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Abstract

Warped Gaussian processes (WGP) [1] model output observations in regression
tasks as a parametric nonlinear transformation of a Gaussian process (GP). The
use of this nonlinear transformation, which is included as part of the probabilistic
model, was shown to enhance performance by providing a better prior model on
several data sets. In order to learn its parameters, maximum likelihood was used.
In this work we show that it is possible to use a non-parametric nonlinear trans-
formation in WGP and variationally integrate it out. The resulting Bayesian WGP
is then able to work in scenarios in which the maximum likelihood WGP failed:
Low data regime, data with censored values, classification, etc. We demonstrate
the superior performance of Bayesian warped GPs on several real data sets.

1 Introduction

In a Bayesian setting, the Gaussian process (GP) is commonly used to define a prior probability
distribution over functions. This leads to a simple and elegant probabilistic framework that allows
to solve, among others, regression and classification tasks, achieving state-of-the-art performance
[2, 3]. For a thorough treatment on GPs, the reader is referred to [4].

In the regression setting, output data are often modelled directly as observations from a GP. However,
it is shown in [1] that for some data sets, better models can be built if the observed outputs are
regarded as a nonlinear distortion (the so-called warping) of a GP instead. For a warped GP (WGP),
the warping function can take any parametric form, and in [1] the sum of a linear function and several
tanh functions is used. The parameters defining the transformation are then learned using maximum
likelihood. WGPs have the advantage of having a closed-form expression for the evidence and have
been applied in a number of works [5, 6], but also have several shortcomings: Maximum likelihood
learning might result in overfitting if a warping function with too many parameters is used (or if too
few data are available), it does not model additional output noise after the warping, it cannot model
“flat” warping functions for reasons explained below and, as a consequence, runs into problems
when observations are clustered (many output data take the same value). In this work we set out to
show that it is possible to place another GP prior on the warping function and variationally integrate
it out. By doing so, all of the aforementioned problems disappear and we can enjoy the benefits of
WGPs on a wider selection of scenarios.

The remainder of this work is organised as follows: In Section 2 we introduce the Bayesian WGP
model, which is analytically intractable. In Section 3, a variational lower bound on the exact evi-
dence of the model is derived, which allows for approximate inference and hyperparameter learning.
We show the advantages of integrating out the warping function in Section 4, where we compare
the performance of the maximum likelihood and the Bayesian versions of warped GPs. Finally, we
wrap-up with some concluding remarks in Section 5.



2 The Bayesian warped Gaussian process model

Given a set of input values {x; € RP}”_| and their associated targets {y; € R}, we define the
Bayesian warped Gaussian process (BWGP) model as

yi = g(f(xi)) +ei (la)

where f(x) is a (possibly noisy) latent function with D-dimensional inputs, g(f) is an arbitrary
warping function with scalar inputs and ¢ is a Gaussian noise term. Proceeding in a Bayesian
fashion, we place priors on g, f, and ;. We use Gaussian process and normal priors

f(X) ~ gp(u()vk(xax/))v g(f) ~ gp(fv C(fv f/))v g~ N(Oan)' (1b)

Notice that by setting the prior mean on g(f) to f, we assume that the warping is “by default”
the identity. For f, any valid covariance function k(x,x’) can be used, whereas for the warping
function g we use a squared exponential: c(f, f') = o2 exp(—(f — f’)?/(2¢?)). The mentioned

hyperparameters as well as those included in k(x, x’) can be collected in @ = {0y, 04,0, 0, 1o}

It might seem that since f(x) is already an arbitrary nonlinear function, further distorting its output
through g(f) is an additional unnecessary complication. However, even though g(f(x)) can model
arbitrary functions just as f(x) is able to, the implied prior is very different since the composition
of two GPs g(f(x)) is no longer a GP. This is the same idea as with copulas, but here the warping
function g(f) is treated in non-parametric form.

2.1 Relationship with maximum likelihood warped Gaussian processes

Though the idea of distorting a standard GP is common to WGP and BWGP, there are several
relevant differences worth clarifying:

In [1], noise is present only in latent function f(x) and observed data corresponds exactly to the
warping of f(x). BWGP has an additional noise term & that can account for extra noise in the
observations after warping. This term can be neglected by setting 0 = 0.

BWGP places a prior on the warping function, instead of using a parametric definition, which allows
for maximum flexibility while avoiding overfitting. On the other hand, by choosing the number of
tanh functions in their parametric warping function, WGP sets a trade-off between both.

Finally, the definition of the warping function is reversed between BWGP and WGP. If no noise is
present, our warping function y = ¢(f) maps latent space f to output space y. In contrast, in [1]
the inverse mapping f = w(y) is defined due to analytical tractability reasons. Because of this,
the warping function in [1] is restricted to be monotonic, so that it is possible to unambiguously
identify its inverse y = w~!(f) = g¢(f) and thus define a valid probability distribution in output
space. Since we already work with the direct warping function g( f), we do not need to impose any
constraint on it and thus can use a GP prior. Also, as discussed in [1], WGPs cannot deal properly
with models that involve a “flat” region (i.e., ¢’(f) = 0) in the warping function (such as ordinal
regression or classification), since the inverse w(y) = g~!(y) is not well defined. These flat regions
result in probability masses in output space. In those cases, the probability density of data under
the WGP model (the evidence) will be infinity, so that it cannot be used for model selection and
numerical computation becomes unstable. None of this problems arise on BWGP, which can handle
both continuous and discrete observations and model warping functions with flat regions.

2.2 Relationship with other Gaussian processes models

For a given warping function g(f), BWGP can be seen as a standard GP model with likelihood
p(yilf(xi)) = N(yilg(f(x:)), o). Different choices for g( f) result in different GP models:

e GP regression [7]: Corresponds to setting g(f) = f (the mean in our prior).

e GP classification [3]: Corresponds to setting g(f) = sign(f) with y; € {—1,+1} and
0% = 0. Using a noisy latent function f(x) as prior and a step function as likelihood is
equivalent to using a noiseless latent function as prior and normal cdf sigmoid function as
likelihood [4], so this model corresponds exactly with GP probit classification.



e Ordinal (noisy) regression [8]: Corresponds to setting g(f) = Z?:l H(f — bx) and op-
tionally setting 02 = 0. H(f) is the Heaviside step function and by, are parameters defining
the widths and locations of the K bins in latent space.

e Maximum likelihood WGP [1]: Corresponds to setting g(f) = w~'(f) and 02 = 0.

Because g(f) is integrated out, all of the above models, and possibly many others, can be learned
using BWGP. We will see examples of problems requiring other likelihoods in Section 4. Thus, to
some extent, BWGP can be regarded as likelihood learning tool.

3 Variational inference for BWGP

Analytical inference in the BWGP model (1) is intractable. Instead of resorting to expensive Monte
Carlo methods, we will develop an efficient variational approximation of comparable computational
cost to that of WGP. We follow ideas discussed in [9] in order to gain tractability.

3.1 Augmented model

First, let us rewrite (1) instantiated only at the available observations y = [y1 ...y,] . We omit
conditioning on inputs {x; }?_; and hyperparameters 6. We have

p(ylg) = N(ylg,o’T)  p(glf) = N(glf,Css)  p(f) = N(f|po, K), 2

where f = [f;...f,]" is the latent function evaluated at the training inputs {x; ...x,} and g =
[g1...gn] " is the warping function evaluated at f. We use K to refer to the n x n covariance matrix
of the latent function, with entries [K];; = k(x;, x;), whereas similarly [Cs];; = c(f;, f;) is the
n x n warping covariance matrix. In general, we use [Cqyp)ij = c(a;, b;).

Now we proceed as in sparse GPs [10] and augment this model with a set of m inducing variables
u = [uy...uy]" that correspond to evaluating function u(v) = g(v) — v at some auxiliary values
V1 ... Um. We can expand p(g|f) by first conditioning on u to obtain p(g|u, f), and then including
the prior p(u). This yields the augmented model

p(ylg) = N(ylg,o’T)  p(glu,f) = N(g|f + Cs,C,u,Csy — C,C,i Cf,)  (3a)
p(u) = N(u|0,C,,) p(f) = N(f]0,K) (3b)

Note that the original model (2) and the augmented model (3) are exactly identical, since we can
marginalise u out from (3) to get exactly (2). In other words, we introduced u in a consistent manner,
so that [ p(g|u, f)p(u)du = p(g|f). The inclusion of the inducing variables does not change the
model, independently of their number m or their locations vy . . . vp,.

Inducing variables u have a physical interpretation in this model. Expressing the warping function
as g(v) = u(v) + v, the inducing variables correspond to evaluating GP w(v) at locations vy . . . Uy,
which live in latent space (just as f does). Observe that u provides a probabilistic description of the
warping function. In particular, as m grows and the sampling in latent space becomes more and more
dense', the covariance Cyf—C fUC;vl C}rv gets closer to zero® and p(g|u, f) becomes a Dirac delta,

thus making the warping function deterministic given u, g(f) = f + [¢(f,v1) . .. ¢(f, vm)]Cpiu.

3.2 Variational lower bound

The exact posterior of BWGP model (3) is analytically intractable. We can proceed by select-
ing, within a given family of distributions, the approximate posterior ¢(g, u, f) that minimises the
Kullback-Leibler (KL) divergence to the true posterior p(g, u, f|y). We can write

- . ) — w ) Jog PO 8w )
logp(y) > logp(y) — KL(q(g, u,f)|p(g, u,fly)) /Q(ga ,£)log (g, u, 1)

"We can make m, which is the number of inducing inputs and associated inducing variables, as big as we
desire (and thus make the sampling arbitrarily dense), independently of the number of available samples n.
*Note that C f,UC;l,lCL is a Nystrom approximation to Cy s, whose quality grows with m.

dgdfdu = F,




where F is a variational lower bound on the evidence log p(y). Since logp(y) is constant for any
choice of g, it is obvious that maximising F wrt ¢ yields the best approximation in the mentioned
KL sense within the considered family of distributions. We should choose a family that can model
the posterior as well as possible while keeping the computation of F tractable. If no constraints on
q are imposed, maximisation retrieves the exact posterior.

We expand ¢(g,u,f) = g(g|u,f)q(u|f)q(f) and constrain it as follows: ¢(f) = N(f|u,X),
q(u|f) = q(u), g(gu,f) = p(glu, f). We argue that this constraints should still allow for a good
approximation: The exact posterior over f for any monotonic warping function is Gaussian (see
[1]), so it is reasonable to set ¢(f) to be a Gaussian; GPs u(v) and f(x) are independent a priori
and encode different parts of the model, so it is reasonable to approximate them as independent a
posteriori g(u|f) = ¢g(u); and finally, given a dense sampling of the latent space (which is feasible,
since it is one-dimensional), p(g|u, f) is virtually a Dirac delta, so conditioning on the observations
has no effect and we can set ¢(g|u, f) = p(g|u, f). Using the constrained expansion for ¢ we get

Fatw.u. %) = [ atwatt) [ plelu. £)1ogp(vlg)ae + lox 2 ) afou ~ KL((E)(0)

The inner integral yields

n 1 _
/p(glu, f)log p(y|g)dg = — 3 log(2m0®) — 5 {trace(Cyy — C.C,, Cy,) + |ly — f||?

—2y'C,C,lu+u'C,C},Cr,C,lu+2u’ C, C/ f},

v v

which can be averaged analytically over ¢(f) = N(f|p,X). To this end, we define ¢y =
<trace(Cff))q(f), v, = <C—frvclfv>q(f), v, = <Cfv>q(f), and 5 = <C—frvf>q(f), which are

n_ gtfexp (—(”J';ng)z _ ([u}ﬁ(ijrmc)/Q)?)

Q[E]ii+52
2[X]i; +£2

Yo = no, (W% =

T2+ ?)
(X + 02

)2 DAY
Ugfexp ( (ul:—v;) n Ugfexp (_2(([%];]1,1,4:[)2)) ([H]i£2 - [E]iivj)

["/’3]]’ = ; ([2]“ +€2)3

After averaging over ¢(f), most of the terms do not depend on u and can be taken out of the integral.
The remaining terms which depend on u can be arranged as follows:

p(w) exp(— gz’ Cp >Cp ut 5 (v 1 — 95 )Cw)
q(u)log
q(u)
Note that we have not specified any functional form for ¢(u), so any distribution over u is valid.
In particular, we want to choose ¢(u) so as to maximise (4), because that would be the choice that

maximises F(g(u), s, X). Inspecting (4), we notice that it has the form of a Jensen’s inequality
lower bound. The maximum wrt g(u) can then be obtained by reversing Jensen’s inequality:

[(P1]i =

du. )

log /p(u) exp (—#uTC;}\PQC;}lu + %(yT\Ill — 1,b;—)C;U1u) du

1 T T 2 -1 T 1 |‘I’2 + 020vv|
:F(y Wy — 3 )(P2+07°Cyy) (P y —93) — 5 log T cal
which corresponds to selecting® ¢*(u) = N (u | CpuB, 0%2Cyy(Ps + 02C,y) 1Cyy) with B =
(W34 02C,, )~ (¥, y —1b3). Replacing one of the variational distributions within the bound by its

optimal value is sometimes referred to as using a “marginalised variational bound” [11]. Grouping
all terms together, we finally obtain:

+ glogaz,

1 _ 1 Wy + 02Cyy
Fowar(, 2) =~ (1ly = pll? + trace(S) + g — trace(W2C;.})) — 5 log %

1
o (v W= )W+ 07 Cu) (BT y — 4hy) — 2 log 27 — KLV (1 3| (10, K))

3Using variational arguments, ¢*(u) o p(u) exp(—%%uTC,jul\IuC,julu + 0—12 (yT®; — b3 )Crlu).



This bound depends on g and 3, i.e., n+n(n+1)/2 variational parameters which must be optimised.
Even for moderate sizes of n, this can be inconvenient. Following [12, 13], we can reduce the
number of free parameters by considering the conditions that must be met at any local maxima. By

imposing % = 0, we know that the posterior covariance can be expressed as ¥ = (K71 +
A)~1L, for some diagonal matrix A. With this definition, the bound F(u, A) now depends only on

2n free variational parameters and can be computed in O(n?) time and O(n?) space, just as WGP.

3.3 Model selection

The gradients of the variational bound Fgwep(t, A, 0) (now explicitly including its dependence on
the hyperparameters) can be computed analytically so it is possible to jointly optimise it both wrt to
the 2n free variational parameters and hyperparameters 6 in order to simultaneously perform model
selection (by choosing the hyperparameters) and obtaining an accurate posterior (by choosing the
free variational parameters). The hyperparameters are the same as for a WGP that uses a single tanh
function, so no overfitting is expected, while still enjoying a completely flexible warping function.

3.4 Approximate predictive density

In order to use the proposed approximate posterior to make predictions for a new test output ¥,

given input x, we need to compute ¢(y.]y) = [ p(y.|g)p(g: | f.. w)a(w)p(f.|£)a(£)dg.d f.dudf.
Integration wrt all variables can be computed analytically except for f,, resulting in

q(y«ly) = /Q(y*lf*)q(f*ly)df*

with q(y«|f) = N(y« | f« + c., 0% + Cos — CI(CM + Uzcvvqlglcvv)ilc*) and q(f«ly) =
N (fulpn; 02), where . = po + kK™ (= pol), 02 = ke — k] (K + A7") 'k, ko

k(s X1) - k(e X0)] T Koe = k(a,X2): €6 = [e(fus f1) o e(fur fu)] T Con = el fur f2) = 02
and 1 is an appropriately sized vector of ones.

This latter one-dimensional integral can be computed numerically if needed, using Gaussian quadra-
ture techniques. However, the posterior mean and variance can be computed analytically. Indeed,

Eyly.]y] = pts + 1.0 Volyily] = B (¥a, — ¥, W1,)B + 2(tp3, — p, ©1,)B + 02
+ 0% + Con — trace(Wo, (Cyy + 0°Coy ¥y 1Cyy) 7 h)

where W, matrices are defined as their non-starred counterparts, but using s, and o2 instead of p
and X in their computation. In spite of this, the approximate posterior is not Gaussian in general.

4 Experiments

We will now investigate the behaviour of BWGP on several real regression and classification
datasets. In our experiments we will compare its performance with that of the original implemen-
tation* of the maximum likelihood WGP model from [1]. In order to show the effect of varying
the complexity of the parametric warping function in WGP, we tested a 3 tanh model (the default,
used in the experiments from [1]) and a 20 tanh model, denoted as WGP3 and WGP20, respec-
tively. We did our best to achieve the maximum accuracy in WGP, so in order to solve each data
split, we optimised its hyperparameters 5 times from a random initialisation (the implementation’s
default method) and 5 times more using a standard GP to initialise the underlying GP (and randomly
initialising the warping function). Out of the 10 total runs, we used the one achieving a higher evi-
dence. The BWGP model was initialised from a standard GP and run only once per data split. The
standard ARD SE covariance function [4] plus noise was used for the underlying GP in all models.

s

The two measures that we use to compare performance are MSE = -- 3" (y,; — Eq[y.;]y])? and

NLPD = — % >, log q(ysily). In both cases, a lower value indicates better performance.

4 Available from http://www.gatsby.ucl.ac.uk/~snelson/.



4.1 Toy 1D data

First we evaluate the model on a simple one-dimensional toy problem. In order to generate a non-
linearly distorted signal, we round a sine function to the nearest integer and add Gaussian noise with
variance 02 = 2.5 x 1073. The training set consists of 51 uniformly spaced samples between —7
and . We train a standard GP, WGP, and BWGP and then we test them on 401 uniformly spaced
samples in the same interval. Results are displayed on Fig. 1.

BWGP

®

+ Training samples
P

P - S
I R S

P(y.ID) atx, =0
p(y.ID) atx, = 0.4

N w

Figure 1: Left: Posterior mean for the proposed models. A dashed envelope encloses 90% posterior
mass for WGP, whereas a shading is used to show 90% posterior mass for BWGP. Middle: The
dotted line shows the true posterior at x = 0 and x = 0.4, which is much better modelled by BWGP.
Right: Warping functions inferred by each model.

The warping functions look reasonable for both models. For WGP it is a deterministic function,
the inverse of the strictly monotonic function w(y), so it can never achieve completely “flat” zones.
Since WGP does not model output noise explicitly, these flat zones transfer and magnify output
noise to latent space, with the consequent degradation in performance. Note the extra spread of
the posterior mass in comparison with the actual training data, which is much better modelled by
BWGP. The mean of WGP fails to follow the flat regions at zero, behaving as a sine function, just
like the standard GP. The standard GP is also unable to handle this signal properly because of the
non-stationary smoothness: Abrupt changes are followed by constant levels. BWGP is able to deal
properly with noisy quantised signals and it is able to learn the implicit quantisation function.

4.2 Regression data sets

We now turn to the three real data sets originally used in [1] to assess WGP and for which it is
specially suited. These are: abalone [14] (4177 samples, 8 dimensions), creep [15, 16] (2066
samples, 30 dimensions), and ailerons [17] (7154 samples, 40 dimensions). As for the size of
the training set, the typical choice is to use 1000, 800 and 1000 samples respectively. For each
problem, we generated 60 splits by randomly partitioning data. Results are displayed on Table 1.
The warping functions inferred by BWGP are displayed in Fig. 3(a)-(c) and are almost identical to
those displayed in [1] for WGP. The shading represents 99.99% posterior mass.

Table 1: NMSE and NLPD figures for the compared methods on original data sets of [1].

MSE NLPD
Model abalone creep ail (xi078) abalone creep ailerons
GP 4.55+£0.14 584.9+71.2 2.95+£0.16 2.17+£0.01 4.46+£0.03 -7.30£0.01
BWGP 4.55+£0.11 491.8+£36.2 2.91+£0.14 1.99+£0.01 4.31+0.04 -7.3840.02
MLWGP3  4.54£0.10 502.3+43.3 2.80+0.11 1.97+0.02 4.21£0.03 -7.4440.01
MLWGP20 4.594+0.32 506.3+46.1 3.4242.87 1.99+£0.05 4.21+0.08 -7.4540.08

In terms of NLPD, BWGP always outperforms the standard GP, but it is in turn outperformed by
the maximum likelihood variants, which do not need to resort to any approximation to compute its
posterior. In terms of MSE, BWGP always performs better than WGP20 on these data sets, but only
performs better than WGP3 on the creep data set, which, on the other hand, is the one that seems



to benefit more from the use of a warping function. It seems that the additional flexibility of the
warping function in WGP20 is penalising its ability to generalise properly.

Upon seeing these results, we can conclude that WGP3 is already a good enough solution when
abundant training data are available and a simple warping function is required. This is reasonable:
The additional number of hyperparameters is small (only 9) and inference can be performed ana-
lytically. We can also see in Fig. 3(a)-(c) that the posterior over the warping functions is highly
peaked, so a maximum likelihood approach makes sense. However, performance might suffer when
the warping function becomes even slightly complex, as in creep, or when the number of available
data for training is very small (see the effect of the training set size on Fig. 2). In those cases, BWGP
is a safer option, since it will not overfit independently of the amount of data while allowing for a
highly flexible warping function.

abalone ceep  ailrons

--Gp
- - -WGP3
——BWGP

WGP20

Average MSE on 60 splits
Average MSE on 60 splits
Average MSE on 60 splits

50 100 200 500 1000 50 100 200 500 800 50 100 200 500 1000
Number of training data Number of training data Number of training data

Figure 2: Average MSE, as well as estimated 31 std. deviation of the average, for 60 splits.

4.3 Censored regression data sets

We will now modify the previous data sets so that they become more challenging. We will consider
that they have been censored, i.e., values that lie above or below some thresholds have been trun-
cated. This is a realistic setting in the case of physical measurements (e.g., due to the limitation of
measuring devices), but clusters of values lying at the end of the range can appear in other cases. In
our experiments, we truncated the upper and lower 20% of the previous datasets, while keeping the
remaining 60% of data untouched. Note that the methods have no information about the existing
truncation or the used thresholds.

As discussed in [1], for this type of data, WGP tries to spread the samples in latent space by using a
very sharp warping function and this causes the model problems. Additionally, the computation of
the NLPD becomes erroneous due to numerical problems, with some of the tanh functions becom-
ing very close to sign functions. None of these problems were experienced by BWGP, which still
works significantly better than a standard GP on this type of problems, see Table 2. The correspond-
ing warping functions are displayed on Figs. 3.(e)-(g).

Table 2: NMSE and NLPD figures for the compared methods on censored data sets.

MSE NLPD
Model abalone creep ail (x1078) abalone creep ailerons
GP 1.27+0.12 339.5+29.2 1.20+0.12 1.54+0.05 4.22+0.04 -7.70+0.05
BWGP  1.274+0.12 276.8+26.8 1.1840.12 0.744+0.36  3.68+0.17 -7.8940.07

WGP3 1.40+£0.31 434.6+£169.0 1.83+2.18 — — —
WGP20 1.38+0.22 382.1+£934  1.39£0.78 — — —

4.4 Classification data sets

Classification can be regarded as an extreme case of censoring or quantisation of a regression data
set. We also mentioned in Section 2.2 that the (conditional) generative model of GP classification
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Figure 3: Inferred warping functions.

Table 3: Error rates (in percentage) for the proposed model on the benchmark from Rétsch [18].

ban bre dia fla ger hea ima rin spl thy tit two wav

GP 132 296 280 39.1 276 286 032 21.1 234 137 236 101 155
BWGP 107 295 245 333 239 235 021 048 17.0 047 220 042 124
GPC 10.6 295 242 335 248 217 021 079 228 040 222 042 114

could be seen as a particular selection for g(f). So we decided to test the BWGP model on the 13
classification data sets from Rétsch benchmark [18].

Since WGP does not produce any meaningful results on this type of data, as mentioned in [1],
we did not include it in the comparison. Instead, we used a standard GP classifier (GPC) using a
probit likelihood and expectation propagation for approximate inference. We measured the error
rate, which is the performance figure we are interested in for those data sets, averaging over 10 splits
of the data. Results from Table 3 show that BWGP is able to match and occasionally exceed the
performance of GPC, outperforming in all cases the standard GP. The learned warping functions
look similar for the different data sets. We have depicted two typical cases in Figs. 3.(d) and 3.(h).
Specially good results are obtained for german, ringnorm, and splice, though we are aware
than even better results can be obtained by using an isotropic SE covariance on these data sets [19].

5 Discussion and further work

In this work we have shown how it is possible to variationally integrate out the warping function
from warped GPs. This is useful to overcome the limitations of maximum likelihood warped GPs,
namely: To work in the low data sample regime; to handle censored observations and classification
data; to explicitly model output noise; and to allow for warping functions of unlimited flexibility,
which may include flat regions. The experiments demonstrate the improved robustness of the BWGP
model, which is able to operate properly in a much wider set of scenarios. While a specific model
(should it exist) will generally be a better tool for a specific task (e.g., GPC for classification), BWGP
behaves as a Swiss Army knife providing good performance on general tasks.

In addition to the tasks discussed in this work, there are other cases in which BWGP can be of
immediate application. One example is ordinal regression [8], where the locations and widths of
the bins can be integrated out instead of selected. Another potential future application is within the
popular field of copulas [20, 21, 22, 23], since they routinely resort to fixed warpings of GPs.
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