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Abstract

The interaction between the patient’s expected outcome of an intervention and
the inherent effects of that intervention can have extraordinary effects. Thus in
clinical trials an effort is made to conceal the nature of the administered inter-
vention from the participants in the trial i.e. to blind it. Yet, in practice perfect
blinding is impossible to ensure or even verify. The current standard is follow up
the trial with an auxiliary questionnaire, which allows trial participants to express
their belief concerning the assigned intervention and which is used to compute a
measure of the extent of blinding in the trial. If the estimated extent of blinding
exceeds a threshold the trial is deemed sufficiently blinded; otherwise, the trial
is deemed to have failed. In this paper we make several important contributions.
Firstly, we identify a series of fundamental problems of the aforesaid practice and
discuss them in context of the most commonly used blinding measures. Secondly,
motivated by the highlighted problems, we formulate a novel method for handling
imperfectly blinded trials. We too adopt a post-trial feedback questionnaire but in-
terpret the collected data using an original approach, fundamentally different from
those previously proposed. Unlike previous approaches, ours is void of any ad hoc
free parameters, is robust to small changes in auxiliary data and is not predicated
on any strong assumptions used to interpret participants’ feedback.

1 Introduction

Ultimately, the main aim of a clinical trial is straightforward: it is to examine and quantify the effec-
tiveness of a treatment of interest. Effectiveness is evaluated relative to the effectiveness of a partic-
ular reference, the so-called control intervention. To ensure that the aforementioned comparison is
meaningful, it is of essential importance to ensure that any factors not inherently associated with the
two interventions (treatment and control) are normalized (controlled) between the two groups. This
ensures that the observed differential outcome truly is the effect of differing interventions rather than
any orthogonal, confounding variables. A related challenge is that of blinding. Blinding refers to the
concealment of the type of administered intervention from the individuals/patients participating in a
trial and its aim is to eliminate differential placebo effect between groups [10, 3, 11]. Although con-
ceptually simple, the problem of blinding poses difficult challenges in a practical clinical setup. We
highlight two specific challenges which most strongly motivate the work of the present paper. The
first of these stems from the difficulty of ensuring that absolute blinding with respect to a particular
trial variable is achieved. The second challenge arises as a consequence of the fact that blinding can
only be attempted with respect to those variables of the trial which have been identified as revealing
of the treatment administered. Put differently, it is always possible that a particular variable which
can reveal the nature of the treatment to a trial participant is not identified by the trial designers
and thus that no blinding with respect to it is attempted or achieved. This is a ubiquitous problem,
present in every controlled trial, and one which can severely affect the trial’s outcome.

Given that it is both practically and in principle impossible to ensure perfect blinding, the practice
of post hoc assessment of the level of blinding achieved has been gaining popularity and general
acceptance by the clinical community. The key idea is to use a statistical model and the partici-
pants’ responses to a generic post-trial questionnaire to quantify the participants’ knowledge about
the administered intervention. While the statistical model used to this end has been a source of
disagreement between researchers, as discussed in detail in Sec 2, the general approach is shared
by different methods described in the literature. In this paper we argue that this common approach
suffers from several important limitations. Motivated by these, in the present work we propose a
novel statistical framework and use it to derive an original method for integrated trial assessment
which is experimentally shown to produce more meaningful and more clearly interpretable data.



Table 1: Notational convention for mathematical symbols adopted in this paper.

Symbol  Description

a subscript specifying group assignment; a = C'and a = T signify control and treatment groups

g subscript specifying membership belief; g = — and ¢ = + signify belief in control and
treatment group memberships, g = 0 signifies uncertainty

Pag proportion of participants who were assigned to group a and believe the membership to be g

P, proportion of participants who were assigned assigned to group a

P, proportion of participants who believe their group membership to be g

2 Previous Work

In this section we describe the general methodology of auxiliary post-trial data collection, the two
most influential statistical models which use the aforesaid data to quantify the extent of blinding in
a trial, and discuss the key limitations of the existing approaches which motivate the work described
in the present paper.

2.1 Method 1: James’s Blinding Index

At the heart of the so-called blinding index proposed by James et al. [7] is the observation that the
effect of a particular intervention is affected by the participant’s perception of the effectiveness of
the intervention the participant believes was administered. For example, a control group member
who incorrectly believes to be a member of the treatment group may indeed experience positive
effects expected from the studied treatment. The is the extensively studied placebo effect [2, 9].

Auxiliary Data James er al. propose the use of a post-trial questionnaire to assess the level of
blinding in a trial. The participants are asked if they believe that they were assigned to the (i) control
or (ii) treatment groups, or (iii) if they are uncertain of their assignment (the “don’t know” response).
Extensions of this scheme which attempt to harness more detailed information have also been used,
e.g. allowing the participants to quantify the strength of their belief.

Blinding Level The existing work on the assessment of trial blinding uses the collected auxiliary
data to calculate a statistic referred to as the blinding index. For a 3-tier auxiliary questionnaire,
James et al. [7] define their index as (our mathematical notation is summarized in Tab 1):

1
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It can attain values in the interval [0, 1], higher values denoting increasing level of blindness. Thus
p1 = 1 indicates perfect blinding and p; = 0 an unblinded trial. The statistic A takes into account
the distribution of participants who have a decisive belief regarding their assignment:

Pag(1 — Py) — Py(Pa — Pao)
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The constants w,, are weighting coefficients whose effect is to scale relative contributions of the
correct and incorrect assignment guesses. To gain intuitive insight into the nature of p;, consider the
plot shown in Fig 1(a). It is readily apparent that p; is a concave function which attains its maximal
value of 1 when (i) all participants are uncertain of their assignment or (ii) when all participants have
an incorrect belief regarding their assignment.

In comparison with the case of Py = 1 the attainment of the maximal value p; = 1 for
Pry = Pc_ = 0 is more questionable. While it is tempting to reason that blinding must have
been successful since no participant correctly guessed their assignment, it would be erroneous to
do so. In particular, the consistency of the wrong belief amongst trial participants actually reveals
unblinding, but with the participants’ incorrect association of the unblinded factor with the corre-
sponding group assignment. For example, the treatment may cause perceivable side effects (thus
unblinding the participants) and the worsening of the condition of the treatment group participants.
This observation which could lead them to the conclusion that they were assigned to the control

group.
2.2 Method 2: Bang’s Blinding Index

The blinding index p; places a lot of value on those participants who plead ignorance regarding their
assignment status. Bang et al. argue that the non-decisive “don’t know” response may not express a
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Figure 1: Dependency of the blinding indexes (a) p1 and (b) p5 on the proportions of “don’t know” responses
Po, and the correct assignment guesses Pr4 and Poc—. Note that although Pr4 and Pc_ are independent
variables, due to their symmetric contributions and for the purpose of easier visualization, in this plot it was
taken that Pr4 and Po_ were always equal.

true lack of knowledge but rather that it may be a conservative response born out of desire to appear
balanced in judgement [1]. Thus, they propose an alternative which instead most heavily weights the
contribution of decisive responses. Because decisive responses can be in either the positive or the
negative direction, the index is asymmetrical and can be applied separately to treatment and control
groups. For a 3-tier auxiliary questionnaire, the index for the treatment group is defined as:
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The behaviour of p/, can be seen in Fig 1(b) which plots it against the proportions of indecisive
responses and correct guesses. It is readily apparent that the plot has a form very different from that
in Fig 1(a) showing the corresponding variation of p;. Firstly, note that unlike p;, the range of values
for py is [—0.5, 0.5]. The value of po = 0 indicates perfect blinding, p» = 0.5 an unblinded trial and
p2 = —0.5 an unblinded trial with incorrect assignment association, as discussed in Sec 2.1.

As the plot shows, this index achieves its perfect blinding value only when Py = 1. Unlike p;, the
case when Pr, = Po_ = 0 does not necessarily result in perfect blinding. Also, Pry = Po_ =1
and Py = 0 deems the trial unblinded, as does Pry = Pc_ = 0 and Fy = 0 but with the incorrect
assignment association. Contrast this with the corresponding value of p;.

3 Limitations of the Current Best Standards

In the preceding sections we described two blinding indexes most widely used in practice to assess
the level of blinding in controlled clinical trials. To highlight and motivate the contribution of the
present work, we now analyze the limitations of the aforesaid approaches.

Adjustment of Free Parameters One of the most obvious difficulties encountered when applying
either of the described blinding indexes concerns the need to choose appropriate values for the free
parameters in Equations (2) and (3) in their general form. These are the weighting constants wgg.
Recall that their purpose is to scale the relative contributions of different responses. Although not
without an intuitive appeal, a thorough analysis of this ad hoc approach reveals a series of problems,
both inherent and practical. Firstly, there is no objective underlying mechanism which would explain
why the contributions of different responses should be combined linearly at all. What is more, even
if linear combination is adopted, it is fundamentally the case that there is no principled method of
choosing the values of the weighting constants — the lack of observable “ground truth” means that
it is not possible to objectively compare the quality of different predictions. Lastly, the values of
“best” weighting constant ratios are likely to differ from trial to trial.

Interpretation of Participants’ Feedback It is important to highlight that both the index of James
et al. as well as that of Bang ef al. use the same type of feedback data collected from the trial
participants — the participants’ stated belief regarding their trial group assignment and their degree
of confidence. Where the two approaches differ in is the interpretation of the participants’ answers.

James et al. interpret the non-decisive, “don’t know” response as indicative of true lack of knowledge
regarding the nature of the intervention (treatment or control). If the trial participants are ignorant of
their group assignment, it is assumed that they have indeed been blinded. Consequently, p; heavily
relies on the proportion of the non-decisive participants. However, the “don’t know” response may



not truly represent lack of knowledge. Instead, this response may be seen as a conservative one,
reflecting the participants’ desire to appear balanced in their judgement or indeed the response that
the participants believe would please the trial administration staff. Thus, p5 mostly relies on the
responses of those trial participants who did express belief regarding their group assignment. Blind-
ness is measured by comparing the observed statistics of decisive responses with those expected
from an ideal, fully blinded trial. However, this interpretation of participants’ responses is readily
criticized too. As Hemilid amongst others notes, because the participants’ feedback is collected post
hoc it is possible that even a perfectly blinded subject becomes aware of the correct assignment by
virtue of observing the effects (or lack thereof) of the assigned intervention [5]. Considering the
same issue, Henneicke-von Zepelin [6] suggested that auxiliary data should be collected before or
shortly after the commencement of a trial. However, this is in most cases unsatisfactory as the par-
ticipants would not have yet been exposed to any unblinded aspects of the trial. As we demonstrate
in the next section, the approach proposed in this paper entirely avoids this problem.

Sensitivity to Small Input Differences Both James ef al. and Bang et al. establish the level of
blindness in a trial by computing a blinding index and then comparing it with a predefined threshold.
This hard thresholding whereby a trial is considered either sufficiently well blinded or not means
that the outcome of the blinding assessment can exhibit high sensitivity to small differences in
participants’ responses. The response of a single individual may change the assessment outcome.
Yet, such binarization in some form is necessitated by the nature of the blinding indexes because
neither of the two described statistics has a clear practical interpretation in the clinical context. The
task of choosing the value of the aforesaid threshold suffers from much the same problems as the
task of selecting the values of the weighting constants, discussed previously — inherently, there is
no objective and meaningful way of defining the optimal threshold value, and the value actually
selected by the practitioner is likely to vary from trial to trial.

Inference Atomization The problem of high sensitivity to small input differences considered pre-
viously is but one of the consequences of the inference atomization. Specifically, observe that the
analysis of the trial outcome data is separated from the blinding assessment. Indeed, only if the
trial is deemed sufficiently well blinded does the analysis of actual trial data proceed. Thus, if the
blinding index falls short of the predetermined threshold, the data is effectively thrown away and
the trial needs to be repeated. On the other hand, if the blinding index exceeds the threshold, the
analysis of data is performed in the same manner regardless of the actual value of the index, that is,
regardless of whether it is just above the threshold or if it indicates perfect blinding.

The variety of problems that emerges from the atomization of different statistical aspects of a trial
is inherently rooted in the very nature of the framework adopted by James ef al. and Bang James
et al. alike. As stated earlier, neither of the two indexes has a clear practical interpretation in the
clinical context. For example, neither tells the clinician the probability that a particular portion of
the participants were unblinded, nor the probability of a particular level of unblinding. Instead, from
the point of view of a clinician, the blinding index behaves like a black box which deems the trial
well blinded or not, with little additional insight.

4 Principled Approach to Controlled Clinical Trial Data Analysis
We now describe a principled method for inference from collected trial data.

4.1 Study Design and Outcome Model

As we demonstrated in the previous section, many of the problems of the approaches proposed by
James et al. and Bang et al. inherently stem from the underlying statistical model. Although our
approach uses the same type of participants’ feedback data, our statistical model differs significantly
from that employed in previous works.

In the general case, the effectiveness of a particular intervention in a trial participant depends on
the inherent effects of the intervention, as well as the participant’s expectations (conscious or not).
Thus, in the interpretation of trial results, we separately consider each population of participants
which share the same combination of the type of intervention and the expressed belief regarding this
group assignment. This is conceptually illustrated in Fig 2.

A key idea of the proposed method is that because the outcome of an intervention depends on both
the inherent effects of the intervention and the participants’ expectations, the effectiveness should
be inferred in a like-for-like fashion. In other words, the response observed in, say, the sub-group
of participants assigned to the control group whose feedback professes belief in the control group



Figure 2: Conceptual illus-
tration of the proposed sta-
tistical model for the 3-tier
feedback questionnaire. Dot-
ted and solid lines show
respectively the probability
density functions of the mea-
sured trial outcome across in-
dividuals in the three control
— and treatment sub-groups.
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assignment should be compared with the response of only the sub-group of the treatment group who
equally professed belief in the control group assignment. Similarly, the “don’t know” sub-groups
should be compared only with each other, as should the subgroups corresponding to the belief in the
treatment assignment. This idea is formalized next.

4.2 Inference

Consider two corresponding sub-groups, that is, sub-groups corresponding to different types of re-
ceived intervention but the same response in the participants’ feedback questionnaire. Furthermore,
let the benefit of an intervention observed in a particular participant be expressed as a real number
x((fg) Thus, and without loss of generality, a greater xgg) indicates greater benefit. For example, z;
may represent the amount of fat loss in a fat loss trial, the reduction in blood plasma LDL in a statin
trial etc. Our goal is to infer p(Ax), that is, the probability density function over the difference Az
in the benefit observed across the two compared sub-groups.

Let Doy = {mc IR Cg)} be the trial outcome data collected from a control sub-group and

Dry = {x(Tlg, cee Tng)} of the matching treatment sub-group. Then, if D; = D¢cy U D7y is the
totality of all data of participants who believe they were assigned to the group g:

P(D, | Av) p(Az)

p(Az | Dy) = )
! p(Dy)
Modelling the response of each sub-group using a normal distribution
x(cg ~ N(meg,04) and xgpjg) ~ N(mrpg,04) (5)

and remembering that for the underlying distributions it holds that m¢g + Az = mqy, allows us to
further write

p(Az | D) < p(Dy | Az) = / / p(Dy | Az, mey, 04) p(Mmey) p(og) dog dmeg — (6)
meg Jo

where p(mcy) is a prior on the mean of the control sub-group and p(og) a prior on the standard
deviation within sub-groups. What Eq (6) expresses is the process of probability density function
marginalization over nuisance variables mcg and o4. Since the values of these latent model vari-
ables are unknown, marginalization takes into account all of the possibilities and weights them in
proportion to the supporting evidence.

When two corresponding sub-groups of participants are considered, for uninformed priors over mcy
and o4, the posterior distribution of Ax is given by:

nogtnrg—1 ng—1

p(Ax | Dy) x ¢g 2 =cq 2 @)

where constant scaling factors have been omitted for clarity, and

ncg nrg nog Nnrg 2
cg = ng)g +3 (@ () )+ Ax)? {me Z xgi; + Az) ] / (ncg +nrg) (8
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Extending to the joint inference over the entire data corpus, the posterior can be computed simply
as a product of all sub-group pair posteriors (up to a scaling constant):

p(Az | Uy Dy) Hp(Ax | Dy) o Hc; “r )

g g




The estimate of the posterior distribution of Az in Eq (9) is the best estimate that can be made using
the available data, and it is of the most interest to the clinician. However, as we will discuss in Sec 6,
both Eq (7) and (9) have significance in the interpretation of trial results and their joint consideration
can be used to reveal important additional information about the effectiveness of the treatment.

5 Experiments

Certain advantages of the proposed methodology over previous approaches are ipso facto inherent
in the theory, e.g. the absence of free parameters. Other claimed properties of the method, such as
its robustness to small input differences, are not immediately obvious. In this section we present the
results of a series of experiments which demonstrate the superiority of the proposed method.

5.1 Evaluation Methodology

In contrast to the methods of James ez al. and Bang et al. which do not attempt to infer any objective
and measurable quantity, the proposed approach pools all available data (trial outcomes and auxiliary
questionnaire feedback) in an effort to evaluate robustly the effectiveness of the studied treatment.
This feature of our method allows us to directly evaluate its performance. Specifically, we employ
a computer-based simulation whereby data is first randomly (or rather pseudo-randomly) generated
using a statistical model with adjustable parameters, followed by the application of the proposed
method which is used to infer the said parameters. The values inferred by our method can then be
directly compared with their known true values.

Exp 1: Reference For our first experiment, we simulated a trial involving 200 individuals, half of
which were assigned to the control and half to the treatment group. For each of the groups, 60% of
the participants were taken to be in the “undecided” subgroups G¢¢ and Gg. The remaining 40%
of the participants was split between correct and incorrect guesses of the assigned intervention in
proportion 3 : 1. In this initial experiment we assume that all participants correctly disclosed their
belief regarding which group they were assigned to. Note that this assumption is done purely in the
process of generating data for the experiment — neither this nor any of the preceding information is
used by our method to analyze the outcome of the trial.

We set the differential effect of treatment to Az = 0.1 and the standard deviation of variability
within each of the assignment-response subgroups to 0 = o9 = o4 = 0.1. Relative to genuine
lack of belief in either control or treatment group assignments, belief in control group assignment
was set to exhibit negative effect of magnitude 0.2 and that in treatment group assignment a positive
effect of magnitude 0.2. Intervention outcomes were then generated by repeated random draws from
the corresponding distributions. For example, the outcome associated with a participant in Go_ was
determined by a random draw from the normal distribution N (m¢c_,0_).

The result of applying the proposed method is summarized in Fig 3 which plots the posteriors (bold
lines) corresponding to the three subgroups matched by the patients’ post-trial belief and the amal-
gamated posterior. The maximum a posteriori (MAP) value of the estimate of the differential ef-
fectiveness of the treatment is Ax* ~ 0.107, which is close to the true value of Az = 0.1. In
comparison, when the differential effectiveness is estimated by subtracting the mean response of the
control group from that of the treatment group, without the use of our matching sub-groups based
statistical model, the estimate is Az ~ 0.141. Finally, the corresponding values of the blinding
indices proposed by James et al. and Bang et al. are py = 0.53 and p), = pj = 0.10. Notice that
the former indicates a level of blinding roughly half way between a perfectly blinded and unblinded
trial, while the latter deems the trial nearly perfectly blinded.

5.1.1 Exp 2: Conservative Distortion

We modify the baseline experiment by simulating conservative behavioural tendency of partici-
pants in a trial. This was achieved by randomly choosing individuals from decisive subgroups and
re-assigning them to their corresponding indecisive subgroup without changing their treatment’s
observed effectiveness. The probability of re-assignment was set to p.ons = 0.2.

As before, we applied the proposed method on the modified data and display the key results in
Fig 3. In addition to the new subgroup posteriors (dotted lines), for comparison in Fig 3(a) we
also show the three initial subgroup posteriors from Exp 1 (solid lines). The baseline (thick solid
line) and new (thin solid line) amalgamated posteriors are shown in Fig 3(b). Fig 3(b) also shows the
semi-amalgamated posterior obtained using only decisive subgroups which, by experimental design,



comprise data of only those individuals which honestly disclosed their belief of group assignment.
The new MAP value for the differential effectiveness using the amalgamated posterior can be seen
to be Ax* ~ 0.122 and that using the semi-amalgamated posterior Az* ~ 0.116. In Sec 6 we will
show how the difference in statistical features of sub-group posteriors can be used to select the most
reliable posteriors to amalgamate, as well as to reveal additional insight into the nature of the studied
treatment and the blinding in the trial.
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Figure 3: Exp 2: (a) Posteriors for the differential effect treatment computed using the data D, of each
experimental sub-group comprising control and treatment individuals matched by their feedback. (b) Posterior
for the differential effect treatment computed using all available data.

Exp 3: Asymmetric Progressive Unblinding Starting with the baseline setup, we simulate un-
blinding of previously undecided individuals of the treatment group. In other words, in each turn
we re-assign an individual from the subgroup G to the subgroup G4 and compute the novel
distribution for Azx.

The robustness of our method is illustrated in Fig 4(a), which shows the MAP estimate of the effec-
tiveness of the treatment after an increasing number of participants were unblinded. This estimate
only shows small random perturbations, with the corresponding standard deviation of 0.0054. The
plots in Fig 4(b) show the variation of the two blinding indexes throughout the experiment. As ex-
pected from the change in the participants’ auxiliary data, both indexes change in value dramatically.
The index of James et al. decreases, while that of Bang et al. increases in absolute value, indicating
agreement on the lowered level of blinding.
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~ — ~ Blinding index of Bang et al
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Figure 4: Exp 3: (a) The MAP estimate of the treatment effectiveness as the participants assigned to the
treatment group are progressively unblinded. (b) The values of the blinding indexes p; (blue line) and p4 (red
line), computed at each step of the progressive unblinding of the participants assigned to the treatment group.
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Exp 4: Symmetric Progressive Unblinding As in Exp 3 we start with the baseline setup and
simulate unblinding of previously undecided individuals of the treatment group. In each turn we
re-assign an individual from Gp¢ to G4 and an individual from G¢g to G¢—, and compute the
novel distribution for Azx.

We illustrate the robustness of the method by plotting the MAP estimate of the effectiveness of the
treatment in Fig 5(a). As before, the estimate only shows small random perturbations, as expected in
any experiment with a stochastic nature and is to be contrasted with the plots in Fig 5(b) which show
the changes in the two blinding indexes throughout the experiment. Again, with the change in the
participants’ auxiliary data, both indexes also change in value. It is insightful to observe that unlike
in Exp 3, in this instance the values of the two indexes do not exhibit agreement on the direction
of change of the level of blinding. This reflects the importance that the auxiliary data interpretation
plays in the methods of both James et al. and Bang et al.
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Figure 5: Exp 4: (a) The MAP estimate of the treatment effectiveness as the participants assigned to both the
treatment and the control groups are progressively unblinded. (b) The values of the blinding indexes p1 (blue
line) and p5 (red line), computed at each step of the progressive unblinding.

6 Discussion

Degenerate Cases One of the key ideas behind the present method is that it is meaningful to
compare only the sub-groups matched by their auxiliary responses. While a greater number of
subgroups may provide more precise auxilliary/blinding information, the introduced partitioning
of data decreases the statistical strength of each comparison of the corresponding sub-groups. In
an extreme case, a particular sub-group may be empty. In other words, it is possible that none of
the participants of the treatment or the control group expressed a particular belief regarding their
treatment assignment. Although this may appear as a problem at first, a more careful examination
of such cases reveals that this is not so.

Firstly, note that whenever at least one pair of matching sub-groups is non-empty, the proposed
method is able to compute a meaningful estimate of differential treatment effectiveness. In instances
when there are no non-empty matching sub-groups, the nature of degeneracy can provide useful in-
sight to the clinician. The absence of individuals in G4 may indicate that the participants assigned
to the treatment group have either been poorly blinded but misidentified the received treatment, or
that the treatment was vastly ineffective and was recognized as such by the participants assigned to
it. Similarly, the absence of individuals in Gr_ may indicate that the participants assigned to the
treatment group have either been poorly blinded and correctly identified the received treatment, or
that the treatment was obviously effective. In all cases, because degenerate data is trivial to recog-
nize, the clinician is immediately made aware of the presence of a major flaw in the experimental
design. The cause of degeneration can then be determined using the knowledge of the administered
interventions, and the statistics of both auxiliary responses and trial outcomes.

Further Insight In Sec 4.2 we derived posteriors corresponding both to only a single pair of
corresponding sub-groups in Eq (7) and to the entirety of data, that is, all sub-groups in Eq (9).
While the latter of these is of primary interest, the clinician can derive further useful insight into the
nature of studied treatment by comparative examination of sub-group posteriors too.

The least interesting case is when the sub-group posteriors and the total posterior exhibit similar
characteristics (e.g. the location of the mode). However, consider the case when that is not so. For
example, let us say that the posterior corresponding to the two matching “don’t know” subgroups
has the mode near Az =~ 0 and the total posterior has a decidedly positive mode (with suitably small
standard deviations, to make the observation statistically significant). This could indicate that there
may be so-called “non-responders” in the treatment group, i.e. individuals which did not respond
positively to the treatment which in most people does produce a positive result [4, 8]. Similar
arguments can be made by considering differences between other sub-group posteriors. Ultimately,
the exact interpretation is in the hands of the clinicians who should use their insight into the nature
of the administered interventions to infer further information of this type.

7 Summary and Conclusions

This paper examined the problem of assessing the extent of blindness in a clinical trial. We demon-
strated a series of fundamental flaws in blinding index based approaches and thus proposed a novel
framework. At the centre of our idea is that the comparison of the treatment and control groups
should be done in like-for-like fashion, giving rise to the partitioning of participants into sub-groups,
each sub-group sharing the same intervention and post-trial responses. A Bayesian framework was
used to interpret jointly the auxiliary and trial outcome data, giving the clinician a meaningful and
readily understandable end result. The effectiveness of our method was demonstrated empirically in
a simulation study, which showed its robustness in a variety of scenarios.
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