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Abstract

We derive sublinear regret bounds for undiscounted reinforcement learning in con-
tinuous state space. The proposed algorithm combines state aggregation with the
use of upper confidence bounds for implementing optimism in the face of uncer-
tainty. Beside the existence of an optimal policy which satisfies the Poisson equa-
tion, the only assumptions made are Hölder continuity of rewards and transition
probabilities.

1 Introduction

Real world problems usually demand continuous state or action spaces, and one of the challenges for
reinforcement learning is to deal with such continuous domains. In many problems there is a natural
metric on the state space such that close states exhibit similar behavior. Often such similarities can
be formalized as Lipschitz or more generally Hölder continuity of reward and transition functions.

The simplest continuous reinforcement learning problem is the 1-dimensional continuum-armed
bandit, where the learner has to choose arms from a bounded interval. Bounds on the regret with
respect to an optimal policy under the assumption that the reward function is Hölder continuous have
been given in [15, 4]. The proposed algorithms apply the UCB algorithm [2] to a discretization of the
problem. That way, the regret suffered by the algorithm consists of the loss by aggregation (which
can be bounded using Hölder continuity) plus the regret the algorithm incurs in the discretized set-
ting. More recently, algorithms that adapt the used discretization (making it finer in more promising
regions) have been proposed and analyzed [16, 8].

While the continuous bandit case has been investigated in detail, in the general case of continuous
state Markov decision processes (MDPs) a lot of work is confined to rather particular settings, pri-
marily with respect to the considered transition model. In the simplest case, the transition function
is considered to be deterministic as in [19], and mistake bounds for the respective discounted set-
ting have been derived in [6]. Another common assumption is that transition functions are linear
functions of state and action plus some noise. For such settings sample complexity bounds have
been given in [23, 7], while Õ(

√
T ) bounds for the regret after T steps are shown in [1]. However,

there is also some research considering more general transition dynamics under the assumption that
close states behave similarly, as will be considered here. While most of this work is purely experi-
mental [12, 24], there are also some contributions with theoretical guarantees. Thus, [13] considers
PAC-learning for continuous reinforcement learning in metric state spaces, when generative sam-
pling is possible. The proposed algorithm is a generalization of the E3 algorithm [14] to continuous
domains. A respective adaptive discretization approach is suggested in [20]. The PAC-like bounds
derived there however depend on the (random) behavior of the proposed algorithm.

Here we suggest a learning algorithm for undiscounted reinforcement learning in continuous state
space. The proposed algorithm is in the tradition of algorithms like UCRL2 [11] in that it implements
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the “optimism in the face of uncertainty” maxim, here combined with state aggregation. Thus, the
algorithm does not need a generative model or access to “resets:” learning is done online, that is, in
a single continual session of interactions between the environment and the learning policy.

For our algorithm we derive regret bounds of Õ(T (2+α)/(2+2α)) for MDPs with 1-dimensional
state space and Hölder-continuous rewards and transition probabilities with parameter α. These
bounds also straightforwardly generalize to dimension d where the regret is bounded by
Õ(T (2d+α)/(2d+2α)). Thus, in particular, if rewards and transition probabilities are Lipschitz, the
regret is bounded by Õ(T (2d+1)/(2d+2))) in dimension d and Õ(T 3/4) in dimension 1. We also
present an accompanying lower bound of Ω(

√
T ). As far as we know, these are the first regret

bounds for a general undiscounted continuous reinforcement learning setting.

2 Preliminaries

We consider the following setting. Given is a Markov decision process (MDP) M with state space
S = [0, 1]d and finite action space A. For the sake of simplicity, in the following we assume d = 1.
However, proofs and results generalize straightforwardly to arbitrary dimension, cf. Remark 5 below.
The random rewards in state s under action a are assumed to be bounded in [0, 1] with mean r(s, a).
The transition probability distribution in state s under action a is denoted by p(·|s, a).

We will make the natural assumption that rewards and transition probabilities are similar in close
states. More precisely, we assume that rewards and transition probabilities are Hölder continuous.
Assumption 1. There are L,α > 0 such that for any two states s, s′ and all actions a,

|r(s, a)− r(s′, a)| ≤ L|s− s′|α.
Assumption 2. There are L,α > 0 such that for any two states s, s′ and all actions a,∥∥p(·|s, a)− p(·|s′, a)

∥∥
1
≤ L|s− s′|α.

For the sake of simplicity we will assume that α and L in Assumptions 1 and 2 are the same.

We also assume existence of an optimal policy π∗ : S → A which gives optimal average reward
ρ∗ = ρ∗(M) on M independent of the initial state. A sufficient condition for state-independent
optimal reward is geometric convergence of π∗ to an invariant probability measure. This is a natural
condition which e.g. holds for any communicating finite state MDP. It also ensures (cf. Chapter 10
of [10]) that the Poisson equation holds for the optimal policy. In general, under suitable technical
conditions (like geometric convergence to an invariant probability measure µπ) the Poisson equation

ρπ + λπ(s) = r(s, π(s)) +
∫
S
p(ds′|s, π(s)) · λπ(s′) (1)

relates the rewards and transition probabilities under any measurable policy π to its average re-
ward ρπ and the bias function λπ : S → R of π. Intuitively, the bias is the difference in accumulated
rewards when starting in a different state. Formally, the bias is defined by the Poisson equation (1)
and the normalizing equation

∫
S λπ dµπ = 0 (cf. e.g. [9]). The following result follows from the

bias definition and Assumptions 1 and 2 (together with results from Chapter 10 of [10]).
Proposition 3. Under Assumptions 1 and 2, the bias of the optimal policy is bounded.

Consequently, it makes sense to define the bias spanH(M) of a continuous state MDPM satisfying
Assumptions 1 and 2 to be H(M) := sups λπ∗(s) − infs λπ∗(s). Note that since infs λπ∗(s) ≤ 0
by definition of the bias, the bias function λπ∗ is upper bounded by H(M).

We are interested in algorithms which can compete with the optimal policy π∗ and measure their
performance by the regret (after T steps) defined as Tρ∗(M) −

∑T
t=1 rt, where rt is the random

reward obtained by the algorithm at step t. Indeed, within T steps no canonical or even bias optimal
optimal policy (cf. Chapter 10 of [10]) can obtain higher accumulated reward than Tρ∗ +H(M).

3 Algorithm

Our algorithm UCCRL, shown in detail in Figure 1, implements the “optimism in the face of uncer-
tainty maxim” just like UCRL2 [11] or REGAL [5]. It maintains a set of plausible MDPsM and
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Algorithm 1 The UCCRL algorithm
Input: State space S = [0, 1], action space A, confidence parameter δ > 0, aggregation parame-
ter n ∈ N, upper bound H on the bias span, Lipschitz parameters L,α.
Initialization:

B Let I1 :=
[
0, 1

n

]
, Ij :=

(
j−1
n , jn

]
for j = 2, 3, . . . , n.

B Set t := 1, and observe the initial state s1 and interval I(s1).
for episodes k = 1, 2, . . . do

B Let Nk (Ij , a) be the number of times action a has been chosen in a state ∈ Ij prior to
episode k, and vk(Ij , a) the respective counts in episode k.
Initialize episode k:
B Set the start time of episode k, tk := t.
B Compute estimates r̂k(s, a) and p̂agg

k (Ii|s, a) for rewards and transition probabilities, using
all samples from states in the same interval I(s), respectively.
Compute policy π̃k:
B Let Mk be the set of plausible MDPs M̃ with H(M̃) ≤ H and rewards r̃(s, a) and
transition probabilities p̃(·|s, a) satisfying∣∣r̃(s, a)− r̂k(s, a)

∣∣ ≤ Ln−α +
√

7 log(2nAtk/δ)
2 max{1,Nk(I(s),a)} , (2)∥∥∥p̃agg(·|s, a)− p̂agg

k (·|s, a)
∥∥∥

1
≤ Ln−α +

√
56n log(2Atk/δ)

max{1,Nk(I(s),a)} . (3)

B Choose policy π̃k and M̃k ∈Mk such that

ρπ̃k
(M̃k) = arg max{ρ∗(M) |M ∈Mk}. (4)

Execute policy π̃k:
while vk(I(st), π̃k(st)) < max{1, Nk(I(st), π̃k(st))} do

B Choose action at = π̃k(st), obtain reward rt, and observe next state st+1.
B Set t := t+ 1.

end while
end for

chooses optimistically an MDP M̃ ∈M and a policy π̃ such that the average reward ρπ̃(M̃) is max-
imized, cf. (4). Whereas for UCRL2 and REGAL the set of plausible MDPs is defined by confidence
intervals for rewards and transition probabilities for each individual state-action pair, for UCCRL
we assume an MDP to be plausible if its aggregated rewards and transition probabilities are within
a certain range. This range is defined by the aggregation error (determined by the assumed Hölder
continuity) and respective confidence intervals, cf. (2), (3). Correspondingly, the estimates for re-
wards and transition probabilities for some state action-pair (s, a) are calculated from all sampled
values of action a in states close to s.

More precisely, for the aggregation UCCRL partitions the state space into intervals I1 :=
[
0, 1

n

]
,

Ik :=
(
k−1
n , kn

]
for k = 2, 3, . . . , n. The corresponding aggregated transition probabilities are

defined by

pagg(Ij |s, a) :=
∫
Ij

p(ds′|s, a). (5)

Generally, for a (transition) probability distribution p(·) over S we write pagg(·) for the aggre-
gated probability distribution with respect to {I1, I2 . . . , In}. Now, given the aggregated state space
{I1, I2 . . . , In}, estimates r̂(s, a) and p̂agg(·|s, a) are calculated from all samples of action a in
states in I(s), the interval Ij containing s. (Consequently, the estimates are the same for states in
the same interval.)

As UCRL2 and REGAL, UCCRL proceeds in episodes in which the chosen policy remains fixed.
Episodes are terminated when the number of times an action has been sampled from some interval Ij
has been doubled. Only then estimates are updated and a new policy is calculated.
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Since all states in the same interval Ij have the same confidence intervals, finding the optimal
pair M̃k, π̃k in (4) is equivalent to finding the respective optimistic discretized MDP M̃agg

k and
an optimal policy π̃agg

k on M̃agg
k . Then π̃k can be set to be the extension of π̃agg

k to S, that is,
π̃k(s) := π̃agg

k (I(s)) for all s. However, due to the constraint on the bias even in this finite case
efficient computation of M̃agg

k and π̃agg
k is still an open problem. We note that the REGAL.C algo-

rithm [5] selects optimistic MDP and optimal policy in the same way as UCCRL.

While the algorithm presented here is the first modification of UCRL2 to continuous reinforcement
learning problems, there are similar adaptations to online aggregation [21] and learning in finite state
MDPs with some additional similarity structure known to the learner [22].

4 Regret Bounds

For UCCRL we can derive the following bounds on the regret.
Theorem 4. Let M be an MDP with continuous state space [0, 1], A actions, rewards and transi-
tion probabilities satisfying Assumptions 1 and 2, and bias span upper bounded by H . Then with
probability 1− δ, the regret of UCCRL (run with input parameters n and H) after T steps is upper
bounded by

const · nH
√
AT log

(
T
δ

)
+ const′ ·HLn−αT. (6)

Therefore, setting n = T 1/(2+2α) gives regret upper bounded by

const ·HL
√
A log

(
T
δ

)
· T (2+α)/(2+2α).

With no known upper bound on the bias span, guessing H by log T one still obtains an upper bound
on the regret of Õ(T (2+α)/(2+2α)).

Intuitively, the second term in the regret bound of (6) is the discretization error, while the first term
corresponds to the regret on the discretized MDP. A detailed proof of Theorem 4 can be found in
Section 5 below.
Remark 5 (d-dimensional case). The general d-dimensional case can be handled as described for
dimension 1, with the only difference being that the discretization now has nd states, so that one
has nd instead of n in the first term of (6). Then choosing n = T 1/(2d+2α) bounds the regret by
Õ(T (2d+α)/(2d+2α)).
Remark 6 (unknown horizon). If the horizon T is unknown then the doubling trick (executing the
algorithm in rounds i = 1, 2, . . . guessing T = 2i and setting the confidence parameter to δ/2i)
gives the same bounds.
Remark 7 (unknown Hölder parameters). The UCCRL algorithm receives (bounds on) the
Hölder parameters L as α as inputs. If these parameters are not known, then one can still obtain
sublinear regret bounds albeit with worse dependence on T . Specifically, we can use the model-
selection technique introduced in [17]. To do this, fix a certain number J of values for the constants
L and α; each of these values will be considered as a model. The model selection consists in running
UCCRL with each of these parameter values for a certain period of τ0 time steps (exploration). Then
one selects the model with the highest reward and uses it for a period of τ ′0 time steps (exploitation),
while checking that its average reward stays within (6) of what was obtained in the exploitation
phase. If the average reward does not pass this test, then the model with the second-best average
reward is selected, and so on. Then one switches to exploration with longer periods τ1, etc. Since
there are no guarantees on the behavior of UCCRL when the Hölder parameters are wrong, none
of the models can be discarded at any stage. Optimizing over the parameters τi and τ ′i as done
in [17], and increasing the number J of considered parameter values, one can obtain regret bounds
of Õ(T (2+2α)/(2+3α)), or Õ(T 4/5) in the Lipschitz case. For details see [17]. Since in this model-
selection process UCCRL is used in a “black-box” fashion, the exploration is rather wasteful, and
thus we think that this bound is suboptimal. Recently, the results of [17] have been improved [18],
and it seems that similar analysis gives improved regret bounds for the case of unknown Hölder
parameters as well.

The following is a complementing lower bound on the regret for continuous state reinforcement
learning.
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Theorem 8. For any A,H > 1 and any reinforcement learning algorithm there is a continuous
state reinforcement learning problem with A actions and bias span H satisfying Assumption 1 such
that the algorithm suffers regret of Ω(

√
HAT ).

Proof. Consider the following reinforcement learning problem with state space [0, 1]. The state
space is partitioned into n intervals Ij of equal size. The transition probabilities for each action a
are on each of the intervals Ij concentrated and equally distributed on the same interval Ij . The
rewards on each interval Ij are also constant for each a and are chosen as in the lower bounds for a
multi-armed bandit problem [3] with nA arms. That is, giving only one arm slightly higher reward,
it is known [3] that regret of Ω(

√
nAT ) can be forced upon any algorithm on the respective bandit

problem. Adding another action giving no reward and equally distributing over the whole state
space, the bias span of the problem is n and the regret Ω(

√
HAT ).

Remark 9. Note that Assumption 2 does not hold in the example used in the proof of Theorem 8.
However, the transition probabilities are piecewise constant (and hence Lipschitz) and known to
the learner. Actually, it is straightforward to deal with piecewise Hölder continuous rewards and
transition probabilities where the finitely many points of discontinuity are known to the learner. If
one makes sure that the intervals of the discretized state space do not contain any discontinuities, it
is easy to adapt UCCRL and Theorem 4 accordingly.

Remark 10 (comparison to bandits). The bounds of Theorems 4 and 8 cannot be directly com-
pared to bounds for the continuous-armed bandit problem [15, 4, 16, 8], because the latter is no
special case of learning MDPs with continuous state space (and rather corresponds to a continuous
action space). Thus, in particular one cannot freely sample an arbitrary state of the state space as
assumed in continuous-armed bandits.

5 Proof of Theorem 4

For the proof of the main theorem we adapt the proof of the regret bounds for finite MDPs in [11]
and [5]. Although the state space is now continuous, due to the finite horizon T , we can reuse
some arguments, so that we keep the structure of the original proof of Theorem 2 in [11]. Some of
the necessary adaptations made are similar to techniques used for showing regret bounds for other
modifications of the original UCRL2 algorithm [21, 22], which however only considered finite-state
MDPs.

5.1 Splitting into Episodes

Let vk(s, a) be the number of times action a has been chosen in episode k when being in state s, and
denote the total number of episodes by m. Then setting ∆k :=

∑
s,a vk(s, a)(ρ∗ − r(s, a)), with

probability at least 1− δ
12T 5/4 the regret of UCCRL after T steps is upper bounded by (cf. Section

4.1 of [11]), √
5
8T log

(
8T
δ

)
+
∑m
k=1 ∆k . (7)

5.2 Failing Confidence Intervals

Next, we consider the regret incurred when the true MDP M is not contained in the set of plausi-
ble MDPs Mk. Thus, fix a state-action pair (s, a), and recall that r̂(s, a) and p̂agg(·|s, a) are the
estimates for rewards and transition probabilities calculated from all samples of state-action pairs
contained in the same interval I(s). Now assume that at step t there have been N > 0 samples of
action a in states in I(s) and that in the i-th sample a transition from state si ∈ I(s) to state s′i has
been observed (i = 1, . . . , N).

First, concerning the rewards one obtains as in the proof of Lemma 17 in Appendix C.1 of [11] — but
now using Hoeffding for independent and not necessarily identically distributed random variables
— that

Pr
{∣∣r̂(s, a)− E[r̂(s, a)]

∣∣ ≥√ 7
2N log

(
2nAt
δ

)}
≤ δ

60nAt7
. (8)
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Concerning the transition probabilities, we have for a suitable x ∈ {−1, 1}n∥∥∥p̂agg(·|s, a)− E[p̂agg(·|s, a)]
∥∥∥

1
=

n∑
j=1

∣∣∣p̂agg(Ij |s, a)− E[p̂agg(Ij |s, a)]
∣∣∣

=
n∑
j=1

(
p̂agg(Ij |s, a)− E[p̂agg(Ij |s, a)]

)
x(Ij)

= 1
N

N∑
i=1

(
x(I(s′i))−

∫
S
p(ds′|si, a) · x(I(s′))

)
. (9)

For any x ∈ {−1, 1}n,Xi := x(I(s′i))−
∫
S p(ds

′|si, a)·x(I(s′)) is a martingale difference sequence
with |Xi| ≤ 2, so that by Azuma-Hoeffding inequality (e.g., Lemma 10 in [11]), Pr{

∑N
i=1Xi ≥

θ} ≤ exp(−θ2/8N) and in particular

Pr
{∑N

i=1Xi ≥
√

56nN log
(

2At
δ

)}
≤
(

δ
2At

)7n

≤ δ

2n20nAt7
.

A union bound over all sequences x ∈ {−1, 1}n then yields from (9) that

Pr
{∥∥∥p̂agg(·|s, a)− E[p̂agg(·|s, a)]

∥∥∥
1
≥
√

56n
N log

(
2At
δ

)}
≤ δ

20nAt7
. (10)

Another union bound over all t possible values for N , all n intervals and all actions shows that the
confidence intervals in (8) and (10) hold at time t with probability at least 1 − δ

15t6 for the actual
countsN(I(s), a) and all state-action pairs (s, a). (Note that the equations (8) and (10) are the same
for state-action pairs with states in the same interval.)

Now, by linearity of expectation E[r̂(s, a)] can be written as 1
N

∑N
i=1 r(si, a). Since the si are as-

sumed to be in the same interval I(s), it follows that |E[r̂(s, a)] − r(s, a)| < Ln−α. Similarly,∥∥E[p̂agg(·|s, a)] − pagg(·|s, a)
∥∥

1
< Ln−α. Together with (8) and (10) this shows that with proba-

bility at least 1− δ
15t6 for all state-action pairs (s, a)∣∣r̂(s, a)− r(s, a)

∣∣ < Ln−α +
√

7 log(2nAt/δ)
2 max{1,N(I(s),a)} , (11)∥∥∥p̂agg(·|s, a)− pagg(·|s, a)

∥∥∥
1

< Ln−α +
√

56n log(2At/δ)
max{1,N(I(s),a)} . (12)

This shows that the true MDP is contained in the set of plausible MDPsM(t) at step t with proba-
bility at least 1− δ

15t6 , just as in Lemma 17 of [11]. The argument that
m∑
k=1

∆k1M 6∈Mk
≤
√
T (13)

with probability at least 1− δ
12T 5/4 then can be taken without any changes from Section 4.2 of [11].

5.3 Regret in Episodes with M ∈Mk

Now for episodes with M ∈Mk, by the optimistic choice of M̃k and π̃k in (4) we can bound

∆k =
∑
s

vk(s, π̃k(s))
(
ρ∗ − r(s, π̃k(s))

)
≤

∑
s

vk(s, π̃k(s))
(
ρ̃∗k − r(s, π̃k(s))

)
=

∑
s

vk(s, π̃k(s))
(
ρ̃∗k − r̃k(s, π̃k(s))

)
+
∑
s

vk(s, π̃k(s))
(
r̃k(s, π̃k(s))− r(s, π̃k(s))

)
.

Any term r̃k(s, a) − r(s, a) ≤ |r̃k(s, a) − r̂k(s, a)| + |r̂k(s, a) − r(s, a)| is bounded according to
(2) and (11), as we assume that M̃k,M ∈Mk, so that summarizing states in the same interval Ij

∆k ≤
∑
s

vk(s, π̃k(s))
(
ρ̃∗k − r̃k(s, π̃k(s))

)
+ 2

n∑
j=1

∑
a∈A

vk(Ij , a)
(
Ln−α +

√
7 log(2nAtk/δ)

2 max{1,Nk(Ij ,a)}

)
.
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Since max{1, Nk(Ij , a)} ≤ tk ≤ T , setting τk := tk+1 − tk to be the length of episode k we have

∆k ≤
∑
s

vk(s, π̃k(s))
(
ρ̃∗k − r̃k(s, π̃k(s))

)
+ 2Ln−ατk +

√
14 log

(
2nAT
δ

) n∑
j=1

∑
a∈A

vk(Ij , a)√
max{1, Nk(Ij , a)}

. (14)

We continue analyzing the first term on the right hand side of (14). By the Poisson equation (1) for
π̃k on M̃k, denoting the respective bias by λ̃k := λ̃π̃k

we can write∑
s

vk(s, π̃k(s))
(
ρ̃∗k − r̃k(s, π̃k(s))

)
=

∑
s

vk(s, π̃k(s))
(∫
S
p̃k(ds′|s, π̃k(s)) · λ̃k(s′)− λ̃k(s)

)
=

∑
s

vk(s, π̃k(s))
(∫
S
p(ds′|s, π̃k(s)) · λ̃k(s′)− λ̃k(s)

)
(15)

+
∑
s

vk(s, π̃k(s))
n∑
j=1

∫
Ij

(
p̃k(ds′|s, π̃k(s))− p(ds′|s, π̃k(s))

)
· λ̃k(s′). (16)

5.4 The True Transition Functions

Now
∥∥p̃agg

k (·|s, a)− pagg(·|s, a)
∥∥

1
≤
∥∥p̃agg

k (·|s, a)− p̂agg
k (·|s, a)

∥∥
1

+
∥∥p̂agg

k (·|s, a)− pagg(·|s, a)
∥∥

1

can be bounded by (3) and (12), because we assume M̃k,M ∈ Mk. Hence, since by definition of
the algorithm H bounds the bias function λ̃k, the term in (16) is bounded by∑

s

vk(s, π̃k(s))
n∑
j=1

∫
Ij

λ̃k(s′)
(
p̃k(ds′|s, π̃k(s))− p(ds′|s, π̃k(s))

)
≤
∑
s

vk(s, π̃k(s)) ·H ·
n∑
j=1

(
p̃agg
k (Ij |s, π̃k(s))− pagg(Ij |s, π̃k(s))

)
≤
∑
s

vk(s, π̃k(s)) ·H · 2
(
Ln−α +

√
56n log(2AT/δ)

max{1,Nk(I(s),at)}

)
= 2HLn−ατk + 4H

√
14n log

(
2AT
δ

) n∑
j=1

∑
a∈A

vk(Ij , a)√
max{1, Nk(Ij , a)}

, (17)

while for the term in (15)∑
s

vk(s, π̃k(s))
(∫
S
p(ds′|s, π̃k(s)) · λ̃k(s′)− λ̃k(s)

)
=
tk+1−1∑
t=tk

(∫
S
p(ds′|st, at) · λ̃k(s′)− λ̃k(st)

)

=
tk+1−1∑
t=tk

(∫
S
p(ds′|st, at) · λ̃k(s′)− λ̃k(st+1)

)
+ λ̃k(stk+1)− λ̃k(stk).

Let k(t) be the index of the episode time step t belongs to. Then the sequence Xt :=∫
S p(ds

′|st, at) · λ̃k(t)(s′) − λ̃k(t)(st+1) is a sequence of martingale differences so that Azuma-
Hoeffding inequality shows (cf. Section 4.3.2 and in particular eq. (18) in [11]) that after summing
over all episodes we have

m∑
k=1

( tk+1−1∑
t=tk

(∫
S
p(ds′|st, at) · λ̃k(s′)− λ̃k(st+1)

)
+ λ̃k(stk+1)− λ̃k(stk)

)
≤ H

√
5
2T log

(
8T
δ

)
+HnA log2

(
8T
nA

)
, (18)
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where the second term comes from an upper bound on the number of episodes, which can be derived
analogously to Appendix C.2 of [11].

5.5 Summing over Episodes with M ∈Mk

To conclude, we sum (14) over all the episodes with M ∈Mk, using (15), (17), and (18). This
yields that with probability at least 1− δ

12T 5/4

m∑
k=1

∆k1M∈Mk
≤ 2HLn−αT + 4H

√
14n log

(
2AT
δ

)
·
m∑
k=1

n∑
j=1

∑
a∈A

vk(Ij , a)√
max{1, Nk(Ij , a)}

+H
√

5
2T log

(
8T
δ

)
+HnA log2

(
8T
nA

)
+ 2Ln−αT +

√
14 log

(
2nAT
δ

) m∑
k=1

n∑
j=1

∑
a∈A

vk(Ij , a)√
max{1, Nk(Ij , a)}

. (19)

Analogously to Section 4.3.3 and Appendix C.3 of [11], one can show that
n∑
j=1

∑
a∈A

∑
k

vk(Ij , a)√
max{1, Nk(Ij , a)}

≤
(√

2 + 1
)√
nAT ,

and we get from (19) after some simplifications that with probability ≥ 1− δ
12T 5/4

m∑
k=1

∆k1M∈Mk
≤ H

√
5
2T log

(
8T
δ

)
+HnA log2

(
8T
nA

)
+
(

(4H + 1)
√

14n log
(

2AT
δ

))(√
2 + 1

)√
nAT + 2(H + 1)Ln−αT . (20)

Finally, evaluating (7) by summing ∆k over all episodes, by (13) and (20) we have with probability
≥ 1− δ

4T 5/4 an upper bound on the regret of√
5
8T log

(
8T
δ

)
+

m∑
k=1

∆k1M/∈Mk
+

m∑
k=1

∆k1M∈Mk

≤
√

5
8T log

(
8T
δ

)
+
√
T +H

√
5
2T log

(
8T
δ

)
+HnA log2

(
8T
nA

)
+
(

(4H + 1)
√

14n log
(

2AT
δ

))(√
2 + 1

)√
nAT + 2(H + 1)Ln−αT.

A union bound over all possible values of T and further simplifications as in Appendix C.4 of [11]
finish the proof.

6 Outlook

We think that a generalization of our results to continuous action space should not pose any major
problems. In order to improve over the given bounds, it may be promising to investigate more
sophisticated discretization patterns.

The assumption of Hölder continuity is an obvious, yet not the only possible assumption one can
make about the transition probabilities and reward functions. A more general problem is to assume
a set F of functions, find a way to measure the “size” of F , and derive regret bounds depending on
this size of F .
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[1] Yasin Abbasi-Yadkori and Csaba Szepesvári. Regret bounds for the adaptive control of linear quadratic

systems. COLT 2011, JMLR Proceedings Track, 19:1–26, 2011.
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[3] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic multiarmed
bandit problem. SIAM J. Comput., 32:48–77, 2002.
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[22] Ronald Ortner, Daniil Ryabko, Peter Auer, and Rémi Munos. Regret bounds for restless Markov bandits.
In Proc. 23rd Conference on Algorithmic Learning Theory, ALT 2012, pages 214–228, 2012.

[23] Alexander L. Strehl and Michael L. Littman. Online linear regression and its application to model-based
reinforcement learning. In Advances Neural Information Processing Systems 20, NIPS 2007, pages 1417–
1424, 2008.

[24] William T. B. Uther and Manuela M. Veloso. Tree based discretization for continuous state space re-
inforcement learning. In Proc. 15th National Conference on Artificial Intelligence and 10th Innovative
Applications of Artificial Intelligence Conference, AAAI 98, IAAI 98, pages 769–774, 1998.

9


