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Abstract

We propose an approach to multivariate nonparametric regression that generalizes
reduced rank regression for linear models. An additive model is estimated for each
dimension of a q-dimensional response, with a shared p-dimensional predictor
variable. To control the complexity of the model, we employ a functional form of
the Ky-Fan or nuclear norm, resulting in a set of function estimates that have low
rank. Backfitting algorithms are derived and justified using a nonparametric form
of the nuclear norm subdifferential. Oracle inequalities on excess risk are derived
that exhibit the scaling behavior of the procedure in the high dimensional setting.
The methods are illustrated on gene expression data.

1 Introduction

In the multivariate regression problem the objective is to estimate the conditional mean E(Y ∣X) =
m(X) = (m1(X), . . . ,mq(X))⊺ where Y is a q-dimensional response vector and X is a p-
dimensional covariate vector. This is also referred to as multi-task learning in the machine learning
literature. We are given a sample of n iid pairs {(Xi, Yi)} from the joint distribution of X and Y .
Under a linear model, the mean is estimated as m(X) = BX where B ∈ R

q×p is a q × p matrix
of regression coefficients. When the dimensions p and q are large relative to the sample size n, the
coefficients of B cannot be reliably estimated, without further assumptions.

In reduced rank regression the matrix B is estimated under a rank constraint r = rank(B) ≤ C, so
that the rows or columns of B lie in an r-dimensional subspace of R

q or R
p. Intuitively, this implies

that the model is based on a smaller number of features than the ambient dimensionality p would
suggest, or that the tasks representing the components Y k of the response are closely related. In low
dimensions, the constrained rank model can be computed as an orthogonal projection of the least
squares solution; but in high dimensions this is not well defined.

Recent research has studied the use of the nuclear norm as a convex surrogate for the rank constraint.
The nuclear norm ∥B∥∗, also known as the trace or Ky-Fan norm, is the sum of the singular vectors
of B. A rank constraint can be thought of as imposing sparsity, but in an unknown basis; the nuclear
norm plays the role of the �1 norm in sparse estimation. Its use for low rank estimation problems
was proposed by Fazel in [2]. More recently, nuclear norm regularization in multivariate linear
regression has been studied by Yuan et al. [10], and by Neghaban and Wainwright [4], who analyzed
the scaling properties of the procedure in high dimensions.

In this paper we study nonparametric parallels of reduced rank linear models. We focus our attention
on additive models, so that the regression function m(X) = (m1(X), . . . ,mq(X))⊺ has each com-
ponent mk(X) = ∑p

j=1 mk
j (Xj) equal to a sum of p functions, one for each covariate. The objective

is then to estimate the q × p matrix of functions M(X) = [mk
j (Xj)].

The first problem we address, in Section 2, is to determine a replacement for the regularization
penalty ∥B∥∗ in the linear model. Because we must estimate a matrix of functions, the analogue of
the nuclear norm is not immediately apparent. We propose two related regularization penalties for
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nonparametric low rank regression, and show how they specialize to the linear case. We then study,
in Section 4, the (infinite dimensional) subdifferential of these penalties. In the population setting,
this leads to stationary conditions for the minimizer of the regularized mean squared error. This
subdifferential calculus then justifies penalized backfitting algorithms for carrying out the optimiza-
tion for a finite sample. Constrained rank additive models (CRAM) for multivariate regression are
analogous to sparse additive models (SPAM) for the case where the response is 1-dimensional [6]
(studied also in the reproducing kernel Hilbert space setting by [5]), but with the goal of recovering
a low-rank matrix rather than an entry-wise sparse vector. The backfitting algorithms we derive in
Section 5 are analogous to the iterative smoothing and soft thresholding backfitting algorithms for
SPAM proposed in [6]. A uniform bound on the excess risk of the estimator relative to an oracle
is given Section 6. This shows the statistical scaling behavior of the methods for prediction. The
analysis requires a concentration result for nonparametric covariance matrices in the spectral norm.
Experiments with gene data are given in Section 7, which are used to illustrate different facets of the
proposed nonparametric reduced rank regression techniques.

2 Nonparametric Nuclear Norm Penalization

We begin by presenting the penalty that we will use to induce nonparametric regression esti-
mates to be low rank. To motivate our choice of penalty and provide some intuition, suppose
that f1(x), . . . , fq(x) are q smooth one-dimensional functions with a common domain. What
does it mean for this collection of functions to be low rank? Let x1, x2, . . . , xn be a collection
of points in the common domain of the functions. We require that the n×q matrix of function values
F(x1∶n) = [fk(xi)] is low rank. This matrix is of rank at most r < q for every set {xi} of arbitrary
size n if and only if the functions {fk} are r-linearly independent—each function can be written as
a linear combination of r of the other functions.

In the multivariate regression setting, but still assuming the domain is one-dimensional for simplicity
(q > 1 and p = 1), we have a random sample X1, . . . ,Xn. Consider the n × q sample matrix
M = [mk(Xi)] associated with a vector M = (m1, . . . ,mq) of q smooth (regression) functions,
and suppose that n > q. We would like for this to be a low rank matrix. This suggests the penalty∥M∥∗ = ∑q

s=1 σs(M) = ∑q
s=1

√
λs(M⊺M), where {λs(A)} denotes the eigenvalues of a symmetric

matrix A and {σs(B)} denotes the singular values of a matrix B. Now, assuming the columns of M

are centered, and E[mk(X)] = 0 for each k, we recognize 1
n

M
⊺
M as the sample covariance Σ̂(M)

of the population covariance Σ(M) ∶= Cov(M(X)) = [E(mk(X)ml(X))]. This motivates the
following sample and population penalties, where A1/2 denotes the matrix square root:

population penalty: ∥Σ(M)1/2∥∗ = ∥Cov(M(X))1/2∥∗ (2.1)

sample penalty: ∥Σ̂(M)1/2∥∗ = 1√
n
∥M∥∗. (2.2)

With Y denoting the n × q matrix of response values for the sample (Xi, Yi), this leads to the fol-
lowing population and empirical regularized risk functionals for low rank nonparametric regression:

population penalized risk:
1
2

E∥Y −M(X)∥22 + λ∥Σ(M)1/2∥∗ (2.3)

empirical penalized risk:
1
2n

∥Y −M∥2F + λ√
n
∥M∥∗. (2.4)

We recall that if A ⪰ 0 has spectral decomposition A = UDU⊺ then A1/2 = UD1/2U⊺.

3 Constrained Rank Additive Models (CRAM)

We now consider the case where X is p-dimensional. Throughout the paper we use superscripts to
denote indices of the q-dimensional response, and subscripts to denote indices of the p-dimensional
covariate. We consider the family of additive models, with regression functions of the form m(X) =(m1(X), . . . ,mq(X))⊺ = ∑p

j=1 Mj(Xj), where each term Mj(Xj) = (m1
j(Xj), . . . ,mq

j(Xj))⊺ is
a q-vector of functions evaluated at Xj .
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In this setting we propose two different penalties. The first penalty, intuitively, encourages the
vector (m1

j(Xj), . . . ,mq
j(Xj)) to be low rank, for each j. Assume that the functions mk

j (Xj)
all have mean zero; this is required for identifiability in the additive model. As a shorthand, let
Σj = Σ(Mj) = Cov(Mj(Xj)) denote the covariance matrix of the j-th component functions, with
sample version Σ̂j . The population and sample versions of the first penalty are then given by∥Σ1/2

1 ∥
∗
+ ∥Σ1/2

2 ∥
∗
+⋯+ ∥Σ1/2

p ∥
∗

(3.1)

∥Σ̂1/2
1 ∥

∗
+ ∥Σ̂1/2

2 ∥
∗
+⋯+ ∥Σ̂1/2

p ∥
∗
= 1√

n

p∑
j=1

∥Mj∥∗. (3.2)

The second penalty, intuitively, encourages the set of q vector-valued functions (mk
1 ,mk

2 , . . . ,mk
p)⊺

to be low rank. This penalty is given by∥(Σ1/2
1 ⋯Σ1/2

p )∥
∗

(3.3)

∥(Σ̂1/2
1 ⋯Σ̂1/2

p )∥
∗
= 1√

n
∥M1∶p∥∗ (3.4)

where, for convenience of notation, M1∶p = (M⊺1⋯M
⊺
p)⊺ is an np × q matrix. The corresponding

population and empirical risk functionals, for the first penalty, are then

1
2

E∥Y − p∑
j=1

Mj(X)∥2

2
+ λ

p∑
j=1

∥Σ1/2
j ∥

∗
(3.5)

1
2n

∥Y − p∑
j=1

Mj∥2

F
+ λ√

n

p∑
j=1

∥Mj∥∗ (3.6)

and similarly for the second penalty.

Now suppose that each Xj is normalized so that E(X2
j ) = 1. In the linear case we have Mj(Xj) =

XjBj where Bj ∈ R
q . Let B = (B1⋯Bp) ∈ R

q×p. Some straightforward calculation shows that

the penalties reduce to ∑p
j=1 ∥Σ1/2

j ∥∗ = ∑p
j=1 ∥Bj∥2 for the first penalty, and ∥Σ1/2

1 ⋯Σ1/2
p ∥∗ = ∥B∥∗

for the second. Thus, in the linear case the first penalty is encouraging B to be column-wise sparse,
so that many of the Bjs are zero, meaning that Xj doesn’t appear in the fit. This is a version of
the group lasso [11]. The second penalty reduces to the nuclear norm regularization ∥B∥∗ used for
high-dimensional reduced-rank regression.

4 Subdifferentials for Functional Matrix Norms

A key to deriving algorithms for functional low-rank regression is computation of the subdifferen-
tials of the penalties. We are interested in (q × p)-dimensional matrices of functions F = [fk

j ]. For
each column index j and row index k, fk

j is a function of a random variable Xj , and we will take
expectations with respect to Xj implicitly. We write Fj to mean the jth column of F , which is a
q-vector of functions of Xj . We define the inner product between two matrices of functions as

⟪F,G⟫ ∶= p∑
j=1

q∑
k=1

E(fk
j gk

j ) = p∑
j=1

E(F ⊺j Gj) = tr (E(FG⊺)) , (4.1)

and write ∥F ∥2 = √⟪F,F⟫. Note that ∥F ∥2 = ∥√E(FF ⊺)∥
F

where E(FF ⊺) = ∑j E(FjF
⊺
j ) ⪰ 0

is a positive semidefinite q × q matrix.

We define two further norms on a matrix of functions F , namely,∣∣∣F ∣∣∣sp ∶= √∥E(FF ⊺)∥sp = ∥√E(FF ⊺)∥
sp

and ∣∣∣F ∣∣∣∗ ∶= ∥√E(FF ⊺)∥∗,
where ∥A∥sp is the spectral norm (operator norm), the largest singular value of A, and it is convenient

to write the matrix square root as
√

A = A1/2. Each of the norms depends on F only through
E(FF ⊺). In fact, these two norms are dual—for any F ,∣∣∣F ∣∣∣∗ = sup

∣∣∣G∣∣∣sp≤1
⟪G,F⟫ , (4.2)
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where the supremum is attained by setting G = (√E(FF ⊺))−1 F , with A−1 denoting the matrix
pseudo-inverse.

Proposition 4.1. The subdifferential of ∣∣∣F ∣∣∣∗ is the set

S(F ) ∶= {(√E(FF ⊺))−1F +H ∶ ∣∣∣H ∣∣∣sp ≤ 1, E(FH⊺) = 0q×q, E(FF ⊺)H = 0q×p a.e.} .

(4.3)

Proof. The fact that S(F ) contains the subdifferential ∂∣∣∣F ∣∣∣∗ can be proved by comparing our
setting (matrices of functions) to the ordinary matrix case; see [9, 7]. Here, we show the reverse
inclusion, S(F ) ⊆ ∂∣∣∣F ∣∣∣∗. Let D ∈ S(F ) and let G be any element of the function space. We need
to show ∣∣∣F +G∣∣∣∗ ≥ ∣∣∣F ∣∣∣∗ + ⟪G,D⟫ , (4.4)

where D = (√E(FF ⊺))−1F + H =∶ F̃ + H for some H satisfying the conditions in (4.3) above.

Expanding the right-hand side of (4.4), we have∣∣∣F ∣∣∣∗ + ⟪G,D⟫ = ∣∣∣F ∣∣∣∗ + ⟪G, F̃ +H⟫ = ⟪F +G, F̃ +H⟫ ≤ ∣∣∣F +G∣∣∣∗∣∣∣D∣∣∣sp ,

where the second equality follows from ∣∣∣F ∣∣∣∗ = ⟪F, F̃⟫, and the fact that ⟪F,H⟫ = tr(E(FH⊺)) =
0. The inequality follows from the duality of the norms.

Finally, we show that ∣∣∣D∣∣∣sp ≤ 1. We have

E(DD⊺) = E(F̃ F̃ ⊺) +E(F̃H⊺) +E(HF̃ ⊺) +E(HH⊺) = E(F̃ F̃ ⊺) +E(HH⊺) ,

where we use the fact that E(FH⊺) = 0q×q, implying E(F̃H⊺) = 0q×q. Next, let E(FF ⊺) = V DV ⊺

be a reduced singular value decomposition, where D is a positive diagonal matrix of size q′ ≤ q.
Then E(F̃ F̃ ⊺) = V V ⊺, and we have

E(FF ⊺) ⋅H = 0q×p a.e. ⇔ V ⊺H = 0q′×p a.e. ⇔ E(F̃ F̃ ⊺)H = 0q×p a.e. .

This implies that E(F̃ F̃ ⊺) ⋅ E(HH⊺) = 0q×q and so these two symmetric matrices have orthogonal
row spans and orthogonal column spans. Therefore,∥E(DD⊺)∥

sp
= ∥E(F̃ F̃ ⊺) +E(HH⊺)∥

sp
= max{∥E(F̃ F̃ ⊺)∥

sp
, ∥E(HH⊺)∥

sp
} ≤ 1 ,

where the last bound comes from the fact that ∣∣∣F̃ ∣∣∣sp, ∣∣∣H ∣∣∣sp ≤ 1. Therefore ∣∣∣D∣∣∣sp ≤ 1.

This gives the subdifferential of penalty 2, defined in (3.3). We can view the first penalty update as
just a special case of the second penalty update. For penalty 1 in (3.1), if we are updating Fj and fix
all the other functions, we are now penalizing the norm

∣∣∣Fj ∣∣∣∗ = ∥√E(FjF
⊺
j )∥∗ , (4.5)

which is clearly just a special case of penalty 2 with a single q-vector of functions instead of p
different q-vectors of functions. So, we have

∂∣∣∣Fj ∣∣∣∗ = {(√E(FjF
⊺
j ))−1Fj +Hj ∶ ∣∣∣Hj ∣∣∣sp ≤ 1, E(FjH

⊺
j ) = 0, E(FjF

⊺
j )Hj = 0 a.e.} . (4.6)

5 Stationary Conditions and Backfitting Algorithms

Returning to the base case of p = 1 covariate, consider the population regularized risk optimization

min
M

{1
2

E∥Y −M(X)∥22 + λ∣∣∣M ∣∣∣∗}, (5.1)

where M is a vector of q univariate functions. The stationary condition for this optimization is

E(Y ∣X) = M(X) + λV (X) a.e. for some V ∈ ∂∣∣∣M ∣∣∣∗. (5.2)

Define P (X) ∶= E(Y ∣X).
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CRAM BACKFITTING ALGORITHM — FIRST PENALTY

Input: Data (Xi, Yi), regularization parameter λ.

Initialize M̂j = 0, for j = 1, . . . , p.
Iterate until convergence:

For each j = 1, . . . , p:

(1) Compute the residual: Zj = Y −∑k≠j M̂k(Xk);
(2) Estimate Pj = E[Zj ∣Xj] by smoothing: P̂j = SjZj ;

(3) Compute SVD: 1
n
P̂jP̂

⊺
j = U diag(τ)U⊺

(4) Soft threshold: M̂j = U diag([1 − λ/√τ]
+
)U⊺P̂j ;

(5) Center: M̂j ← M̂j −mean(M̂j).
Output: Component functions M̂j and estimator M̂(Xi) = ∑j M̂j(Xij).

Figure 1: The CRAM backfitting algorithm, using the first penalty, which penalizes each component.

Proposition 5.1. Let E(PP ⊺) = U diag(τ)U⊺ be the singular value decomposition and define

M = U diag([1 − λ/√τ]+)U⊺P (5.3)

where [x]+ = max(x,0). Then M satisfies stationary condition (5.2), and is a minimizer of (5.1).

Proof. Assume the singular values are sorted as τ1 ≥ τ2 ≥ ⋯ ≥ τq, and let r be the largest index such
that

√
τr > λ. Thus, M has rank r. Note that

√
E(MM⊺) = U diag([√τ − λ]+)U⊺, and therefore

λ(√E(MM⊺))−1M = U diag(λ/√τ1∶r,0q−r)U⊺P (5.4)

where x1∶k = (x1, . . . , xk) and ck = (c, . . . , c). It follows that

M + λ(√E(MM⊺))−1M = U diag(1r,0q−r)U⊺P. (5.5)

Now define

H = 1
λ

U diag(0r,1q−r)U⊺P (5.6)

and take V = (√E(MM⊺))−1M +H . Then we have M + λV = P .

It remains to show that H satisfies the conditions of the subdifferential in (4.3). Since
√

E(HH⊺) =
U diag(0r,

√
τr+1/λ, . . . ,

√
τq/λ)U⊺ we have ∣∣∣H ∣∣∣sp ≤ 1. Also, E(MH⊺) = 0q×q since

diag(1 − λ/√τ1∶r,0q−r)diag(0r,1q−r/λ) = 0q×q. (5.7)

Similarly, E(MM⊺)H = 0q×q since

diag((√τ1∶r − λ)2,0q−r)diag(0r,1q−r/λ) = 0q×q. (5.8)

It follows that V ∈ ∂∣∣∣M ∣∣∣sp.

The analysis above justifies a backfitting algorithm for estimating a constrained rank additive model
with the first penalty, where the objective is

min
Mj

{1
2

E∥Y − p∑
j=1

Mj(Xj)∥2

2
+ λ

p∑
j=1

∣∣∣Mj ∣∣∣∗}. (5.9)

For a given coordinate j, we form the residual Zj = Y −∑k≠j Mk, and then compute the projection
Pj = E(Zj ∣Xj), with singular value decomposition E(PjP

⊺
j ) = U diag(τ)U⊺. We then update

Mj = U diag([1 − λ/√τ]+)U⊺Pj (5.10)
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and proceed to the next variable. This is a Gauss-Seidel procedure that parallels the population
backfitting algorithm for SPAM [6]. In the sample version we replace the conditional expectation
Pj = E(Zj ∣Xj) by a nonparametric linear smoother, P̂j = SjZj . The algorithm is given in Figure 1.
Note that to predict at a point x not included in the training set, the smoother matrices are constructed
using that point; that is, P̂j(xj) = Sj(xj)⊺Zj .

The algorithm for penalty 2 is similar. In step (3) of the algorithm in Figure 1 we compute the SVD
of 1

n
P̂1∶pP̂

⊺
1∶p. Then, in step (4) we soft threshold according to M̂1∶p = U diag([1 − λ/√τ]

+
)U⊺P̂1∶p.

Both algorithms can be viewed as functional projected gradient descent procedures.

6 Excess Risk Bounds

The population risk of a q × p regression matrix M(X) = [M1(X1)⋯Mp(Xp)] is

R(M) = E∥Y −M(X)1p∥22,
with sample version denoted R̂(M). Consider all models that can be written as

M(X) = U ⋅D ⋅ V (X)⊺
where U is an orthogonal q × r matrix, D is a positive diagonal matrix, and V (X) = [vjs(Xj)]
satisfies E(V ⊺V ) = Ir. The population risk can be reexpressed as

R(M) = tr{( −Iq

DU⊺
)⊺E [( Y

V (X)⊺ )( Y
V (X)⊺ )⊺]( −Iq

DU⊺
)}

= tr{( −Iq

DU⊺
)⊺ (ΣY Y ΣY V

Σ⊺Y V ΣV V
)( −Iq

DU⊺
)}

and similarly for the sample risk, with Σ̂n(V ) replacing Σ(V ) ∶= Cov((Y,V (X)⊺)) above. The
“uncontrollable” contribution to the risk, which does not depend on M , is Ru = tr{ΣY Y }. We can
express the remaining “controllable” risk as

Rc(M) = R(M) −Ru = tr{(−2Iq

DU⊺
)⊺Σ(V ) ( 0q

DU⊺
)} .

Using the von Neumann trace inequality, tr(AB) ≤ ∥A∥p∥B∥p′ where 1/p + 1/p′ = 1,

Rc(M) − R̂c(M) ≤ ∥(−2Iq

DU⊺
)⊺ (Σ(V ) − Σ̂n(V ))∥

sp

∥( 0q

DU⊺
)∥
∗

≤ ∥(−2Iq

DU⊺
)⊺∥

sp

∥Σ(V ) − Σ̂n(V )∥
sp
∥D∥∗

≤ C max(2, ∥D∥sp) ∥Σ(V ) − Σ̂n(V )∥
sp

∥D∥∗≤ C max{2, ∥D∥2∗} ∥Σ(V ) − Σ̂n(V )∥
sp

(6.1)

where here and in the following C is a generic constant. For the last factor in (6.1), it holds that

sup
V

∥Σ(V ) − Σ̂n(V )∥
sp
≤ C sup

V
sup
w∈N

w⊺ (Σ(V ) − Σ̂n(V ))w

where N is a 1/2-covering of the unit (q + r)-sphere, which has size ∣N ∣ ≤ 6q+r ≤ 36q; see [8]. We
now assume that the functions vsj(xj) are uniformly bounded from a Sobolev space of order two.
Specifically, let {ψjk ∶ k = 0,1, . . .} denote a uniformly bounded, orthonormal basis with respect to
L2[0,1], and assume that vsj ∈ Hj where

Hj = {fj ∶ fj(xj) = ∞∑
k=0

ajkψjk(xj), ∞∑
k=0

a2
jkk4 ≤ K2}

for some 0 < K < ∞. The L∞-covering number of Hj satisfies logN(Hj , ε) ≤ K/√ε.
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Suppose that Y −E(Y ∣X) = W is Gaussian and the true regression function E(Y ∣X) is bounded.
Then the family of random variables Z(V,w) ∶= √

n ⋅ w⊺(Σ(V ) − Σ̂n(V ))w is sub-Gaussian and
sample continuous. It follows from a result of Cesa-Bianchi and Lugosi [1] that

E(sup
V

sup
w∈N

w⊺(Σ(V ) − Σ̂n(V ))w) ≤ C√
n
∫ B

0

√
q log(36) + log(pq) + K√

ε
dε

for some constant B. Thus, by Markov’s inequality we conclude that

sup
V

∥Σ(V ) − Σ̂n(V )∥
sp
= OP

⎛⎝
√

q + log(pq)
n

⎞⎠ . (6.2)

If ∣∣∣M ∣∣∣∗ = ∥D∥∗ = o (n/(q + log(pq)))1/4, then returning to (6.1), this gives us a bound on Rc(M)−
R̂c(M) that is oP (1). More precisely, we define a class of matrices of functions:

Mn = ⎧⎪⎪⎨⎪⎪⎩M ∶ M(X) = UDV (X)⊺, with E(V ⊺V ) = I, vsj ∈ Hj , ∥D∥∗ = o( n

q + log(pq))
1/4⎫⎪⎪⎬⎪⎪⎭ .

Then, for a fitted matrix M̂ chosen from Mn, writing M∗ = argminM∈Mn
R(M), we have

R(M̂) − inf
M∈Mn

R(M) = R(M̂) − R̂(M̂) − (R(M∗) − R̂(M∗)) + (R̂(M̂) − R̂(M∗))
≤ [R(M̂) − R̂(M̂)] − [R(M∗) − R̂(M∗)].

Subtracting Ru − R̂u from each of the bracketed differences, we obtain that

R(M̂) − inf
M∈Mn

R(M) ≤ [Rc(M̂) − R̂c(M̂)] − [Rc(M∗) − R̂c(M∗)]
≤ 2 sup

M∈Mn

{Rc(M) − R̂c(M)}
by (6.1)≤ O (∥D∥2∗ ∥Σ(V ) − Σ̂n(V )∥

sp
) by (6.2)= oP (1).

This proves the following result.

Proposition 6.1. Let M̂ minimize the empirical risk 1
n ∑i ∥Yi −∑j Mj(Xij)∥22 over the class Mn.

Then
R(M̂) − inf

M∈Mn

R(M) PD→ 0 .

7 Application to Gene Expression Data

To illustrate the proposed nonparametric reduced rank regression techniques, we consider data on
gene expression in E. coli from the “DREAM 5 Network Inference Challenge”1 [3]. In this challenge
genes were classified as transcription factors (TFs) or target genes (TGs). Transcription factors
regulate the target genes, as well as other TFs.

We focus on predicting the expression levels Y for a particular set of q = 27 TGs, using the expres-
sion levels X for p = 6 TFs. Our motivation for analyzing these 33 genes is that, according to the
gold standard gene regulatory network used for the DREAM 5 challenge, the 6 TFs form the parent
set common to two additional TFs, which have the 27 TGs as their child nodes. In fact, the two
intermediate nodes d-separate the 6 TFs and the 27 TGs in a Bayesian network interpretation of this
gold standard. This means that if we treat the gold standard as a causal network, then up to noise, the
functional relationship between X and Y is given by the composition of a map g ∶ R

6 → R
2 and a

map h ∶ R2 → R
27. If g and h are both linear, their composition h○g is a linear map of rank no more

than 2. As observed in Section 2, such a reduced rank linear model is a special case of an additive
model with reduced rank in the sense of penalty 2. More generally, if g is an additive function and h
is linear, then h ○ g has rank at most 2 in the sense of penalty 2. Higher rank can in principle occur

1http://wiki.c2b2.columbia.edu/dream/index.php/D5c4
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Penalty 1, λ = 20 Penalty 2, λ = 5

Figure 2: Left: Penalty 1 with large tuning parameter. Right: Penalty 2 with tuning parameter ob-
tained through 10-fold cross-validation. Plotted points are residuals holding out the given predictor.

under functional composition, since even a univariate additive map h ∶ R → R
q may have rank up to

q under our penalties (recall that penalty 1 and 2 coincide for univariate maps).

The backfitting algorithm of Figure 1 with penalty 1 and a rather aggressive choice of the tuning
parameter λ produces the estimates shown in Figure 2, for which we have selected three of the 27
TGs. Under such strong regularization, the 5th column of functions is rank zero and, thus, identically
zero. The remaining columns have rank one; the estimated fitted values are scalar multiples of one
another. We also see that scalings can be different for different columns. The third plot in the third
row shows a slightly negative slope, indicating a negative scaling for this particular estimate. The
remaining functions in this row are oriented similarly to the other rows, indicating the same, positive
scaling. This property characterizes the difference between penalties 1 and 2; in an application of
penalty 2, the scalings would have been the same across all functions in a given row.

Next, we illustrate a higher-rank solution for penalty 2. Choosing the regularization parameter λ by
ten-fold cross-validation gives a fit of rank 5, considerably lower than 27, the maximum possible
rank. Figure 2 shows a selection of three coordinates of the fitted functions. Under rank five, each
row of functions is a linear combination of up to five other, linearly independent rows. We remark
that the use of cross-validation generally produces somewhat more complex models than is necessary
to capture an underlying low-rank data-generating mechanism. Hence, if the causal relationships for
these data were indeed additive and low rank, then the true low rank might well be smaller than five.

8 Summary

This paper introduced two penalties that induce reduced rank fits in multivariate additive nonpara-
metric regression. Under linearity, the penalties specialize to group lasso and nuclear norm penalties
for classical reduced rank regression. Examining the subdifferentials of each of these penalties, we
developed backfitting algorithms for the two resulting optimization problems that are based on soft-
thresholding of singular values of smoothed residual matrices. The algorithms were demonstrated
on a gene expression data set constructed to have a naturally low-rank structure. We also provided a
persistence analysis that shows error tending to zero under a scaling assumption on the sample size
n and the dimensions q and p of the regression problem.
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