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Abstract

A new result in convex analysis on the calculation of proximity operators in cer-
tain scaled norms is derived. We describe efficient implementations of the prox-
imity calculation for a useful class of functions; the implementations exploit the
piece-wise linear nature of the dual problem. The second part of the paper applies
the previous result to acceleration of convex minimization problems, and leads
to an elegant quasi-Newton method. The optimization method compares favor-
ably against state-of-the-art alternatives. The algorithm has extensive applications
including signal processing, sparse recovery and machine learning and classifica-
tion.

1 Introduction

Convex optimization has proved to be extremely useful to all quantitative disciplines of science. A
common trend in modern science is the increase in size of datasets, which drives the need for more
efficient optimization schemes. For large-scale unconstrained smooth convex problems, two classes
of methods have seen the most success: limited memory quasi-Newton methods and non-linear
conjugate gradient (CG) methods. Both of these methods generally outperform simpler methods,
such as gradient descent.

For problems with non-smooth terms and/or constraints, it is possible to generalize gradient descent
with proximal gradient descent (which includes projected gradient descent as a sub-cases), which is
just the application of the forward-backward algorithm [1].

Unlike gradient descent, it is not easy to adapt quasi-Newton and CG methods to problems involv-
ing constraints and non-smooth terms. Much work has been written on the topic, and approaches
generally follow an active-set methodology. In the limit, as the active-set is correctly identified, the
methods behave similar to their unconstrained counterparts. These methods have seen success, but
are not as efficient or as elegant as the unconstrained versions. In particular, a sub-problem on the
active-set must be solved, and the accuracy of this sub-iteration must be tuned with heuristics in
order to obtain competitive results.

1.1 Problem statement

Let H = (RN , 〈·, ·〉) equipped with the usual Euclidean scalar product 〈x, y〉 =
∑N
i=1 xiyi and

associated norm ‖x‖ =
√
〈x, x〉. For a matrix V ∈ RN×N in the symmetric positive-definite (SDP)

cone S++(N), we define HV = (RN , 〈·, ·〉V ) with the scalar product 〈x, y〉V = 〈x, V y〉 and norm
‖x‖V corresponding to the metric induced by V . The dual space of HV , under 〈·, ·〉, is HV −1 . We
denote IH the identity operator onH.

A real-valued function f : H → R ∪ {+∞} is (0)-coercive if lim‖x‖→+∞ f (x) = +∞. The
domain of f is defined by dom f = {x ∈ H : f(x) < +∞} and f is proper if dom f 6= ∅. We
say that a real-valued function f is lower semi-continuous (lsc) if lim infx→x0 f(x) ≥ f(x0). The
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class of all proper lsc convex functions from H to R ∪ {+∞} is denoted by Γ0(H). The conjugate
or Legendre-Fenchel transform of f onH is denoted f∗ .

Our goal is the generic minimization of functions of the form

min
x∈H
{F (x) , f(x) + h(x)} , (P)

where f, h ∈ Γ0(H). We also assume the set of minimizers is nonempty (e.g. F is coercive) and that
a standard domain qualification holds. We take f ∈ C1(RN ) with L-Lipschitz continuous gradient,
and we assume h is separable. Write x? to denote an element of ArgminF (x).

The class we consider covers non-smooth convex optimization problems, including those with con-
vex constraints. Here are some examples in regression, machine learning and classification.
Example 1 (LASSO).

min
x∈H

1
2
‖Ax− b‖22 + λ‖x‖1 . (1)

Example 2 (Non-negative least-squares (NNLS)).

min
x∈H

1
2
‖Ax− b‖22 subject to x > 0 . (2)

Example 3 (Sparse Support Vector Machines). One would like to find a linear decision function
which minimizes the objective

min
x∈H

1
m

m∑
i=1

L(〈x, zi〉+ b, yi) + λ‖x‖1 (3)

where for i = 1, · · · ,m, (zi, yi) ∈ RN × {±1} is the training set, and L is a smooth loss function
with Lipschitz-continuous gradient such as the squared hinge loss L(ŷi, yi) = max(0, 1− ŷiyi)2 or
the logistic loss L(ŷi, yi) = log(1 + e−ŷiyi).

1.2 Contributions

This paper introduces a class of scaled norms for which we can compute a proximity operator; these
results themselves are significant, for previous results only cover diagonal scaling (the diagonal
scaling result is trivial). Then, motivated by the discrepancy between constrained and unconstrained
performance, we define a class of limited-memory quasi-Newton methods to solve (P) and that
extends naturally and elegantly from the unconstrained to the constrained case. Most well-known
quasi-Newton methods for constrained problems, such as L-BFGS-B [2], are only applicable to box
constraints l ≤ x ≤ u. The power of our approach is that it applies to a wide-variety of useful
non-smooth functionals (see §3.1.4 for a list) and that it does not rely on an active-set strategy. The
approach uses the zero-memory SR1 algorithm, and we provide evidence that the non-diagonal term
provides significant improvements over diagonal Hessians.

2 Quasi-Newton forward-backward splitting

2.1 The algorithm

In the following, define the quadratic approximation

QBk (x) = f(xk) + 〈∇f(xk), x− xk〉+
1
2
‖x− xk‖2B , (4)

where B ∈ S++(N).

The standard (non relaxed) version of the forward-backward splitting algorithm (also known as
proximal or projected gradient descent) to solve (P) updates to a new iterate xk+1 according to

xk+1 = argmin
x

QBk

k (x) + h(x) = proxtkh(xk − tk∇f(xk)) (5)

with Bk = t−1
k IH, tk ∈]0, 2/L[ (typically tk = 1/L unless a line search is used).
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Note that this specializes to the gradient descent when h = 0. Therefore, if f is a strictly convex
quadratic function and one takesBk = ∇2f(xk), then we obtain the Newton method. Let’s get back
to h 6= 0. It is now well known that fixed B = LIH is usually a poor choice. Since f is smooth and
can be approximated by a quadratic, and inspired by quasi-Newton methods, this suggest picking
Bk as an approximation of the Hessian. Here we propose a diagonal+rank 1 approximation.

Our diagonal+rank 1 quasi-Newton forward-backward splitting algorithm is listed in Algorithm 1
(with details for the quasi-Newton update in Algorithm 2, see §4 for details). These algorithms
are listed as simply as possible to emphasize their important components; the actual software
used for numerical tests is open-source and available at http://www.greyc.ensicaen.fr/
˜jfadili/software.html.

Algorithm 1: Zero-memory Symmetric Rank 1 (0SR1) algorithm to solve min f + h

Require: x0 ∈ dom(f + h), Lipschitz constant estimate L of ∇f , stopping criterion ε
1: for k = 1, 2, 3, . . . do
2: sk ← xk − xk−1

3: yk ← ∇f(xk)−∇f(xk−1)
4: Compute Hk via Algorithm 2, and define Bk = H−1

k .
5: Compute the rank-1 proximity operator (see §3)

x̂k+1 ← proxBk

h (xk −Hk∇f(xk)) (6)

6: pk ← x̂k+1 − xk and terminate if ‖pk‖ < ε
7: Line-search along the ray xk + tpk to determine xk+1, or choose t = 1.
8: end for

2.2 Relation to prior work

First-order methods The algorithm in (5) is variously known as proximal descent or iterated
shrinkage/thresholding algorithm (IST or ISTA). It has a grounded convergence theory, and also
admits over-relaxation factors α ∈ (0, 1) [3].

The spectral projected gradient (SPG) [4] method was designed as an extension of the Barzilai-
Borwein spectral step-length method to constrained problems. In [5], it was extended to non-smooth
problems by allowing general proximity operators; The Barzilai-Borwein method [6] uses a specific
choice of step-length tk motivated by quasi-Newton methods. Numerical evidence suggests the
SPG/SpaRSA method is highly effective, although convergence results are not as strong as for ISTA.

FISTA [7] is a multi-step accelerated version of ISTA inspired by the work of Nesterov. The stepsize
t is chosen in a similar way to ISTA; in our implementation, we tweak the original approach by using
a Barzilai-Borwein step size, a standard line search, and restart[8], since this led to improved per-
formance. Nesterov acceleration can be viewed as an over-relaxed version of ISTA with a specific,
non-constant over-relaxation parameter αk.

The above approaches assume Bk is a constant diagonal. The general diagonal case was considered
in several papers in the 1980s as a simple quasi-Newton method, but never widely adapted. More
recent attempts include a static choice Bk ≡ B for a primal-dual method [9]. A convergence rate
analysis of forward-backward splitting with static and variable Bk where one of the operators is
maximal strongly monotone is given in [10].

Active set approaches Active set methods take a simple step, such as gradient projection, to iden-
tify active variables, and then uses a more advanced quadratic model to solve for the free variables. A
well-known such method is L-BFGS-B [2, 11] which handles general box-constrained problems; we
test an updated version [12]. A recent bound-constrained solver is ASA [13] which uses a conjugate
gradient (CG) solver on the free variables, and shows good results compared to L-BFGS-B, SPG,
GENCAN and TRON. We also compare to several active set approaches specialized for `1 penalties:
“Orthant-wise Learning” (OWL) [14], “Projected Scaled Sub-gradient + Active Set” (PSSas) [15],
“Fixed-point continuation + Active Set” (FPC AS) [16], and “CG + IST” (CGIST) [17].
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Other approaches By transforming the problem into a standard conic programming problem, the
generic problem is amenable to interior-point methods (IPM). IPM requires solving a Newton-step
equation, so first-order like “Hessian-free” variants of IPM solve the Newton-step approximately,
either by approximately solving the equation or by subsampling the Hessian. The main issues are
speed and robust stopping criteria for the approximations.

Yet another approach is to include the non-smooth h term in the quadratic approximation. Yu et
al. [18] propose a non-smooth modification of BFGS and L-BFGS, and test on problems where h is
typically a hinge-loss or related function.

The projected quasi-Newton (PQN) algorithm [19, 20] is perhaps the most elegant and logical ex-
tension of quasi-Newton methods, but it involves solving a sub-iteration. PQN proposes the SPG [4]
algorithm for the subproblems, and finds that this is an efficient tradeoff whenever the cost func-
tion (which is not involved in the sub-iteration) is relatively much more expensive to evaluate than
projecting onto the constraints. Again, the cost of the sub-problem solver (and a suitable stopping
criteria for this inner solve) are issues. As discussed in [21], it is possible to generalize PQN to gen-
eral non-smooth problems whenever the proximity operator is known (since, as mentioned above, it
is possible to extend SPG to this case).

3 Proximity operators and proximal calculus

For space limitation reasons, we only recall essential definitions. More notions, results from convex
analysis as well as proofs can be found in the supplementary material.
Definition 4 (Proximity operator [22]). Let h ∈ Γ0(H). Then, for every x ∈ H, the function
z 7→ 1

2 ‖x− z‖
2 + h(z) achieves its infimum at a unique point denoted by proxh x. The uniquely-

valued operator proxh : H → H thus defined is the proximity operator or proximal mapping of
h.

3.1 Proximal calculus inHV

Throughout, we denote proxVh = (IHV
+ V −1∂h)−1, where ∂h is the subdifferential of h, the

proximity operator of h w.r.t. the norm endowing HV for some V ∈ S++(N). Note that since
V ∈ S++(N), the proximity operator proxVh is well-defined.
Lemma 5 (Moreau identity inHV ). Let h ∈ Γ0(H), then for any x ∈ H

proxVρh∗(x) + ρV −1 ◦ proxV
−1

h/ρ ◦V (x/ρ) = x, ∀ 0 < ρ < +∞ . (7)

Corollary 6.

proxVh (x) = x− V −1 ◦ proxV
−1

h∗ ◦V (x) . (8)

3.1.1 Diagonal+rank-1: General case

Theorem 7 (Proximity operator in HV ). Let h ∈ Γ0(H) and V = D + uuT , where D is diagonal
with (strictly) positive diagonal elements di, and u ∈ RN . Then,

proxVh (x) = D−1/2 ◦ proxh◦D−1/2(D1/2x− v) , (9)

where v = αD−1/2u and α is the unique root of

p(α) =
〈
u, x−D−1/2 ◦ proxh◦D−1/2 ◦D1/2(x− αD−1u)

〉
+ α , (10)

which is a Lipschitz continuous and strictly increasing function on R with Lipschitz constant 1 +∑
i u

2
i /di.

Remark 8.
• Computing proxVh amounts to solving a scalar optimization problem that involves the com-

putation of proxh◦D−1/2 . The latter can be much simpler to compute as D is diagonal
(beyond the obvious separable case that we will consider shortly). This is typically the
case when h is the indicator of the `1-ball or the canonical simple. The corresponding pro-
jector can be obtained in expected complexity O(N logN) by simple sorting the absolute
values
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• It is of course straightforward to compute proxVh∗ from proxVh either using Theorem 7, or
using this theorem together with Corollary 6 and the Sherman-Morrison inversion lemma.

3.1.2 Diagonal+rank-1: Separable case

The following corollary is key to our novel optimization algorithm.

Corollary 9. Assume that h ∈ Γ0(H) is separable, i.e. h(x) =
∑N
i=1 hi(xi), and V = D + uuT ,

where D is diagonal with (strictly) positive diagonal elements di, and u ∈ RN . Then,

proxVh (x) =
(

proxhi/di
(xi − vi/di)

)
i
, (11)

where v = αu and α is the unique root of

p(α) =
〈
u, x−

(
proxhi/di

(xi − αui/di)
)
i

〉
+ α , (12)

which is a Lipschitz continuous and strictly increasing function on R.

Proof: As h is separable and D ∈ S++(N)
is diagonal, applying Theorem 7 yields the desired result.

Proposition 10. Assume that for 1 6 i 6 N , proxhi
is piecewise affine on R with ki ≥ 1 segments,

i.e.
proxhi

(xi) = ajxi + bj , tj 6 xi 6 tj+1, j ∈ {1, . . . , ki} .
Let k =

∑N
i=1 ki. Then proxVh (x) can be obtained exactly by sorting at most the k real values(

di

ui
(xi − tj)

)
(i,j)∈{1,...,N}×{1,...,ki}

.

Proof: Recall that (10) has a unique solution. When proxhi
is piecewise affine with ki

segments, it is easy to see that p(α) in (12) is also piecewise affine with slopes and intercepts
changing at the k transition points

(
di

ui
(xi − tj)

)
(i,j)∈{1,...,N}×{1,...,ki}

. To get α?, it is suf-

ficient to isolate the unique segment that intersects the abscissa axis. This can be achieved
by sorting the values of the transition points which can cost in average complexity O(k log k).

Remark 11.
• The above computational cost can be reduced in many situations by exploiting e.g. symme-

try of the h′is, identical functions, etc. This turns out to be the case for many functions of
interest, e.g. `1-norm, indicator of the `∞-ball or the positive orthant, and many others;
see examples hereafter.

• Corollary 9 can be extended to the “block” separable (i.e. separable in subsets of coordi-
nates) when D is piecewise constant along the same block indices.

3.1.3 Semi-smooth Newton method

In many situations (see examples below), the root of p(α) can be found exactly in polynomial
complexity. If no closed-form is available, one can appeal to some efficient iterative method to
solve (10) (or (12)). As p is Lipschitz-continuous, hence so-called Newton (slantly) differentiable,
semi-smooth Newton are good such solvers, with the proviso that one can design a simple slanting
function which can be algorithmically exploited.

The semi-smooth Newton method for the solution of (10) can be stated as the iteration
αt+1 = αt − g(αt)−1p(αt) , (13)

where g is a generalized derivative of p.
Proposition 12 (Generalized derivative of p). If proxh◦D−1/2 is Newton differentiable with gener-
alized derivative G, then so is the mapping p with a generalized derivative

g(α) = 1 +
〈
u,D−1/2 ◦G(D1/2x− αD−1/2u) ◦D−1/2u

〉
.

Furthermore, g is nonsingular with a uniformly bounded inverse on R.
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Function h Algorithm

`1-norm Separable: exact in O(N logN)
Hinge Separable: exact in O(N logN)
`∞-ball Separable: exact in O(N logN) from `1-norm by Moreau-identity
Box constraint Separable: exact in O(N logN)
Positivity constraint Separable: exact in O(N logN)
`1-ball Nonseparable: semismooth Newton and proxh◦D−1/2 costs O(N logN)
`∞-norm Nonseparable: from projector on the `1-ball by Moreau-identity
Canonical simplex Nonseparable: semismooth Newton and proxh◦D−1/2 costs O(N logN)
max function Nonseparable: from projector on the simplex by Moreau-identity

Table 1: Summary of functions which have efficiently computable rank-1 proximity operators

Proof: This follows from linearity and the chain rule [23, Lemma 3.5]. The sec-
ond statement follows strict increasing monotonicity of p as established in Theorem 7.

Thus, as p is Newton differentiable with nonsingular generalized derivative whose inverse is also
bounded, the general semi-smooth Newton convergence theorem implies that (13) converges super-
linearly to the unique root of (10).

3.1.4 Examples

Many functions can be handled very efficiently using our results above. For instance, Table 1 sum-
marizes a few of them where we can obtain either an exact answer by sorting when possible, or else
by minimizing w.r.t. to a scalar variable (i.e. finding the unique root of (10)).

4 A primal rank 1 SR1 algorithm

Following the conventional quasi-Newton notation, we letB denote an approximation to the Hessian
of f and H denote an approximation to the inverse Hessian. All quasi-Newton methods update an
approximation to the (inverse) Hessian that satisfies the secant condition:

Hkyk = sk, yk = ∇f(xk)−∇f(xk−1), sk = xk − xk−1 (14)

Algorithm 1 follows the SR1 method [24], which uses a rank-1 update to the inverse Hessian ap-
proximation at every step. The SR1 method is perhaps less well-known than BFGS, but it has the
crucial property that updates are rank-1, rather than rank-2, and it is described “[SR1] has now taken
its place alongside the BFGS method as the pre-eminent updating formula.” [25].

We propose two important modifications to SR1. The first is to use limited-memory, as is commonly
done with BFGS. In particular, we use zero-memory, which means that at every iteration, a new
diagonal plus rank-one matrix is formed. The other modification is to extend the SR1 method to
the general setting of minimizing f + h where f is smooth but h need not be smooth; this further
generalizes the case when h is an indicator function of a convex set. Every step of the algorithm
replaces f with a quadratic approximation, and keeps h unchanged. Because h is left unchanged,
the subgradient of h is used in an implicit manner, in comparison to methods such as [18] that use
an approximation to h as well and therefore take an explicit subgradient step.

ChoosingH0 In our experience, the choice ofH0 is best if scaled with a Barzilai-Borwein spectral
step length

τBB2 = 〈sk, yk〉 / 〈yk, yk〉 (15)
(we call it τBB2 to distinguish it from the other Barzilai-Borwein step size τBB1 =
〈sk, sk〉 / 〈sk, yk〉 > τBB2).

In SR1 methods, the quantity 〈sk −H0yk, yk〉 must be positive in order to have a well-defined
update for uk. The update is:

Hk = H0 + uku
T
k , uk = (sk −H0yk)/

√
〈sk −H0yk, yk〉. (16)
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Algorithm 2: Sub-routine to compute the approximate inverse Hessian Hk

Require: k, sk, yk, 0 < γ < 1, 0 < τmin < τmax
1: if k = 1 then
2: H0 ← τ IH where τ > 0 is arbitrary
3: uk ← 0
4: else
5: τBB2 ← 〈sk,yk〉

‖yk‖2
{Barzilai-Borwein step length}

6: Project τBB2 onto [τmin, τmax]
7: H0 ← γτBB2IH
8: if 〈sk −H0yk, yk〉 ≤ 10−8‖yk‖2‖sk −H0yk‖2 then
9: uk ← 0 {Skip the quasi-Newton update}

10: else
11: uk ← (sk −H0yk)/

√
〈sk −H0yk, yk〉).

12: end if
13: end if
14: return Hk = H0 + uku

T
k {Bk = H−1

k can be computed via the Sherman-Morrison formula}

For this reason, we choose H0 = γτBB2IH with 0 < γ < 1, and thus 0 ≤ 〈sk −H0yk, yk〉 =
(1 − γ) 〈sk, yk〉. If 〈sk, yk〉 = 0, then there is no symmetric rank-one update that satisfies the
secant condition. The inequality 〈sk, yk〉 > 0 is the curvature condition, and it is guaranteed for
all strictly convex objectives. Following the recommendation in [26], we skip updates whenever
〈sk, yk〉 cannot be guaranteed to be non-zero given standard floating-point precision.

A value of γ = 0.8 works well in most situations. We have tested picking γ adaptively, as well as
trying H0 to be non-constant on the diagonal, but found no consistent improvements.

5 Numerical experiments and comparisons
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Figure 1: (a) is first LASSO test, (b) is second LASSO test

Consider the unconstrained LASSO problem (1). Many codes, such as [27] and L-BFGS-B [2],
handle only non-negativity or box-constraints. Using the standard change of variables by introducing
the positive and negative parts of x, the LASSO can be recast as

min
x+,x−>0

1
2
‖Ax+ −Ax− − b‖2 + λ1T (x+ + x−)

and then x is recovered via x = x+ − x−. With such a formulation solvers such as L-BFGS-B are
applicable. However, this constrained problem has twice the number of variables, and the Hessian of
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the quadratic part changes from ATA to Ã =
(
ATA −ATA
−ATA ATA

)
which necessarily has (at least)

n degenerate 0 eigenvalues and adversely affects solvers.

A similar situation occurs with the hinge-loss function. Consider the shifted and reversed hinge loss
function h(x) = max(0, x). Then one can split x = x+ − x−, add constraints x+ > 0, x− > 0,
and replace h(x) with 1T (x+). As before, the Hessian gains n degenerate eigenvalues.

We compared our proposed algorithm on the LASSO problem. The first example, in Fig. 1a, is a
typical example from compressed sensing that takes A ∈ Rm×n to have iid N (0, 1) entries with
m = 1500 and n = 3000. We set λ = 0.1. L-BFGS-B does very well, followed closely by
our proposed SR1 algorithm and PSSas. Note that L-BFGS-B and ASA are in Fortran and C,
respectively (the other algorithms are in Matlab).

Our second example uses a square operator A with dimensions n = 133 = 2197 chosen as a
3D discrete differential operator. This example stems from a numerical analysis problem to solve a
discretized PDE as suggested by [28]. For this example, we set λ = 1. For all the solvers, we use the
same parameters as in the previous example. Unlike the previous example, Fig. 1b now shows that
L-BFGS-B is very slow on this problem. The FPC-AS method, very slow on the earlier test, is now
the fastest. However, just as before, our SR1 method is nearly as good as the best algorithm. This
robustness is one benefit of our approach, since the method does not rely on active-set identifying
parameters and inner iteration tolerances.

6 Conclusions

In this paper, we proposed a novel variable metric (quasi-Newton) forward-backward splitting algo-
rithm, designed to efficiently solve non-smooth convex problems structured as the sum of a smooth
term and a non-smooth one. We introduced a class of weighted norms induced by a diagonal+rank
1 symmetric positive definite matrices, and proposed a whole framework to compute a proximity
operator in the weighted norm. The latter result is distinctly new and is of independent interest.
We also provided clear evidence that the non-diagonal term provides significant acceleration over
diagonal matrices.

The proposed method can be extended in several ways. Although we focused on forward-backward
splitting, our approach can be easily extended to the new generalized forward-backward algorithm
of [29]. However, if we switch to a primal-dual setting, which is desirable because it can handle
more complicated objective functionals, updating Bk is non-obvious. Though one can think of
non-diagonal pre-conditioning methods.

Another improvement would be to derive efficient calculation for rank-2 proximity terms, thus al-
lowing a 0-memory BFGS method. We are able to extend (result not presented here) Theorem 7
to diagonal+rank r matrices. However, in general, one must solve an r-dimensional inner problem
using the semismooth Newton method.

A final possible extension is to take Bk to be diagonal plus rank-1 on diagonal blocks, since if
h is separable, this is still can be solved by our algorithm (see Remark 10). The challenge here
is adapting this to a robust quasi-Newton update. For some matrices that are well-approximated
by low-rank blocks, such as H-matrices [30], it may be possible to choose Bk ≡ B to be a fixed
preconditioner.
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