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Abstract

First-order probabilistic models combine the power of fosler logic, the de
facto tool for handling relational structure, with probiaiic graphical models,
the de facto tool for handling uncertainty. Lifted probéadit inference algorithms
for them have been the subject of much recent research. Theidea in these
algorithms is to improve the accuracy and scalability og8rg graphical models’
inference algorithms by exploiting symmetry in the firstler representation. In
this paper, we consider blocked Gibbs sampling, an advakke®lC scheme,

and lift it to the first-order level. We propose to achievesthy partitioning the
first-order atoms in the model into a set of disjoint clustrsh that exact lifted
inference is polynomial in each cluster given an assignrteall other atoms not
in the cluster. We propose an approach for constructingltistars and show how
it can be used to trade accuracy with computational comigiéxia principled

manner. Our experimental evaluation shows that lifted &€&#mpling is superior
to the propositional algorithm in terms of accuracy, scititgtand convergence.

1 Introduction

Modeling large, complex, real-world domains requires thiits to handle both rich relational struc-
ture and large amount of uncertainty. Unfortunately, the éxisting representation and reasoning
tools of choice — probabilistic graphical models (PGMs) érgt-order logic — are unable to effec-
tively handle both. PGMs can compactly represent and reaisouat uncertainty. However, they are
propositional and thus ill-equipped to handle relationalcure. First-order logic can effectively
handle relational structure. However, it has no represientéor uncertainty. Therefore, combin-
ing the representation and reasoning power of first-ordgic lwvith PGMs is a worthwhile goal.
Statistical relational learning (SRL) [7] is an emerginddiehich attempts to do just that.

The key task in SRL is inference - the problem of answeringerggiven an SRL model. In prin-

ciple, we can simply ground (propositionalize) the giverLSRodel to yield a PGM and thereby
solve the inference problem in SRL by reducing it to infeeneer PGMs. This approach is prob-
lematic and impractical, however, because the PGMs olitdigegrounding a SRL model can be
substantially large, having millions of variables andibills of features; existing inference algo-
rithms for PGMs are unable to handle problems at this scatealfernative approach, which has
gained prominence since the work of Poole [25] is lifted astforder inference. The main idea,
which is similar to theorem proving in first-order logic, © take a propositional inference algo-
rithm and exploit symmetry in its execution by performindeirence over a group of identical or
interchangeable random variables. The algorithms arecthifted algorithms because they identify
symmetry by consulting the first-order representation eitlgrounding the model.

Several lifted algorithms have been proposed to date. FPramhiexact algorithms are first-order
variable elimination [25] and its extensions [2, 23], whiiftthe variable elimination algorithm, and

probabilistic theorem proving (PTP) [8] which lifts the \gated model counting algorithm [1, 29].

Notable approximate inference algorithms are lifted Beglimpagation [30] and lifted importance
sampling [8, 9], which lift belief propagation [20] and inp@nce sampling respectively.



In this paper, we lift blocked Gibbs sampling, an advancedMMCtechnique. Blocked Gibbs
sampling improves upon the Gibbs sampling algorithm by giogivariables (each group is called
a block) and then jointly sampling all variables in the bl¢t®, 16]. Blocking improves the mixing
time and as a result improves both the accuracy and convee@érisibbs sampling. The difficulty
is that to jointly sample variables in a block, we need to cota joint distribution over them. This
is typically exponential in the treewidth of the ground netlwprojected on the block.

Several earlier papers have attempted to exploit reldtimnfirst-order structure in MCMC sam-
pling. Notable examples are lazy MC-SAT [27], Metropoliadtings MCMC for Bayesian logic
(BLOG) [18], typed MCMC [14] and orbital MCMC [21]. Unfortuately, none of the aforemen-
tioned techniques are truly lifted. In particular, they du exploit first-order structure to the fullest
extent. In fact, lifting a generic MCMC technique is diffitbecause at each pointin order to ensure
convergence to the desired stationary distribution onddasintain an assignment to all random
variables in the ground network. We circumvent these isbyditing the blocked Gibbs sampling
algorithm, which as we show is more amenabile to lifting.

Our main idea in applying the blocking approach to SRL models partition the set of first-order
atoms in the model into disjoint clusters such that PTP (acEited inference scheme) is feasible
in each cluster given an assignment to all other atoms nbgicluster. Given such a set of clusters,
we show that Gibbs sampling is essentially a message paskjogthm over the cluster graph
formed by connecting clusters that have atoms that are iiMtr&ov blanket of each other. Each
message from a sender to a receiving cluster is a truth assigfrto all ground atoms that are in the
Markov blanket of the receiving cluster. We show how to sthie message compactly by taking
advantage of the first-order representation yielding adiftiCMC algorithm.

We present experimental results comparing the performailiféed blocked Gibbs sampling with
(propositional) blocked Gibbs sampling, MC-SAT [26, 27Harifted BP [30] on various bench-
mark SRL models. Our experiments show that lifted Gibbs s s superior to blocked Gibbs
sampling and MC-SAT in terms of convergence, accuracy aathisiity. It is also more accurate
than lifted BP on some instances.

2 Notation and Preliminaries

In this section, we describe notation and preliminaries mpgsitional logic, first-order logic,
Markov logic networks and Gibbs sampling. For more detadlfer to [3, 13, 15].

The language of propositional logic consists of atomic esecds called propositions or atoms, and
logical connectives such as(conjunction),v (disjunction),— (negation)=- (implication) and<
(equivalence). Each proposition takes values from therpidamain{Fal se, Tr ue} (or {0,1}).

A propositional formulaf is an atom, or any complex formula that can be constructed &toms
using logical connectives. For exampdeB andC are propositional atoms arfd= AV -B A Cis a
propositional formula. Anowledge bas€KB) is a set of formulas. Avorld is a truth assignment
to all atoms in the KB.

First-order logic (FOL) generalizes propositional logicddlowing atoms to have internal structure;
an atom in FOL is a predicate that represents relations leehwobjects. A predicate consists of a
predicate symbol, denoted by Monospace fonts, Bxfj.ends, Smokes, etc., followed by a paren-
thesized list of arguments callégrms A term is a logical variable, denoted by lower case letters
such ase, ¥, z, etc., or a constant, denoted by upper case letters sush #s Z, etc. We assume
that each logical variable, e.g.js typed and takes values over a finite gt The language of FOL
also includes two quantifier¥: (universal) and (existential) which express properties of an entire
collection of objects. A formula in first order logic is a preate (atom), or any complex sentence
that can be constructed from atoms using logical connextivel quantifiers. For example, the for-
mulaVz Smokes(z) = Asthma(z) States that all persons who smoke have asthimaancer(x)
states that there exists a persowho has cancer. Airst-order KBis a set of first-order formulas.

In this paper, we use a subset of FOL which has no function s{gsnbequality constraints or existen-
tial quantifiers. We also assume that domains are finite (ar@tore function-free) and that there is
a one-to-one mapping between constants and objects in thaidgHerbrand interpretations). We
assume that each formufais of the formvx f, wherex are the set of variables ifiand f is a
conjunction or disjunction of literals; each literal beiaig atom or its negation. For brevity, we will
dropV from all the formulas. Given variables= {z1,...,z,} and constantX = {X1,..., X}



whereX; € A,,, f[X/x] is obtained by substituting every occurrence of variable f with X,.

A ground formula is a formula obtained by substituting alitefvariables with a constant. A ground
KB is a KB containing all possible groundings of all of its foulas. For example, the grounding
of a KB containing one formule&Smokes(z) = Asthma(z) whereA, = {Ana, Bob}, is a KB
containing two formulasSmokes(Ana) = Asthma(Ana) andSmokes(Bob) = Asthma(Bob). A
world in FOL is a truth assignment to all atoms in its grounding.

Markov logic [3] extends FOL by softening the hard constisiexpressed by the formulas and
is arguably the most popular modeling language for SRL. A fmfnula or a weighted formula
is a pair(f,w) where f is a formula in FOL andv is a real-number. A Markov logic network
(MLN), denoted byM, is a set of weighted formuldg;, w;). Given a set of constants that represent
objects in the domain, a Markov logic network defines a Mamketwork or a log-linear model. The
Markov network is obtained by grounding the weighted fingstes knowledge base and represents
the following probability distribution.

Pm(w) = exp <sz (fi,w ) 1)

wherew is a world, N (f;,w) is the number of groundings ¢f that evaluate td@r ue in the world
w andZ (M) is a normalization constant or the partition function.

In this paper, we assume that the input MLN to our algorithmrmisormal form [11, 19]. We
require this for simplicity of exposition. Our main algdmih can be easily modified to work with
other canonical forms such as parfactors [25] and first d@déffs with substitution constraints [8].
However, its specification becomes much more complicatdchagssy. AnormalMLN [11] is an
MLN that satisfies the following two properties: (1) There ao constants in any formula, and (2)
If two distinct atoms with the same predicate symbol havéatdesz andy in the same position
thenA, = A,. Note that in a normal MLN, we assume that the terms in eaah ate ordered and
therefore we can identify each term by its position in thesord

2.1 Gibbs Sampling and Blocking

Given an MLN, a set of query atoms and evidence, we can adapttsic (propositional) Gibbs sam-
pling [6] algorithm for computing the marginal probab#i of query atoms given evidence as fol-
lows. First, we ground all the formulas in the MLN, yielding/&rkov network. Second, we instan-
tiate all the evidence atoms in the network. Assume thatdkelting evidence-instantiated network
is defined over a set of variablgs Third, we generat& samplegx("), ..., %)) (a sample is a
truth assignment to all random variables in the Markov nétvas follows. We begin with a random
assignment to all variables, yieldisg® . Then fort = 1,..., N, we perform the following steps.
Let(Xy,...,X,) bean arbitrary ordering of variables¥ Then, fori = 1ton, we generate a new

valueizl(.t) for X; by sampling a value from the distributid®( X; |z, ..., z!_,, :fgfrll), . ,:‘cﬁf‘l)).
(This is often called systematic scan Gibbs sampling. Aera#ttive approach is random scan Gibbs

sampling which often converges faster than systematic Géalns sampling). For conciseness, we
will write P(Xi|>‘<(_tg) = P(X;|lzt,..., 2t |, -511”,...,5:,(5—1)). Once the requiredv samples

are generated, we can use them to answer any query over thel.miodparticular, the marginal
probability for each variable can be estimated by averatfiagonditional marginals:

N
~ 1 L
P@@) = & § :P<xi|x<2>

Note that in Markov networksP(X—|>‘<(t)) P(X; | e MB( ) WhereMB(Xi) is the Markov
Blanket (the set of variables that share a function witfy of X andx" i MB(X:) is the projection
of x*) ;onMB(X;).

The samplmg distribution of Gibbs sampling converges ® pibsterior distribution (the distribu-
tion associated with the evidence instantiated Markov oekjpas the number of samples increases
because the resulting Markov chain is guaranteed to beaaieend ergodic (see [15] for details).

The main idea in blocked Gibbs sampling [10] is grouping afalés to form a block, and then
jointly sampling all variables in a block given an assignirterall other variables not in the block.



Blocking improves mixing yielding a more accurate samphigprithm [15]. However, the compu-

tational complexity of jointly sampling all variables in &bk typically increases with the treewidth

of the Markov network projected on the block. Thus, in pregtigiven time and memory resource
constraints, the main issue in blocked Gibbs sampling isrfqthe right balance between compu-
tational complexity and accuracy.

3 Our Approach

We illustrate the key ideas in our approach using an examp/d Kaving two weighted formulas:
R(z,y) V S(y, z),w; andS(y, z) V T(z,u), ws. Note that the problem of computing the partition
function of this MLN for arbitrary domain sizes is non-tid@j it cannot be polynomially solved
using existing exact lifted approaches such as PTP [8] dted NE [2].

Our main idea is to partition the set of atoms into disjoirddis (clusters) such that PTP is poly-
nomial in each cluster and then sample all atoms in the ¢limtely. PTP is polynomial if we can
recursively apply its two lifting rules (defined next), thewer ruleand thegeneralized binomial
rule, until the treewidth of the remaining ground network is bded by a constant.

The power rule is based on the concept of a decomposer. Ginermaal MLN M, a set of logical
variables, denoted bw; is called adecomposeif it satisfies the following two conditions: (i) Every
atom in M contains exactly one variable froxy and (ii) For any predicate symbg] there exists a
position s.t. variables from only appear at that position in atomsRf Given a decompose; it
is easy to show thaf (M) = [Z(M[X/x])]A=| wherez € x and M[X/x] is the MLN obtained
by substituting all logical variablesin M by the same constat¥ € A, and then converting the
resulting MLN to a normal MLN. Note that for any two variablegy in x, A, = A, by normality.

The generalized binomial rule is used to sample singletomstefficiently (the rule also re-
quires that the atom is not involved in self-joins, i.e., ded not appear more than once in
the same formula). Given a normal ML having a singleton ator(z), we can show that
Z(M) = Y l2e] (151 Z(M|R)w(i)2°() whereR' is a sample ok s.t. exactlyi tuples are set to
Tr ue. M|R! is the MLN obtained fromM by performing the following steps in order: (i) Ground
all r(z) and set its groundings to have the same assignmerit &8 Delete formulas that evaluate
to eitherTr ue or Fal se, (iii) Delete all groundings ok(z) and (iv) Convert the resulting MLN
to a normal MLN.w (%) is the exponentiated sum of the weights of formulas thatetaltoTr ue
andp(i) is the number of ground atoms that are removed from the MLN @salt of removing
formulas (these are essentially don't care atoms which eaasbigned to eithdrr ue or Fal se).

Now, let us apply the clustering idea to our example
MLN. Let us put each first-order atom in a cluster b

itself, namely we have three cluster&(z,y), S(y, z)
andT(z,u) (see Figure 1(a)). Note that each (first-orde
cluster represents all groundings of all atoms in the
cluster. To perform Gibbs sampling over this clustering,

we need to compute three conditional distribution

P(R(z,y)8(y,2),T(z,w),  P(S(y, 2)[R(x,y), T(,u)) @

and P(T(z,u)|R(z,v),8(y,2)) where R(x,y) denotes

a truth assignment to all possible groundingskofLet  (a) Clustering 1 (b) Clustering 2
the domain size of each variable he Naively, given an Figure 1: Two possible clusterings for

assignment to all other atoms not in the cluster, we wiilited blocked Gibbs sampling on the exam-
needO(2"") time and space for computing and specifyingle MLN having two weighted formulas.
the joint distribution at each cluster. This is becausedlaeen? ground atoms associated with each
cluster. Notice however that all groundings of each firgteoratom are conditionally independent
of each other given a truth assignment to all other atoms.tHarovords, we can apply PTP here
and compute each conditional distribution(in?) time and space (since there aregroundings
of each formula and we need to process each ground formubasitbnce). Thus, the complexity
of sampling all atoms in all clusters 8(n?). Note that the complexity of sampling all variables
using propositional Gibbs sampling is al&gn?).

Now, let us consider an alternative clustering in which weehtao clusters as shown in Figure
1(b). Intuitively, this clustering is likely to yield bettaccuracy than the previous one because more



atoms will be sampled jointly. Counter-intuitively, hoveyas we show next, Clustering 2 will yield
a blocked sampler having smaller complexity than the onedas Clustering 1.

To perform blocked Gibbs sampling over Clustering 2, we nésdcompute two distribu-
tions P(R(z,y),S(y, 2)|T(z,w)), P(T(z,u)|R(z,v),8(y,2)). Let us see how PTP will compute
P(R(z,y),8(y, 2)|T(z,u)). If we instantiate all groundings df, we get the following reduced
MLN {R(z,y) V S(y, Z;), w1}, and{S(y, Z;), k;w2}?_, whereZ; € A, andk; is the number
of False groundings of(y, Z;). This MLN contains a decomposgr PTP will now apply the
power rule, yielding formulas of the forfR(z,Y") v S(Y, Z;), w1}, and{S(Y, Z;), kiw2}7
whereY € A,. R(z,Y) is a singleton atom and therefore applying the generalizeahiial rule,
we will getn + 1 reduced MLNSs, each containing atoms of the form{sS(Y, Z;)}?_,. These
atoms are conditionally independent of each other and aliifibn over them can be computed
in O(n) time. Thus, the complexity of computing(R(z, ), S(y, 2)|T(z,u)) is O(n?). Samples
for R ands can be generated froR(R(x,y), S(y, 2)|T(z,u)) in O(n?) time as well. Notice that
P(T(z,u)|R(z,y),5(y, 2)) = P(T(z,u)|S(y, z)) becaus® is not in the Markov blanket of. This
distribution can also be computeddnn?) time. Therefore, the complexity of sampling all atoms
using the clustering shown in Figure 1(b)Xn?).

Space Complexity: For Clustering 2, notice that to compute the conditionaltrittistion
P(R(z,y),8(y, 2)|T(z,u)), we only need to know how many groundings™t;, «) are True in
T(z,u) for all Z; € A,. ClusterT(z,u) can share this information with its neighbor using only
O(n) space. Similarly, to compute(T(z, «)|S(y, z)) we only need to know how many groundings
of S(y, Z;) are True inS(y, z) forall Z; € A,. This require$)(n) space and thus the overall space
complexity of Clustering 2 i$)(n). On the other hand, the space complexity of Gibbs sampling
over Clustering 1 i€ (n?).

4 The Lifted Blocked Gibbs Sampling Algorithm

Next, we will formalize the discussion in the previous sewetyielding a lifted blocked Gibbs sam-
pling algorithm. We begin with some required definitions.

We define alusteras a set of first order atoms (these atoms will be sampledyama lifted Gibbs
sampling iteration). Given a set of disjoint clust¢(s,, . .., C,, }, the Markov blanket of a cluster
C; is the set of clusters that have at least one atom that is iM#r&ov blanket of an atom id’;.
Given a MLN M, theGibbs cluster graplis a graphGG (each vertex o7 is a cluster) such that: (i)
Each atom in the MLN is in exactly one cluster@f(ii) Two clustersC; andC} in G are connected
by an edge ifC; is in the Markov blanket of’;. Note that by definition iiC; is in the Markov
blanket ofC;, thenC; is in the Markov blanket of’;.

Algorithm 1- Lifted Blocked Gibbs Sampiing The Ilfted blocked Gibbs sz_;lr_npllng algorithm (see
Input: A normal MLN M, a Gibbs cluster grapf¥, an Algonthm 1) _Can be enV|3!0ned as a message
integerN and a set of query atoms passing algorithm over a Gibbs cluster gragh
Out_put: A Marginal Distribution over the query atoms Each edge{CZ—’ C’j) in G stores two messages in
i begf'gr Lo N do each direction. The message fra@mto C; con-
. Let(Cy, ..., C.) be an arbitrary ordering of tains the current truth assignment to all ground-
clusters ofG ings of all atoms (we will discuss how to rep-
/1 Gbbs iteration resent the truth assignment in a lifted manner
4 for i =1tom do tained by it shortly) that are in the Markov blanket of one or
s M(C:) = MLN obtained by instantiating the - e 3toms jr;. We initialize the messages ran-
Markov Blanket ofC; based on the incoming R . .
messages domly. Then at each Gibbs iteration, we generate
6 ComputeP(C;) by running PTP o\ (C;) a sample over all atoms by sampling the clusters
7 Sample a truth assignment to all atomg’in along an orderingCy, . . ., C,,) (Steps 3-10). At
from P(Cy) each cluster, we first use PTP to compute a condi-
8 Update the estimate of all query atomsin {i lioint distributi Il at in th |
. Update all outgoing messages frai ional joint distribution over all atoms in the clus-
L - ter given an assignment to atoms in their Markov

10 end blanket. This assignment is derived using the in-
coming messages. Then, we sample all atoms in

the cluster from the joint distribution and update the eatarfor query atoms in the cluster as well

as all outgoing messages. We can prove that:

Theorem 1. The Markov chain induced by Algorithm 1 is ergodic and ap#id@and its stationary

distribution is the distribution represented by the inpattmal MLN.




4.1 Lifted Message Representation

We say that a representation of truth assignments to thendnogs of an atom is lifted if we only
specify the number of true (or false) assignments to itsdiuplartial grounding.

Example 1. Consider an atork(z,y), whereA, = {X;, X5} andA, = {¥7,Y>}. We can
represent the truth assignméR{ X;,Y7) = 1,R(X1,Ys) = 0,R(X2,Y1) = 1,R(X3,Y2) =0)ina
lifted manner using either an integzor a vector([Y1, 2], [Y2, 0]). The first representation says that
2 groundings oR(z, y) are true while the second representation saysXigabundings oR(z, Y1)
and0 groundings oR(z, Y>) are true.

Next, we state sufficient conditions for representing a mgssn a lifted manner while ensur-
ing correctness, summarized in Theorem 2. We begin with ained| definition. Given an atom

R(z1,...,zp) and a subset of atom{s$, . .., Si } from its Markov blanket, we say that a term at
positioni in R is ashared ternw.r.t. {Sy, ..., S} if there exists a formulg such thatinf, a logical
variable appears at positiarin R and in one or more atoms i84,...,S;}. For instance, in our

running exampley (position 2) is a shared term Bfw.r.t. {S} butx (position 1) is not.

Theorem 2 (Sufficient Conditions for a Lifted Message Representation) Given a Gibbs cluster
graphG and an MLNM, letR be an atom irC; and letC;; be a neighbor of’; in G. Let Sy ¢, be
the set of atoms formed by taking an intersection betweeMtr&ov blanket o and the union of
the Markov blanket of atoms i6';. Letx be the set of shared terms®fw.r.t. Sz ¢, U C} andy
be the set of remarnrng termslm Let the outgoing message frof to C; be represented using a
vector of|A| pairs of the form X, ;] whereAy is the Cartesian product of the domains of all
terms inx, X € Ay is thek-th element iMA, andry, is the number of groundings af Xy, y) that
are true in the current assignment. If all messages in ttealBlocked Gibbs sampling algorithm
(Algorithm 1) use the aforementioned representation, therstationary distribution of the Markov
chain induced by the algorithm is the distribution représéibpy the input normal MLN.

Proof. (Sketch). The generalized Binomial rule states that all MIdWtained by conditioning on a
singleton atons with exactlyk of its groundings set to true are equivalent to each otheather
words, in order to compute the distribution representedhbyMLN conditioned ors, we only need

to know how many groundings & are set to true. Next, we will show that the atom obtained by
(partially) grounding the shared termsof an atomR in clusterC;, namelyR(Xy,y) (wherey is

the set of terms di that are not shared) is equivalent to a singleton atom anmdftdre knowing the
number of groundings di(Xy,y) that are set to true is sufficient to compute the joint distitn
over the atoms in cluster;, whereC; andC; are neighbors iid;.

Consider the MLNM'’ which is obtained frora\ by first removing all formulas that do not mention
atoms inC; and then (partially) grounding all the shared termB.dfety’ be a logical variable such
that its domaimA,, = A,,, whereA, is the Cartesian product of the domains of all variableg in
and letr}.(v') = R(Xk,y) whereX;, € A is thek-th element inA,. Notice that we can replace
each atonk (X, y) in M’ by R} (y') without changing the associated distribution. Moreovache
atomR,.(y') is a singleton and therefore it follows from the generaliBatbmial rule that in order
to compute the distribution associated with’ conditioned orR}.(y'), we only need to know how
many of its possrble groundings are true. Sidgesends preC|ser this information &; using the
message defined in the statement of this theorem, it follbasthe lifted Blocked Gibbs sampling
algorithm which uses a lifted message representation ivagut to the algorithm (Algorithm 1)
that uses a propositional representation. Since Algoritlionverges to the distribution represented
by the MLN (Theorem 1), the proof follows. O

4.2 Complexity

Theorem 2 provides a method for representing the messageisstly by taking advantage of the
symmetry at inference time. It also generalizes the ideasgmted in the previous section (last
paragraph) and helps us bound the space complexity of eastage Formally,

Theorem 3 (Space Complexity of a Message)Given a Gibbs cluster grap and an MLNM,

let the outgoing message from cluségrto clusterC; in G be defined over the s¢R4, ... Ry} of
atoms. Letk; denote the set of shared termsR@ithat satisfy the conditions outlined in Theorem 2.

Then, the space complexity of representing the messa@(eEi:1 |Ax; )

Note that the time/space requirements of the algorithmassthm of the time/space required to run
PTP for a cluster and the time/space for the message fromukgec We can compute the time



and space complexity of PTP at a cluster by running it schiealbt as follows. We apply the
power rule as before but explore only one randomly selectaddh in the search tree induced by
the generalized binomial rule. Recall that applying theggalized binomial rule will result im + 1
recursive calls (i.e, the search tree node has branchitay faic, + 1) wheren is the domain size of
the singleton atom. If neither the power rule nor the geimdlbinomial rule can be applied at any
point during search, the complexity of PTP is exponentighatreewidth of the remaining ground
network. More precisely, the complexity of PTPO%exp(g) x exp(w + 1)) whereg is the number
of times the generalized binomial rule is applied ant the treewidth (computed heuristically) of
the remaining ground network.

4.3 Constructing the Gibbs Cluster Graph

Next, we present a heuristic algorithm for con-
structing the Gibbs cluster graph. From a com-
putational view point, we want its time and

Algorithm 2: Construct Gibbs Cluster Graph
Input: A normal MLN M, complexity boundsr and 3
Output: A Gibbs cluster grapld:

1 begin

space requirements to be as small as possible.

2 | Iniallzation: Construta Sbbs cluster graph From an approximation quality viewpoint, to
o | Wil Toue g o i each Euster improve mixing, we want to jointly sample, i.e.,
4 F—=0// F Set of feasible cluster together highly coupled/correlated vari-
cluster graphs ables. Formally, we want to
5 for all pairs of clustersC; andC; in G do
6 MergeC; andC; yielding a cluster grapt’ Maximize: Z <(Ci)’
7 if T(G') <T(G)andS(G") < S(G) then p
8 L Add G’ to F bi )
o else ifT(G') < aandS(G') < B then Subject t0:5(G) < o, T(G) < B
10 | AddG'toF .
it et where S(G) and T'(G) denote the time and
11 is emptyreturn : ;
12 G = Cluster graph i’ that has the maximum space requirements of the Gibbs C|USter. gra.‘ph
() G, ¢(C;) measures the amount of coupling in
send the clustelC; of G, and parameteks and/s are

used to bound the time and space complexity
respectively. In our implementation, we measure couplisiggithe number of times two atoms
appear together in a formula.

The optimization problem is NP-hard in general and theefor propose to use the greedy approach
given in Algorithm 2 for solving it. The algorithm begins bgrstructing a Gibbs cluster graph in
which each first-order atom is in a cluster by itself. Thentha while loop, the algorithm tries
to iteratively improve the cluster graph. At each iteratigiven the current cluster graph, for
every possible pair of cluste(g’;, C;) of G, the algorithm creates a new cluster graphfrom G

by mergingC; andC;. Among these graphs, the algorithm selects the graph teltsythe most
coupling and at the same time either has smaller complehaty® or satisfies the input complexity
boundsa and 8. It then replacegr with the selected graph and iterates until the graph canmot b
improved. Note that increasing the cluster size may deerémmscomplexity of the cluster graph in
some cases and therefore we require steps 6 and 7 whici dddhe feasible set if its complexity is
smaller thanG. Also note that the algorithm is not guaranteed to returuatel graph that satisfies
the input complexity bounds, even if such a cluster grapbtexif the algorithm fails then we may
have to use local search or dynamic programming; both ar@atationally expensive.

5 Experiments

In this section, we compare the performance of lifted blookébs sampling (LBG) with (proposi-
tional) blocked Gibbs sampling (BG), lazy MC-SAT [26, 27]dalifted belief propagation (LBP)
[30]. We experimented with the following four MLNs: (i) A RSMLN having two formu-
las, M; : [R(z) V S(z,y),w1]; [S(z,y) V T(y,z)], (i) A toy Smoker-Asthma-Cancer MLN
having three formulasMs : [Asthma(x) — —Smokes(z)], [Asthma(z) A Friends(z,y) —
—Smokes(y)], [Smoke(z) — Cancer(x)], (iii) The exampler, S, T MLN defined in Section 3M5
and (iv) WEBKB MLN, M, used in [17]. Note that the first two MLNs can be solved in polyral
time using PTP while PTP is exponential ari; and M,. For each MLN, we set 10% randomly
selected ground atoms as evidence. We varied the numbejegtslin the domain from 5 to 200.
We used a time-bound of 1000 seconds for all algorithms.
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Figure 2: KL divergence as a function of time for: (a1; with 50 objects and (b)M> with 50 objects.
Convergence diagnostic using Gelman-Rubin statigticfor (c) M3 with 25 objects and (dM4 with 25
objects. Note that for lifted BP, the values displayed aeedhes obtained after the algorithm has converged.
Time required by 100 Gibbs iterations as a function of the Inemof objects for (e)M3 and (f) M.

We implemented LBG and BG in C++ and used alchemy [12] to imugliet MC-SAT and LBP.
For LBG, BG and MC-SAT, we used a burn-in of 100 samples to teetiee effects of initializa-
tion. For M; and M2, we measure the accuracy using the KL divergence betweesstimated
marginal probabilities and the true marginal probabgitemputed using PTP. Since computing ex-
act marginals of\ 5 and M, is not feasible, we perform convergence diagnostics for [aB@ BG
using the Gelman-Rubin statistic [5], denoted Ry R measures the disagreement between chains
by comparing the between-chain variances with the wittiait variances. The closer the value of
R to 1, the better the mixing.

Figure 2 shows the results. Figures 2(a) and 2(b) show theiXdrgence as a function of time for
My and M, respectively. In both cases, LBG converges much faster B@amand MC-SAT and
has smaller error. LBP is more accurate than LBG\dn while LBG is more accurate than LBP on
M. Figures 2(c) and 2(d) sholwg(R) as a function of time foM s and M 4 respectively. We see
that the Markov chain associated with LBG mixes much fasten the one associated with BG. To
measure scalability, we use running time per Gibbs itenad®a performance metric. Figures 2(e)
and 2(f) show the time required by 100 Gibbs iterations asatfon of number of objects fot13
and. M, respectively. They clearly demonstrates that LBG is moatedde than BG.

100 150 200 250

300

350 400

6 Summary and Future Work

In this paper, we proposed lifted Blocked Gibbs samplingewa algorithm that improves blocked
Gibbs sampling by exploiting relational or first-order stiwre. Our algorithm operates by construct-
ing a Gibbs cluster graph, which represents a partitionfref@ms into clusters and then performs
message passing over the graph. Each message is a truthnasstgto the Markov blanket of
the cluster and we showed how to represent it in a lifted manwe proposed an algorithm for
constructing the Gibbs cluster graph and showed that it earsbd to trade accuracy with computa-
tional complexity. Our experiments demonstrate cleardi tifited blocked Gibbs sampling is more
accurate and scalable than propositional blocked Gibbglgagras well as MC-SAT.

Future work includes: lifting Rao-Blackwellised Gibbs gaimg; applying our lifting rules to slice
sampling [22] and flat histogram MCMC [4]; developing newstkring strategies; etc.
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