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Abstract

Given a probabilistic graphical model, itiensity of stategs a distribution that,
for any likelihood value, gives the number of configuratiovith that probabil-
ity. We introduce a novel message-passing algorithm cé@keasity Propagation
(DP) for estimating this distribution. We show that DP is&xXar tree-structured
graphical models and is, in general, a strict generalinatfdoth sum-product and
max-product algorithms. Further, we use density of stategi@e decomposition
to introduce a new family of upper and lower bounds on gheition function
For any tree decomposition, the new upper bound based ordfiagred density
of state information is provably at least as tight as presfipkinown bounds based
on convexity of the log-partition function, and strictlyetger if a general con-
dition holds. We conclude with empirical evidence of impgement over convex
relaxations and mean-field based bounds.

1 Introduction

Associated with any undirected graphical model [1] is thecalbed density of states, a term bor-
rowed from statistical physics indicating a distributidrat, for any likelihood value, gives the
number of configurations with that probability. The dengifystates plays an important role in
statistical physics because it provides a fine grained gheiger of the system, and can be used to
efficiently compute many properties of interests, such ap#itition function and its parameterized
version [2, 3]. It can be seen that computing the densityatestis computationally intractable in
the worst case, since it subsumes a #-P complete problenp(torg the partition function) and an
NP-hard one (MAP inference). All current approximate tégbes estimating the density of states
are based on sampling, the most prominent being the Wandauealgorithm [3] and its improved
variants [2]. These methods have been shown to be very igfantpractice. However, they do not
provide any guarantee on the quality of the results. Fumbee, they ignore the structure of the
underlying graphical model, effectively treating the gyefunction (which is proportional to the
negative log-likelihood of a configuration) as a black-box.

As a first step towards exploiting the structure of the greghinodel when computing the density
of states, we propose an algorithm calleBN31TYPROPAGATION (DP). The algorithm is based on
dynamic programming and can be conveniently expressedirstef message passing on the graph-
ical model. We show that ENSITYPROPAGATION computes the density of states exactly for any
tree-structured graphical model. It is closely relatedhs popular Sum-Product (Belief Propaga-
tion, BP) and Max-Product (MP) algorithms, and can be seengeneralization of both. However,
it computes something much richer, namely the density @ééstavhich contains information such
as the partition function and variable marginals. Althowghdo not work at the level of individual
configurations, ENSITYPROPAGATION allows us to reason in terms of groups of configurations
with the same probability (energy).
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Being able to solve inference tasks for certain tractaladlesgs of problems (e.g., trees) is important
because one can often decompose a complex problem intalitasubproblems (such as spanning
trees) [4], and the solutions to these simpler problems eatombined to recover useful properties
of the original graphical model [5, 6]. In this paper we shdwttby combining the additional
information given by the density of states, we can obtainvafamily of upper and lower bounds on
the partition function. We prove that the new upper boundwsigs at least as tight as the one based
on the convexity of the log-partition function [4], and weopide a general condition where the
new bound is strictly tighter. Further, we illustrate engatly that the new upper bound improves
upon the convexity-based one on Ising grid and clique modeld that the new lower bound is
empirically slightly stronger than the one given by mealtdftheory [4, 7].

2 Problem definition and setup

We consider a graphical model specified as a factor graphMith |V| discrete random variables
x;,1 € V wherez; € X;. The global random vectar = {z, s € V'} takes value in the Cartesian
producttY’ = & x Xy x - - - x X, with cardinalityD = |X| = Hi\il | X;|. We consider a probability
distribution over elements € X’ (called configurations)

1
acl

that factors into factorg,, : {z}, — R, whereZ is an index set andz}, C V a subset of
variables the factow,, depends on, and is a normalization constant known as partition function.
The corresponding factor graph is a bipartite graph withexesetl” U Z. In the factor graph, each
variable node € V is connected with all the factors € Z that depend on. Similarly, each factor
nodea € 7 is connected with all the variable nodes {z}.. We denote the neighbors banda
by NV (i) and N («) respectively.

We will also make use of the related exponential represientf8]. Let ¢ be a collection of potential
functions{¢.,« € Z}, defined over the index s& Given an exponential parameter vectbr=
{Oa, a € T}, the exponential family defined by is the family of probability distributions ovet’
defined as follows:

p(z,0) = ﬁ exp(6 - ¢()) = %exp (Z @ma({w}a)) )
o€l

where we assumg(z) = p(x, ©*). Given an exponential family, we define tensity of statef?]
as the following distribution:

n(E,0)=> §(E-0-¢()) 3)
zeX
whered (E — © - ¢(x)) indicates a Dirac delta centered@t ¢ (). For any exponential parameter
O, it holds that

A
/ n(E,0)dE = |{z € X|© - ¢(x) < A}
and [, n(E,0)dE = |X|. We will refer to the quantity) ;O d.({z}s) =

> aczlogva({r}a) as the energy of a configuratian although it has an additional minus sign
with respect to the conventional energy in statistical pts/s

3 Density Propagation

Since any propositional Satisfiability (SAT) instance canefficiently encoded as a factor graph
(e.g., by defining a uniform probability measure over syiigf assignments), it is clear that com-
puting the density of states is computationally intractablthe worst case, as a generalization of an
NP-Complete problem (satisfiability testing) and a #-P cletepproblem (model counting).

We show that the density of states can be computed effictefattyacyclic graphical models. We
provide a Dynamic Programming algorithm, which can alsortierpreted as a message passing
algorithm on the factor graph, callecERsITYPROPAGATION (DP), which computes the density of
states exactly for acyclic graphical models.

'Polynomial in the cardinality of the support, which could be exponential in the worst case.



3.1 Density propagation equations

DENSITYPROPAGATION works by exchanging messages from variable to factor noddsvice
versa. Unlike traditional message passing algorithmsyavheessages represent marginal probabil-
ities (vectors of real numbers), for every € X; a DENSITYPROPAGATION messagen,,;(x;) IS

a distribution (a “marginal” density of states), i.,.i(z;) = >, ck(a — 4,2:)0p, (4—i,2,) IS @
sum of Dirac deltas.

At every iteration, messages are updated according to tlosvfog rules. The message from vari-
able node to factor node: is updated as follows:

mi—m(xi): ® mb—m‘(%‘) (4)

beN (i)\a

where ) is the convolution operator (commutative, associative distfibutive). Intuitively, the
convolution operation gives the distribution of the sumagt(ditionally) independent random vari-
ables, in this case corresponding to distinct subtreesr@eadtructured graphical model. The mes-
sage from factou to variablei is updated as follows:

Masi(zi) = Q) mimalz)) | Q) E. ()0 ()

{z}ari \JEN(a)\i
wheredg, (4., is a Dirac delta function centered B, () = log o ({z}a).

For tree structured graphical modelsgiDsITYPROPAGATION converges after a finite number of
iterations, independent of the initial condition, to theetidensity of states. Formally,

Theorem 1. For any variablei € V and A € R, for any initial condition, after a finite number of
iterations (zq% Rvens mb%(q)) (E) = n(E, 0%).

The proof is by induction on the size of the tree (omitted dukatk of space).

3.1.1 Complexity and Approximation with Energy Bins

The most efficient message update schedule for tree stedbtoodels is a two-pass procedure where
messages are first sent from the leaves to the root node, angpthpagated backwards from the
root to the leaves. However, as with other message-pasigjagthms, for tree structured instances
the algorithm will converge with either a sequential or agtlet update schedule, with any initial
condition for the messages. Although DP requires the sam#auof messages updates as BP
and MP, DP updates are more expensive because they regeimitiputation of convolutions.
Specifically, each variable-to-factor update rule (4) iexs(N — 2) L convolutions, wheréV is the
number of neighbors of the variable node dnid the number of states in the random variable. Each
factor-to-variable update rule (5) requires summatiorr &e- 1 variables, each of size, requiring
O(L") convolutions. Using Fast Fourier Transform (FFT), eachvolrtion takesO(K log K),
whereK is the maximum number of non-zero entries in a message. Wah& case, the density of
states can have an exponential number of non-zero entgestie finite number of possible energy
values, which we will also refer to as “buckets”), for instarwhen potentials are set to logarithms
of prime numbers, making eveny € X have a different probability. However, in many practical
problems of interest (e.g., SAT/CSP models and certainrgted Markov Logic Networks [9]), the
number of energy “buckets” is limited, e.g., bounded by ttalthumber of constraints. For general
graphical models, coarse-grain energy bins can be useitasstmthe Wang-Landau algorithm [3],
without losing much precision. Specifically, if we use bifisiaee/M, where each bin corresponds
to configurations with energy in the intervigide /M, (k + 1)e/M), the energy estimated for each
configuration throughO (M) convolutions is at most a®(e) additive value away from its true
energy (as the quantization error introduced by energyitinis summed up across convolution
steps). This also guarantees that the density of stateswéttse-grain energy bins gives a constant
factor approximation of the true partition function.

3.1.2 Relationship with sum and max product algorithms

DENSITYPROPAGATION is closely related to traditional message passing algostsuch as BP
(Belief Propagation, Sum-Product) and MP (Max-Produdtj¢es it is based on the same (condi-
tional) independence assumptions. Specifically, as shgvilnebonext theorem, both BP and MP can



be seen as simplified versions oERsITYPROPAGATIONthat consider only certain global statistics
of the distributions represented byeRSITYPROPAGATION messages.

Theorem 2. With the same initial condition and message update schedidery iteration we can
recover Belief Propagation and Max-Product marginals frDmNSITYPROPAGATION messages.

Proof. GivenaDP message,; ,;(z;) = >, ck(i — J,2;)0E, (i-j.2,), the Max-Product algorithm
corresponds to considering only the entry associated Wwethighest probability, i.ey,_, ;(z;) =
f(mij(z;)) £ max{Ex(i — j,x;)}. According to DP updates in equations (4) and (5), the
quantitiesy;_, ; (z;) are updated as follows

'Yz%a l'z = ( ® mb—n Zq ) = Z ’Vb—n'(fl‘i)

beN (i)\a beN (i)\a

Ya—i(@i) = ( > ( QR misala ) ) 95 o1a )) = mex > vioal@;) + Ea{z}a)

{z}avi \TEN()\i fJEN (a)\i

These results show that the quantities ; (= ;) are updated according to the Max-Product algorithm
(with messages in log-scale). To see the relationship wiRhf@ every DP message;_, ;(z;), let
us define

i () = |[mi;(2)(E) exp(E)||1 = /Rmmj(ﬂfj)(E) exp(E)dE

Notice thatuz_m (xz;) would correspond to an unnormalized marginal probabiissuming that
mi_,;(x;) is the density of states of the instance when varigheclamped to value ;. According
to DI5 updates in equation (4) and (5)

Q) mi@)(BE)exp(B)|| = [ meoil@)

pima(@i) = ||mima(z:)(E) exp(E)|[1 =

beN (i)\a 1 beN (i)\a
prasi (i) = || pass(@:)(E) exp(B)|[1 = || > Q) misalz)) ) &) 95 (1o1a) (E) exp(E)
{(e}oni \JEN (@i X
= > ( Q) mysalz; ) QR opazrBE)exp(B)|| = > val{zta) ] mimal@:)
(oYars || \FEN (@i N EIRY JEN (a)\i

that is we recover BP updates for thg,; quantities. Similarly, if we define temperature versions
of the marginalsiilj(:pj) £ ||mi—;(z;)(E) exp(E/T)||1, we recover the temperature-versions of
Belief Propagation updates, similar to [10] and [11]. O

As other message passing algorithmgN31TYPROPAGATION updates are well defined also for
loopy graphical models, even though there is no guaranteerafergence or correctness [12]. The
correspondence with BP and MP (Theorem 2) however stillolflloopy BP converges, then
the corresponding quantitigs_,; computed from DP messages will converge as well, and to the
same value (assuming the same initial condition and upddiedsile). Notice however that the
convergence of the;_,; does not imply the convergence ofERSITYPROPAGATION messages
(e.g., in probability, law, or?). In fact, we have observed empirically that the situatidmere
i converge butn,_,; do not converge (not even in distribution) is fairly comma.would

be interesting to see if there is a variational interpretafor DENSITYPROPAGATION equations,
similar to [13]. Notice also that Junction Tree style altfoms could also be used in conjunction
with DP updates for the messages, as an instance of geeerdigtributive law [14].

4 Bounds on the density of states using tractable families

Using techniques such a€RSITYPROPAGATION, we can compute the density of states exactly for
tractable families such as tree-structured graphical tsodetp(z, ©*) be a general (intractable)
probabilistic model of interest, and I&; be a family of tractable parameters (e.g., corresponding to
trees) such thad* is a convex combination dd;, as defined formally below and used previously



by Wainwright et al. [5, 6]. See below (Figure 1) for an exaenpf a possible decomposition of
a2 x 2 Ising model into2 tractable distributions. By computing the partition funotor MAP
estimates for the tree structured subproblems, Wainwaght. showed that one can recover useful
information about the original intractable problem, fostemce by exploiting convexity of the log-
partition functionlog Z(©).

We present a way to exploit the decomposition idea to derivgpger bound on the density of states
n(E,©*) of the original intractable model, despite the fact thatsitgnof states isot a convex
function of ©*. The result below gives a point-by-point upper bound whichthe best of our
knowledge, is the first bound of this kind for density of statén the following, with some abuse
of the notation, we denote(E,0%) = > (1{@*,¢(x):E}) the function giving the number of
configurations with energ¥’ (zero almost everywhere).

Theorem 3. Let©O* = Zl 1%91,Zl 1% =1l,andy, = E — Zz 1 ¥i. Then

0%) S//.../mi{l{n(yi,*yi@i)}dyldyg...dyn_l
R JR R =

Proof. From the definition of density of states and using to denote the 0-1 indicator function,

=Y Lers@=} = Y L(S, 16.)6(@)=E}
reX reEX

n n—1
= Z / / .. / H I{Wieri(ﬁ(w)_yi}) dyldyg o dyn—l Whereyn =F — Z Yi
RJR R i—1 =1

(
/ / / Z;((Hl{m 0:0(e)= y}> dyrdys -y
(

// /Z f}“{l{l{m ©;(z)= y1}}> dyidys ... dyn—1

rzeX
/ / mln { (Lpyioi(e)=ui}) } dyrdys .. dyn -1
ex
Observing thad"_ _ . (1{%@@(%):%}) is preciselyn(y;,v;©;) finishes the proof. O

5 Bounds on the partition function usingn-dimensional matching

The density of states(FE,©*) can be used to compute the partition function, since by diefimi
Z(0*) =||In(E,©*) exp(E)||1. We can therefore get an upper boundai®*) by integrating the
point-by-point upper bound an( E, ©*) from Theorem 3. This bound can be tighter than the known
bound [6] obtained by applying Jensen’s inequality to tlgepartition function (which is convex),
given bylog Z(©*) < 3. v;log Z(©;). For instance, consider a graphical model with weights that
are large enough such that the density of states based sunimgef{ ©*) is dominated by the contri-
bution of the highest-energy bucket. As a concrete exaroplesider the decomposition in Figure 1.
As the edge weighty (w = 2 in the figure) grows, the convexity-based bound will appmtadely
equal the geometric average déxp(6w) and8 exp(2w), which is4 exp(4w). On the other hand,
the bound based on Theorem 3 will approximately equial{ 2, 8} exp((2 + 6)w/2) = 2 exp(4w).

In general, the latter bound will always be strictly bettarlarge enougtv unless the highest-energy
bucket counts are identical across@ll

While this is already promising, we can, in fact, obtain a mtighter bound by taking into account
the interactions between different energy levels acrogspanameter decomposition, e.g., by en-
forcing the fact that there are a total|df| configurations. For compactness, in the following let us
definey;(z) = exp(©; - q{)( )) foranyx € X andi = 1,--- ,n. Then,

Zexp (er. Z Hyz

zeX rzeX 1
Theorem 4. LetII be the (finite) set of all possible permutationstafGiveno = (o1, ,04,) €
", letZ(©*,0) = > cx I ; yi(oi(x))7. Then,
ngl Z(0*,0) < Z(0%) < max Z(0*,0) (6)
ocll” ocll™



Algorithm 1 Greedy algorithm for the maximum matching (upper bound).

1: while there exist€ such that:(E, ©;) > 0 do

2:  Enmae(0;) « maxg {E|n(FE,0;) > 0)}, fori=1,-

3: ¢’ < min {’I?,(Emaz (@1)7 91)a o 7”(Emaz(® )7 )}

4: ub(’YlEmaz(el)+"'+f}/nEmaz(®n)7®17 76 (—C/
5
6

n(E'rrLa;c(@i)7 er) — n(Emax(ei)7 61) - Cl fori = R
: end while

Proof. Let oy € II"™ denote a collection ofi identity permutations. Then we hav&©*)
Z(©*, o), which proves the upper and lower bounds in equation (6).

ol

We can think ofo € II" as ann-dimensional matchingver the exponential size configuration
spaceX. For anyi,j, o;(x) matches withr;(x), ando () gives the corresponding hyper edge.
If we define the Werght of each hyper- edge in the matchinglyegao(o(x)) = [, yi(oi(x))
thenZ(0*,0) = (o(x)) corresponds to the weight of the matching representaf,l Bre
can therefore think t%e bounds in equation (6) as given byxman and a minimum matching,
respectively. Intuitively, the maximum matching corresgs to the case where the configurations
in the high energy buckets of the densities happen to be the sanfiguration (matching), so that
their energies are summed up.

5.1 Upper bound

The maximum matchingnax, Z(0*, o) (i.e., the upper bound on the partition function) can be
computed using Algorithm 1. Algorithm 1 returns a distribatu, such thatf w,(E)dE = |X| and
Jup(E) exp(E)dE = max, Z(©*, o). Notice however that,,(E) is not a valid point-by-point
upper bound on the density E, ©*) of the original mode.

Proposition 1. Algorithm 1 computes the maximum matching and its runtinteisided by the
total number of non-empty buckets, |{ E|n(E, ©;) > 0}|.

Proof. The correctness of Algorithm 1 follows from observing teap(E; + Fs) +exp(E] +FEb) >
exp(E1 + FY}) + exp(E] + E;) whenE; > E| andEy; > FE). Intuitively, this means that for
n = 2 parameters it is always optimal to connect the highest gnesgfigurations, therefore the
greedy method is optimal. This result can be generalized for 2 by induction. The runtime is
proportional to the total number of buckets because we rernae bucket from at least one density
at every iteration. O

A key property of Algorithm 1 is that even though it defines achag over an exponential num-
ber of configurationg.X’|, its runtime proportional only to the total number of buckdiecause it
matches configurations in grougsthe bucket level

The following result shows that the value of the maximum risg is at least as tight as the
bound provided by the convexity of the log-partition fuctj which is used for example by Tree
Reweighted Belief Propagation (TRWBP) [6].

Theorem 5. For any parameter decomposition ., 7;,©; = ©*, the upper bound given by the
maximum matching in equation (6) and computed using Algarit is always at least as tight as
the bound obtained using the convexity of the log-partifiorction.

Proof. The bound obtained by applying Jensen’s inequality to theplartition function (which is
convex), given bylog Z(0*) < >, v;log Z(©;) [6], leads to the following geometric average
boundZ(0*) <TI, (3, vi(z))™. Given anyn permutations of the configuratioas : X — X’ for

i1 =1,---,n(in particular, it holds for the one attaining the maximumtehing value) we have
Vi
ST vitoi@) = [T viloi(@) |l < H i (i (@) 1y = [ 1 (Zydm(m)))
x i [ i x
where we used Generalized Holder inequality and the rjprify indicates a sum ovet'. O



Algorithm 2 Greedy algorithm for the minimum matching with= 2 parameters (lower bound).

1: while there exist€ such that:(E, ©;) > 0 do

2:  Emae(0;) « maxg {E|n(F,0;) > 0)}; Emin(O2) < ming {E|n(F,02) > 0)}

31 ¢+ min {n(Emaes(01),01), n(Emin(02),02)}

4 1o (Y1 Emaz(©1) + V2 Emin(02),01,02) < ¢’

5: n(E'ma,;c(@l)> @1) — n(ETVL(I,(L'(el)7 C'_')1) - CI; n(E'rrLi7L(@2)> @2) — n(ETVLi7L(®2)7 @2) - CI
6: end while

5.2 Lower bound

We also provide Algorithm 2 to compute the minimum matchirtgewthere are = 2 parameters.
The proof of correctness is similar to that for Proposition 1

Proposition 2. For n = 2, Algorithm 2 computes the minimum matching and its runtsrbmunded
by the total number of non-empty buck®is [{ E|n(E, ©;) > 0}].

For the minimum matching case, the induction argument doéspply and the result does not
extend to the case > 2. For that case, we can obtain a weaker lower bound by appRawg
verse Generalized Holder inequality [15], obtaining frodtifferent perspective a bound previously
derived in [16]. Specifically, let;,--- , s,—1 < 0 ands,, such thad Si = 1. We then have

mc}n Z(0*, o) = ZHyi(Umin,i(x))% =|| Hyi(gmin,i(x))%

x

12> (7)

1 1
sS4 s;

W11 (Z yi(amin,i<x>>sm> -1 (Z yxxw)

% i

H ||yi(‘7min,i($))w

Notice this result cannot be appliedyf(x) = 0, i.e. there are factors assigning probability zero
(hard constraints) in the probabilistic model.

6 Empirical evaluation

To evaluate the quality of the bounds, we consider an Isinglahdrom statistical physics,
where given a graphV, E), single node variabless,s € V are Bernoulli distributed
(xzs € {0,1})), and the global random vector is distributed according pte, ©) =

ﬁexp (ZSEV Oz *Z(m)eE @ijl{wi:wj}). Figure 1 shows a simplé x 2 grid Ising

model with exponential paramet&* = [0,0,0,0,1,1,1,1] (65, = 0 and©,; = 1) decom-
posed as the convex sum of two parametersand O, corresponding to tractable distributions,
i.e. 9" = (1/2)©1 + (1/2)O2. The corresponding partition function& 0*) = 2 + 12exp(2) +
2exp(4) =~ 199.86. In panels 1(d) and 1(e) we report the corresponding den#jates(E, ©1)
andn(E, ©,) as histograms. For instance, for the model correspondiriptthere are only two
global configurations (all variables positive and all naggtthat give an energy @f. It can be seen
from the densities reported that(©,) = 2 + 6exp(2) + 6exp(4) + 2exp(6) ~ 1180.8, while
Z(0©3) = 8 4+ 8exp(2) ~ 67.11. The corresponding geometric average (obtained from the co

vexity of the log-partition function) is/(Z(©1))+/(Z(©2)) ~ 281.50. In panels 1(f) and 1(c) we
showu,, andl, computed using Algorithms 1 and 2, i.e. the solutions to tagimum and minimum
matching problems, respectively. For instance, for theimam matching case the 2 configurations
with energy 6 fromn(E, ©;) are matched with 2 of the 8 with energy 2 freniE, ©,), giving an
energy6/2 + 2/2 = 4. Notice thatu; and!, are not valid bounds on individual densities of states
themselves, but they nonetheless provide upper and lowsrdsoon the partition function as shown
in the figure:~ 248.01 and134.27, respectively. The bound (8) given by inverse Holder indiua
with s1 = —1,s9 = 1/2 is &~ 126.22, while the mean field lower bound [4, 7]4g 117.91. In this
case, the additional information provided by the densiagteto tighter upper and lower bounds on
the partition function.

In Figure 2 we report the upper bounds obtained for sevepastyof Ising models (in all cases,
O, = 0, i.e., there is no external field). In the two left plots, wasinler aV x N square Ising model,

once with attractive interaction®(; € [0, w]) and once with mixed interaction®(; € [—w, w]).

In the two right plots, we use a complete graph (a clique) With= 15 vertices. For each model,
we compute the upper bound given by TRWBP (with edge appearobabilities:. based on a
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Figure 1. Decomposition of & x 2 Ising model, densities obtained with maximum and minimum
matching algorithms, and the corresponding upper and lbaends onZ (0*).
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Figure 2: Relative error of the upper bounds.

subset ofi0 randomly selected spanning trees) and the mean-field baing the implementations

in libDAI [17]. We then compute the bound based on the maxinmiatching using the same set
of spanning trees. For the grid case, we also use a comhinati® spanning trees and compute
the corresponding lower bound based on the minimum matdioiice it is not possible to cover
all the edges in a clique with ony spanning tree). For each bound, we report the relative,error
defined aglog(bound) — log(Z)) /log(Z), whereZ is the true partition function, computed using
the junction tree method.

In these experiments, both our upper and lower bounds inepoeer the ones obtained with TR-
WBP [6] and mean-field respectively. The lower bound based ioimmm matching visually over-
laps with the mean-field bound and is thus omitted from FigQurgis, however, strictly better, even
if by a small amount. Notice that we might be able to get a bétteind by choosing a different
set of parameter®, (which may be suboptimal for TRW-BP). By optimizing the pargterss; in
the inverse Holder bound (8) using numerical optimizatiBRGS and BOBYQA [18]), we were
always able to obtain a lower bound at least as good as theiarelygy mean field.

7 Conclusions

We presented ENSITYPROPAGATION, a novel message passing algorithm for computing the den-
sity of states while exploiting the structure of the underdygraphical model. We showed that
DENSITYPROPAGATION computes the exact density for tree structured graphicaetscand is a
generalization of both Belief Propagation and Max-Prodilgdrithms. We introduced a new family

of bounds on the partition function based wilimensional matching and tree decomposition but
without relying on convexity. The additional informatiomopided by the density of states leads,
both theoretically and empirically, to tighter bounds ttkaown convexity-based ones.



References

[1] M.J. Wainwright and M.I. Jordan. Graphical models, emgntial families, and variational
inference.Foundations and Trends in Machine Learnjrig1-2):1-305, 2008.

[2] S. Ermon, C. Gomes, A. Sabharwal, and B. Selman. Accdeléradaptive Markov Chain for
Partition Function ComputatiomMeural Information Processing Systergf11.

[3] F. Wang and DP Landau. Efficient, multiple-range randoaikwalgorithm to calculate the
density of statesPhysical Review Letter86(10):2050-2053, 2001.

[4] M.J. Wainwright. Stochastic processes on graphs with cycles: geometric aridtMnal ap-
proaches PhD thesis, Massachusetts Institute of Technology, 2002.

[5] M. Wainwright, T. Jaakkola, and A. Willsky. Exact map iesates by (hyper) tree agreement.
Advances in neural information processing systgmages 833—-840, 2003.

[6] M.J. Wainwright. Tree-reweighted belief propagatidgaithms and approximate ML estima-
tion via pseudo-moment matching. MSTATS2003.

[7] G. Parisi and R. Shankar. Statistical field thedPysics Today41:110, 1988.

[8] L.D. Brown. Fundamentals of statistical exponential families: witlphgations in statistical
decision theoryInstitute of Mathematical Statistics, 1986.

[9] M. Richardson and P. Domingos. Markov logic network&chine Learning62(1):107-136,
2006.

[10] Y. Weiss, C. Yanover, and T. Meltzer. MAP estimatiomgar programming and belief propa-
gation with convex free energies. Uncertainty in Atrtificial Intelligence2007.

[11] T. Hazan and A. Shashua. Norm-product belief propagatPrimal-dual message-passing for
approximate inferencdnformation Theory, IEEE Transactions d86(12):6294-6316, 2010.

[12] K.P. Murphy, Y. Weiss, and M.I. Jordan. Loopy belief pagation for approximate inference:
An empirical study. InProceedings of the Fifteenth conference on Uncertaintyrtifical
intelligence pages 467—-475. Morgan Kaufmann Publishers Inc., 1999.

[13] J.S. Yedidia, W.T. Freeman, and Y. Weiss. Understambelief propagation and its general-
izations.Exploring artificial intelligence in the new millenniyr@:236—239, 2003.

[14] S.M. Aji and R.J. McEliece. The generalized distrilvatiaw. Information Theory, IEEE
Transactions on46(2):325-343, 2000.

[15] W.S. Cheung. Generalizations oblders inequality. International Journal of Mathematics
and Mathematical Science®6:7-10, 2001.

[16] Qiang Liu and Alexander Ihler. Negative tree reweightelief propagation. IfProceedings
of the Twenty-Sixth Conference Annual Conference on Uaiogytin Artificial Intelligence
(UAI-10), pages 332—-339, Corvallis, Oregon, 2010. AUAI Press.

[17] J.M. Mooij. libDAI: A free and open source c++ libraryrfdiscrete approximate inference in
graphical modelsThe Journal of Machine Learning Researdli:2169-2173, 2010.

[18] M.J.D. Powell. The BOBYQA algorithm for bound constrad optimization without deriva-
tives. University of Cambridge Technical Repo?009.



