We can compute the time
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and space complexity of PTP at a cluster by running it schematically as follows. We apply the
power rule as before but explore only one randomly selected branch in the search tree induced by
the generalized binomial rule. Recall that applying the generalized binomial rule will result inn+1
recursive calls (i.e, the search tree node has branching factor ofn+1) wheren is the domain size of
the singleton atom. If neither the power rule nor the generalized binomial rule can be applied at any
point during search, the complexity of PTP is exponential inthe treewidth of the remaining ground
network. More precisely, the complexity of PTP isO(exp(g)× exp(w+1)) whereg is the number
of times the generalized binomial rule is applied andw is the treewidth (computed heuristically) of
the remaining ground network.

4.3 Constructing the Gibbs Cluster Graph

Algorithm 2 : Construct Gibbs Cluster Graph
Input : A normal MLN M, complexity boundsα andβ
Output : A Gibbs cluster graphG
begin1

Initialization: Construct a Gibbs cluster graphG2

with exactly one atom in each cluster
while True do3

F = ∅ // F: Set of feasible4

cluster graphs
for all pairs of clustersCi andCj in G do5

MergeCi andCj yielding a cluster graphG′6

if T (G′) ≤ T (G) andS(G′) ≤ S(G) then7

Add G′ to F8

else ifT (G′) ≤ α andS(G′) ≤ β then9

Add G′ to F10

If F is emptyreturn G11

G = Cluster graph inF that has the maximum12 ∑
i ζ(Ci)

end13

Next, we present a heuristic algorithm for con-
structing the Gibbs cluster graph. From a com-
putational view point, we want its time and
space requirements to be as small as possible.
From an approximation quality viewpoint, to
improve mixing, we want to jointly sample, i.e.,
cluster together highly coupled/correlated vari-
ables. Formally, we want to

Maximize:
∑

i

ζ(Ci),

Subject to:S(G) ≤ α, T (G) ≤ β

where S(G) and T (G) denote the time and
space requirements of the Gibbs cluster graph
G, ζ(Ci) measures the amount of coupling in
the clusterCi of G, and parametersα andβ are
used to bound the time and space complexity

respectively. In our implementation, we measure coupling using the number of times two atoms
appear together in a formula.

The optimization problem is NP-hard in general and therefore we propose to use the greedy approach
given in Algorithm 2 for solving it. The algorithm begins by constructing a Gibbs cluster graph in
which each first-order atom is in a cluster by itself. Then, inthe while loop, the algorithm tries
to iteratively improve the cluster graph. At each iteration, given the current cluster graphG, for
every possible pair of clusters(Ci, Cj) of G, the algorithm creates a new cluster graphG′ from G
by mergingCi andCj . Among these graphs, the algorithm selects the graph that yields the most
coupling and at the same time either has smaller complexity thanG or satisfies the input complexity
boundsα andβ. It then replacesG with the selected graph and iterates until the graph cannot be
improved. Note that increasing the cluster size may decrease the complexity of the cluster graph in
some cases and therefore we require steps 6 and 7 which addG′ to the feasible set if its complexity is
smaller thanG. Also note that the algorithm is not guaranteed to return a cluster graph that satisfies
the input complexity bounds, even if such a cluster graph exists. If the algorithm fails then we may
have to use local search or dynamic programming; both are computationally expensive.

5 Experiments

In this section, we compare the performance of lifted blocked Gibbs sampling (LBG) with (proposi-
tional) blocked Gibbs sampling (BG), lazy MC-SAT [26, 27] and lifted belief propagation (LBP)
[30]. We experimented with the following four MLNs: (i) A RSTMLN having two formu-
las, M1 : [R(x) ∨ S(x, y), w1]; [S(x, y) ∨ T(y, z)], (ii) A toy Smoker-Asthma-Cancer MLN
having three formulas,M3 : [Asthma(x) → ¬Smokes(x)], [Asthma(x) ∧ Friends(x, y) →
¬Smokes(y)], [Smoke(x) → Cancer(x)], (iii) The exampleR, S, T MLN defined in Section 3,M3

and (iv) WEBKB MLN,M4 used in [17]. Note that the first two MLNs can be solved in polynomial
time using PTP while PTP is exponential onM3 andM4. For each MLN, we set 10% randomly
selected ground atoms as evidence. We varied the number of objects in the domain from 5 to 200.
We used a time-bound of 1000 seconds for all algorithms.
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Figure 2: KL divergence as a function of time for: (a)M1 with 50 objects and (b)M2 with 50 objects.
Convergence diagnostic using Gelman-Rubin statistic (R) for (c) M3 with 25 objects and (d)M4 with 25
objects. Note that for lifted BP, the values displayed are the ones obtained after the algorithm has converged.
Time required by 100 Gibbs iterations as a function of the number of objects for (e)M3 and (f)M4.

We implemented LBG and BG in C++ and used alchemy [12] to implement MC-SAT and LBP.
For LBG, BG and MC-SAT, we used a burn-in of 100 samples to negate the effects of initializa-
tion. ForM1 andM2, we measure the accuracy using the KL divergence between theestimated
marginal probabilities and the true marginal probabilities computed using PTP. Since computing ex-
act marginals ofM3 andM4 is not feasible, we perform convergence diagnostics for LBGand BG
using the Gelman-Rubin statistic [5], denoted byR. R measures the disagreement between chains
by comparing the between-chain variances with the within-chain variances. The closer the value of
R to 1, the better the mixing.

Figure 2 shows the results. Figures 2(a) and 2(b) show the KL divergence as a function of time for
M1 andM2 respectively. In both cases, LBG converges much faster thanBG and MC-SAT and
has smaller error. LBP is more accurate than LBG onM1 while LBG is more accurate than LBP on
M2. Figures 2(c) and 2(d) showlog(R) as a function of time forM3 andM4 respectively. We see
that the Markov chain associated with LBG mixes much faster than the one associated with BG. To
measure scalability, we use running time per Gibbs iteration as a performance metric. Figures 2(e)
and 2(f) show the time required by 100 Gibbs iterations as a function of number of objects forM3

andM4 respectively. They clearly demonstrates that LBG is more scalable than BG.

6 Summary and Future Work

In this paper, we proposed lifted Blocked Gibbs sampling, a new algorithm that improves blocked
Gibbs sampling by exploiting relational or first-order structure. Our algorithm operates by construct-
ing a Gibbs cluster graph, which represents a partitioning of atoms into clusters and then performs
message passing over the graph. Each message is a truth assignment to the Markov blanket of
the cluster and we showed how to represent it in a lifted manner. We proposed an algorithm for
constructing the Gibbs cluster graph and showed that it can be used to trade accuracy with computa-
tional complexity. Our experiments demonstrate clearly that lifted blocked Gibbs sampling is more
accurate and scalable than propositional blocked Gibbs sampling as well as MC-SAT.

Future work includes: lifting Rao-Blackwellised Gibbs sampling; applying our lifting rules to slice
sampling [22] and flat histogram MCMC [4]; developing new clustering strategies; etc.
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0242. The views and conclusions contained in this document are those of the authors and should not
be interpreted as necessarily representing the official policies, either expressed or implied, of ARO
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