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Abstract

We address the problem of generating multiple hypotheses for structured predic-
tion tasks that involve interaction with users or successive components in a cas-
caded architecture. Given a set of multiple hypotheses, such components/users
typically have the ability to retrieve the best (or approximately the best) solution
in this set. The standard approach for handling such a scenario is to first learn
a single-output model and then produce M -Best Maximum a Posteriori (MAP)
hypotheses from this model. In contrast, we learn to produce multiple outputs
by formulating this task as a multiple-output structured-output prediction prob-
lem with a loss-function that effectively captures the setup of the problem. We
present a max-margin formulation that minimizes an upper-bound on this loss-
function. Experimental results on image segmentation and protein side-chain pre-
diction show that our method outperforms conventional approaches used for this
type of scenario and leads to substantial improvements in prediction accuracy.

1 Introduction
A number of problems in Computer Vision, Natural Language Processing and Computational
Biology involve predictions over complex but structured interdependent outputs, also known as
structured-output prediction. Formulations such as Conditional Random Fields (CRFs) [18], Max-
Margin Markov Networks (M3N) [27], and Structured Support Vector Machines (SSVMs) [28] have
provided principled techniques for learning such models.

In all these (supervised) settings, the learning algorithm typically has access to input-output pairs:
{(xi, yi) | xi ∈ X , yi ∈ Y} and the goal is to learn a mapping from the input space to the output
space f : X → Y that minimizes a (regularized) task-dependent loss function ` : Y × Y → R+,
where `(yi, ŷi) denotes the cost of predicting ŷi when the correct label is yi.

Notice that the algorithm always makes a single prediction ŷi and pays a penalty `(yi, ŷi) for that
prediction. However, in a number of settings, it might be beneficial (even necessary) to make multi-
ple predictions:

1. Interactive Intelligent Systems. The goal of interactive machine-learning algorithms is to
produce an output for an expert or a user in the loop. Popular examples include tools for
interactive image segmentation (where the system produces a cutout of an object from a
picture [5, 25]), systems for image processing/manipulation tasks such as image denoising
and deblurring (e.g., Photoshop), or machine translation services (e.g., Google Translate).
These problems are typically modeled using structured probabilistic models and involve
computing the Maximum a Posteriori (MAP) solution. In order to minimize user inter-
actions, the interface could show not just a single prediction but a small set of diverse
predictions, and simply let the user pick the best one.

2. Generating M -Best Hypotheses. Machine learning algorithms are often cascaded, with
the output of one model being fed into another. In such a setting, at the initial stages it is
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not necessary to make the perfect prediction, rather the goal is to make a set of plausible
predictions, which may then be re-ranked or combined by a secondary mechanism. For
instance, in Computer Vision, this is the case for state-of-the-art methods for human-pose
estimation which produce multiple predictions that are then refined by employing a tempo-
ral model [23, 3]. In Natural Language Processing, this is the case for sentence parsing [8]
and machine translation [26], where an initial system produces a list of M -Best hypothe-
ses [12, 24] (also called k-best lists in the NLP literature), which are then re-ranked.

The common principle in both scenarios is that we need to generate a set of plausible hypotheses
for an algorithm/expert downstream to evaluate. Traditionally, this is accomplished by learning a
single-output model and then producing M -Best hypotheses from it (also called the M -Best MAP
problem [20, 11, 29] or the Diverse M -Best problem [3] in the context of graphical models).

Notice that the single-output model is typically trained in the standard way, i.e., either to match the
data distribution (max-likelihood) or to score ground-truth the highest by a margin (max-margin).
Thus, there is a disparity between the way this model is trained and the way it is actually used. The
key motivating question for this paper is – can we learn to produce a set of plausible hypotheses?
We refer to such a setting as Multiple Choice Learning (MCL) because the learner must learn to
produce multiple choices for an expert or other algorithm.

Overview. This paper presents an algorithm for MCL, formulated as multiple-output structured-
output learning, where given an input sample xi the algorithm produces a set of M hypotheses
{ŷ1i , . . . , ŷMi }. We first present a meaningful loss function for this task that effectively captures the
setup of the problem. Next, we present a max-margin formulation for training thisM -tuple predictor
that minimizes an upper-bound on the loss-function. Despite the popularity of M -Best approaches,
to the best our knowledge, this is the first attempt to directly model the M -Best prediction problem.
Our approach has natural connections to SSVMs with latent variables, and resembles a structured-
output version of k-means clustering. Experimental results on the problems of image segmentation
and protein side-chain prediction show that our method outperforms conventionalM -Best prediction
approaches used for this scenario and leads to substantial improvements in prediction accuracy.

The outline for the rest of this paper is as follows: Section 2 provides the notation and discusses
classical (single-output) structured-output learning; Section 3 introduces the natural task loss for
multiple-output prediction and presents our learning algorithm; Section 4 discusses related work;
Section 5 compares our algorithm to other approaches experimentally and; we conclude in Section
6 with a summary and ideas for future work.

2 Preliminaries: (Single-Output) Structured-Output Prediction

We begin by reviewing classical (single-output) structured-output prediction and establishing the
notation used in the paper.

Notation. For any positive integer n, let [n] be shorthand for the set {1, 2, . . . , n}. Given a training
dataset of input-output pairs {(xi, yi) | i ∈ [n], xi ∈ X , yi ∈ Y}, we are interested in learning a
mapping f : X → Y from an input space X to a structured output space Y that is finite but typically
exponentially large (e.g., the set of all segmentations of an image, or all English translations of a
Chinese sentence).

Structured Support Vector Machines (SSVMs). In an SSVM setting, the mapping is defined as
f(x) = argmaxy∈Y wTφ(x, y), where φ(x, y) is a joint feature map: φ : X × Y → Rd. The
quality of the prediction ŷi = f(xi) is measured by a task-specific loss function ` : Y × Y →
R+, where `(yi, ŷi) denotes the cost of predicting ŷi when the correct label is yi. Some examples
of loss functions are the intersection/union criteria used by the PASCAL Visual Object Category
Segmentation Challenge [10], and the BLEU score used to evaluate machine translations [22].

The task-loss is typically non-convex and non-continuous in w. Tsochantaridis et al. [28] proposed
to optimize a regularized surrogate loss function:

min
w

1

2
||w||22 + C

∑
i∈[n]

}i(w) (1)
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where C is a positive multiplier and }i(·) is the structured hinge-loss:

}i(w) = max
y

(
`(yi, y) + wTφ(xi, y)

)
−wTφ(xi, yi). (2)

It can be shown [28] that the hinge-loss is an upper-bound on the task loss, i.e., }i(w) ≥ `(yi, f(xi)).
Moreover, }i(w) is a non-smooth convex function, and can be equivalently expressed with a set of
constraints:

min
w,ξi

1

2
||w||22 + C

∑
i∈[n]

ξi (3a)

s.t. wTφ(xi, yi)−wTφ(xi, y) ≥ `(yi, y)− ξi ∀y ∈ Y \ yi (3b)
ξi ≥ 0 (3c)

This formulation is known as the margin-rescaled n-slack SSVM [28]. Intuitively, we can see that it
minimizes the squared-norm of w subject to constraints that enforce a soft-margin between the score
of the ground-truth yi and the score of all other predictions. The above problem (3) is a Quadratic
Program (QP) with n|Y| constraints, which is typically exponentially large. If an efficient separa-
tion oracle for identifying the most violated constraint is available, then a cutting-plane approach
can be used to solve the QP. A cutting-plane algorithm maintains a working set of constraints and
incrementally adds the most violated constraint to this working set while solving for the optimum
solution under the working set. Tsochantaridis et al. [28] showed that such a procedure converges
in a polynomial number of steps.

3 Multiple-Output Structured-Output Prediction
We now describe our proposed formulation for multiple-output structured-output prediction.

Model. Our model is a generalization of the single-output SSVM. A multiple-output SSVM is a
mapping from the input space X to anM -tuple1 of structured outputs Yi = {ŷ1i , . . . , ŷMi | ŷi ∈ Y},
given by g : X → YM , where g(x) = argmaxY ∈YM WTΦ(x, Y ). Notice that the joint fea-
ture map is now a function of the input and the entire set of predicted structured-outputs, i.e.,
Φ : X × YM → Rd. Without further assumptions, optimizing over the output space |Y|M
would be intractable. We make a mean-field-like simplifying assumption that the set score fac-
tors into independent predictor scores, i.e., Φ(xi, Y ) = [φ1(xi, y

1)T , . . . ,φM (xi, y
M )T ]T . Thus,

g is composed of M single-output predictors: g(x) =
(
f1(x), . . . , fM (x)

)
, where fm(x) =

argmaxy∈Y wT
mφm(x, y). Hence, the multiple-output SSVM is parameterized by an M -tuple of

weight vectors: W = [wT
1 , . . . ,w

T
M ]T .

3.1 Multiple-Output Loss

Let Ŷi = {ŷ1i , . . . , ŷMi } be the set of predicted outputs for input xi, i.e., ŷmi = fm(xi). In the single-
output SSVM, there typically exists a ground-truth output yi for each datapoint, and the quality of
ŷi w.r.t. yi is given by `(yi, ŷi).

How good is a set of outputs? For our multiple-output predictor, we need to define a task-specific
loss function that can measure the quality of any set of predictions Ŷi ∈ YM . Ideally, the quality of
these predictions should be evaluated by the secondary mechanism that uses these predictions. For
instance, in an interactive setting where they are shown to a user, the quality of Ŷi could be measured
by how much it reduces the user-interaction time. In the M-best hypotheses re-ranking scenario, the
accuracy of the top single output after re-ranking could be used as the quality measure for Ŷi. While
multiple options exist, in order to provide a general formulation and to isolate our approach, we
propose the “oracle” or “hindsight” set-loss as a surrogate:

L(Ŷi) = min
ŷi∈Ŷi

`(yi, ŷi) (4)

1Our formulation is described with a nominal ordering of the predictions. However, both the proposed
objective function and optimization algorithm are invariant to permutations of this ordering.
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i.e., the set of predictions Ŷi only pays a loss for the most accurate prediction contained in this set
(e.g., the best segmentation of an image, or the best translation of a sentence). This loss has the
desirable behaviour that predicting a set that contains even a single accurate output is better than
predicting a set that has none. Moreover, only being penalized for the most accurate prediction
allows an ensemble to hedge its bets without having to pay for being too diverse (this is opposite
to the effect that replacing min with max or avg. would have). However, this also makes the set-
loss rather poorly conditioned – if even a single prediction in the ensemble is the ground-truth, the
set-loss is 0, no matter what else is predicted.

Hinge-like Upper-Bound. The set-loss L(Ŷi(W)) is a non-continuous non-convex function of W
and is thus difficult to optimize. If unique ground-truth sets Yi were available, we could set up a
standard hinge-loss approximation:

Hi(W) = max
Y ∈YM

(
L(Y ) + WTΦ(xi, Y )

)
−WTΦ(xi, Yi) (5)

where Φ(xi, Y ) = [φ1(xi, y
1)T , . . . ,φM (xi, y

M )T ]T are stacked joint feature maps.

However, no such natural choice for Yi exists. We propose a hinge-like upper-bound on the set-loss,
that we refer to as min-hinge:

H̃i(W) = min
m∈[M ]

}i(wm), (6)

i.e., we take the min over the hinge-losses (2) corresponding to each of the M predictors. Since
each hinge-loss is an upper-bound on the corresponding task-loss, i.e., }i(wm) ≥ `(yi, f

m(xi)), it
is straightforward to see that the min-hinge is an upper-bound on the set-loss, i.e., H̃i(W) ≥ L(Ŷi).
Notice that min-hinge is a min of convex functions, and thus not guaranteed to be convex.

3.2 Coordinate Descent for Learning Multiple Predictors
We now present our algorithm for learning a multiple-output SSVM by minimizing the regularized
min-hinge loss:

min
W

1

2
||W||22 + C

∑
i∈[n]

H̃i(W) (7)

We begin by rewriting the min-hinge loss in terms of indicator “flag” variables, i.e.,

min
W,{ρi,m}

1

2
||W||22 + C

∑
i∈[n]

∑
m∈[M ]

ρi,m }i(wm) (8a)

s.t.
∑

m∈[M ]

ρi,m = 1 ∀i ∈ [n] (8b)

ρi,m ∈ {0, 1} ∀i ∈ [n], m ∈ [M ] (8c)

where ρi,m is a flag variable that indicates which predictor produces the smallest hinge-loss.

Optimization problem 8 is a mixed-integer quadratic programming problem (MIQP), which is NP-
hard in general. However, we can exploit the structure of the problem via a block-coordinate descent
algorithm where W and {ρi,m} are optimized iteratively:

1. Fix W; Optimize all {ρi,m}.
Given W, the optimization over {ρi,m} reduces to the minimization of∑
i∈[n]

∑
m∈[M ] ρi,m }i(wm) subject to the “pick-one-predictor” constraints (8b,

8c). This decomposes into n independent problems, which simply identify the best
predictor for each datapoint according to the current hinge-losses, i.e.:

ρi,m =

{ 1 if m = argmin
m∈[M ]

}i(wm)

0 else.
(9)

2. Fix {ρi,m}; Optimize W.
Given {ρi,m}, optimization over W decomposes into M independent problems, one for
each predictor, which are equivalent to single-output SSVM learning problems:
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min
W

1

2
||W||22 + C

∑
i∈[n]

∑
m∈[M ]

ρi,m }i(wm) (10a)

= min
W

∑
m∈[M ]

1

2
||wm||22 + C

∑
i∈[n]

ρi,m }i(wm)

 (10b)

=
∑

m∈[M ]

min
wm

1

2
||wm||22 + C

∑
i:ρi,m 6=0

}i(wm)

 (10c)

Thus, each subproblem in 10c can be optimized using using any standard technique for
training SSVMs. We use the 1-slack algorithm of [14].

Convergence. Overall, the block-coordinate descent algorithm above iteratively assigns each data-
point to a particular predictor (Step 1) and then independently trains each predictor with just the
points that were assigned to it (Step 2). This is fairly reminiscent of k-means, where step 1 can be
thought of as the member re-assignment step (or the M-step in EM) and step 2 can be thought of
as the cluster-fitting step (or the E-step in EM). Since the flag variables take on discrete values and
the objective function is non-increasing with iterations, the algorithm is guaranteed to converge in a
finite number of steps.

Generalization. Formulation (8) can be generalized by replacing the “pick-one-predictor” con-
straint with “pick-K-predictors”, i.e.,

∑
m∈[M ] ρi,m = K, where K is a robustness parameter that

allows training data overlap between predictors. The M-step (cluster reassignment) is still simple,
and involves assigning a data-point to the top K best predictors. The E-step is unchanged. Notice that
at K = M , all predictors learn the same mapping. We analyze the effect of K in our experiments.

4 Related Work
At first glance, our work seems related to the multi-label classification literature, where the goal is
to predict multiple labels for each input instance (e.g., text tags for images on Flickr). However, the
motivation and context of our work is fundamentally different. Specifically, in multi-label classifi-
cation there are multiple possible labels for each instance and the goal is to predict as many of them
as possible. On the other hand, in our setting there is a single ground-truth label for each instance
and the learner makes multiple guesses, all of which are evaluated against that single ground-truth.

For the unstructured setting (i.e. when |Y| is polynomial), Dey et al. [9] proposed an algorithm that
learns a multi-class classifier for each “slot” in a M -Best list, and provide a formal regret reduction
from submodular sequence optimization.

To the best of our knowledge, the only other work that explicitly addresses the task of predicting
multiple structured outputs is multi-label structured prediction (MLSP) [19]. This work may be seen
as a technique to output predictions in the power-set of Y (2Y ) with a learning cost comparable to
algorithms for prediction over Y . Most critically, MLSP requires gold-standard sets of labels (one
set for each training example). In contrast, MCL neither needs nor has access to gold-standard sets.
At a high-level, MCL and MLSP are orthogonal approaches, e.g., we could introduce MLSP within
MCL to create an algorithm that predicts multiple (diverse) sets of structured-outputs (e.g., multiple
guesses by the algorithm where each guess is a set of bounding boxes of objects in an image).

A form of min-set-loss has received some attention in the context of ambiguously or incompletely
annotated data. For instance, [4] trains an SSVM for object detection implicitly defining a task-
adapted loss, Lmin(Y, ŷ) = miny∈Y `(y, ŷ). Note that in this case there is a set of ground-truth
labels and the model’s prediction is a single label (evaluated against the closest ground-truth).

Our formulation is also reminiscent of a Latent-SSVM with the indicator flags {ρi,m | m ∈ [M ]}
taking a role similar to latent variables. However, the two play very different roles. Latent variable
models typically maximize or marginalize the model score across the latent variables, while MCL
uses the flag variables as a representation of the oracle loss.

At a high-level, our ideas are also related to ensemble methods [21] like boosting. However, the key
difference is that ensemble methods attempt to combine outputs from multiple weak predictors to
ultimately make a single prediction. We are interested in making multiple predictions which will all
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(c) 3.44% (d) 40.79% (e) 14.78% (f) 26.98% (g) 53.78% (h) 19.54%

(a) Image (b) GT (c) 16.59% (d) 2.12% (e) 11.54% (f) 11.34% (g) 77.91% (h) 65.34%

Figure 1: Each row shows the: (a) input image (b) ground-truth segmentation and (c-h) the set of predictions
produced by MCL (M = 6). Red border indicates the most accurate segmentation (i.e., lowest error). We can
see that the predictors produce different plausible foreground hypotheses, e.g., predictor (g) thinks foliage-like
things are foreground.

be handed to an expert or secondary mechanism that has access to more complex (e.g., higher-order)
features.

5 Experiments
Setup. We tested algorithm MCL on two problems: i) foreground-background segmentation in
image collections and ii) protein side-chain prediction. In both problems making a single perfect
prediction is difficult due to inherent ambiguity in the tasks. Moreover, inference-time computing
limitations force us to learn restricted models (e.g., pairwise attractive CRFs) that may never be able
to capture the true solution with a single prediction. The goal of our experiments is to study how
much predicting a set of plausible hypotheses helps. Our experiments will show that MCL is able
to produce sets of hypotheses which contain more accurate predictions than other algorithms and
baselines aimed at producing multiple hypotheses.

5.1 Foreground-Background Segmentation
Dataset. We used the co-segmentation dataset, iCoseg, of Batra et al. [2]. iCoseg consists of 37
groups of related images mimicking typical consumer photograph collections. Each group may be
thought of as an “event” (e.g., images from a baseball game, a safari, etc.). The dataset provides
pixel-level ground-truth foreground-background segmentations for each image. We used 9 difficult
groups from iCoseg containing 166 images in total. These images were then split into train, valida-
tion and test sets of roughly equal size. See Fig. 1, 2 for some example images and segmentations.

Model and Features. The segmentation task is modeled as a binary pairwise MRF where each
node corresponds to a superpixel [1] in the image. We extracted 12-dim color features at each su-
perpixel (mean RGB; mean HSV; 5 bin Hue histogram; Hue histogram entropy). The edge features,
computed for each pair of adjacent superpixels, correspond to a standard Potts model and a contrast
sensitive Potts model. The weights at each edge were constrained to be positive so that the resulting
supermodular potentials could be maximized via graph-cuts [6, 17].

Baselines and Evaluation. We compare our algorithm against three alternatives for producing
multiple predictions: i) Single SSVM + M -Best MAP [29], ii) Single SSVM + Diverse M -Best
MAP [3] and iii) Clustering + Multiple SSVMs.

For the first two baselines, we used all training images to learn a single SSVM and then produced
multiple segmentations viaM -Best MAP and DiverseM -Best MAP [3]. TheM -Best MAP baseline
was implemented via the BMMF algorithm [29] using dynamic graph-cuts [15] for computing max-
marginals efficiently. For the Diverse M -Best MAP baseline we implemented the DIVMBEST
algorithm of Batra et al. [3] using dynamic graph-cuts. The third baseline, Clustering + Multiple
SSVM (C-SSVM), involves first clustering the training images into M clusters and then training M
SSVMs independently on each cluster. For clustering, we used k-means with `2 distance on color
features (same as above) computed on foreground pixels.

For each algorithm we varied the number of predictors M ∈ {1, 2, . . . , 6} and tuned the regulariza-
tion parameter C on validation. Since MCL involves non-convex optimization, a good initialization
is important. We used the output of k-means clustering as the initial assignment of images to predic-
tors, so MCL’s first coordinate descent iteration produces the same results as C-SSVM. The task-loss
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(a) 45.91% (b) 76.84% (c) 8.30% (d) 40.55% (e) 30.01% (f) 29.16% (g) 19.54%

(a) 37.00% (b) 36.06% (c) 9.14% (d) 28.54% (e) 17.43% (f) 26.91% (g) 11.09%

(a) 14.70% (b) 1.17% (c) 5.69% (d) 5.86% (e) 1.18% (f) 13.32% (g) 3.44%

Figure 2: In each column: first row shows input images; second shows ground-truth; third shows segmentation
produced by the single SSVM baseline; and the last two rows show the best MCL predictions (M = 6) at the
end of the first and last coordinate descent iteration.

in this experiment (`) is the percentage of incorrectly labeled pixels, and the evaluation metric is the
set-loss, L = minŷi∈Ŷi

`(yi, ŷi), i.e., the pixel error of the best segmentation among all predictions.

Comparison against Baselines. Fig. 3a show the performance of various algorithms as a function of
the number of predictors M . We observed that M -Best MAP produces nearly identical predictions
and thus the error drops negligibly as M is increased. On the other hand, the diverse M -Best
predictions output by DIVMBEST [3] lead to a substantial drop in the set-loss. MCL outperforms
both DIVMBEST and C-SSVM, confirming our hypothesis that it is beneficial to learn a collection
of predictors, rather than learning a single predictor and making diverse predictions from it.

Behaviour of Coordinate Descent. Fig. 3b shows the MCL objective and train/test errors as a
function of the coordinate descent steps. We verify that the objective function is improved at every
iteration and notice a nice correlation between the objective and the train/test errors.

Effect of C. Fig. 3c compares performance for different values of regularization parameter C. We
observe a fairly stable trend with MCL consistently outperforming baselines.

Effect of K. Fig. 3d shows the performance of MCL as robustness parameter K is increased from 1
to M . We observe a monotonic reduction in error as K decreases, which suggests there is a natural
clustering of the data and thus learning a single SSVM is detrimental.

Qualitative Results. Fig. 1 shows example images, ground-truth segmentations, and the predictions
made by M = 6 predictors. We observe that the M hypotheses are both diverse and plausible. The
evolution of the best prediction with coordinate descent iterations can be seen in Fig. 2.

5.2 Protein Side-Chain Prediction
Model and Dataset. Given a protein backbone structure, the task here is to predict the amino
acid side-chain configurations. This problem has been traditionally formulated as a pairwise MRF
with node labels corresponding to (discretized) side-chain configurations (rotamers). These models
include pairwise interactions between nearby side-chains, and between side-chains and backbone.
We use the dataset of [7] which consists of 276 proteins (up to 700 residues long) split into train and
test sets of sizes 55 and 221 respectively.2 The energy function is defined as a weighted sum of eight

2Dataset available from: http://cyanover.fhcrc.org/recomb-2007/
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Figure 3: Experiments on foreground-background segmentation.
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Figure 4: Experiments on protein side-chain prediction.

known energy terms where the weights are to be learned. We used TRW-S [16] (early iterations)
and ILP (CPLEX [13]) for inference.

Baselines and Evaluation. For this application there is no natural analogue to the C-SSVM baseline
and thus we used a boosting-like baseline where we first train an SSVM on the entire training data;
use the training instances with high error to train a second SSVM, and so on. For comparison,
we also report results from the CRF and HCRF models proposed in [7]. Following [7], we report
average error rates for the first two angles (χ1 and χ2) on all test proteins.

Results. Fig. 4 shows the results. Overall, we observe behavior similar to the previous set of exper-
iments. Fig. 4a confirms that multiple predictors are beneficial, and that MCL is able to outperform
the boosting-like baseline. Fig. 4b shows the progress of the MCL objective and test loss with coor-
dinate descent iterations; we again observe a positive correlation between the objective and the loss.
Fig. 4c shows that MCL outperforms baselines across a range of values of C.

6 Discussion and Conclusions
We presented an algorithm for producing a set of structured outputs and argued that in a number
of problems it is beneficial to generate a set of plausible and diverse hypotheses. Typically, this
is accomplished by learning a single-output model and then producing M -best hypotheses from it.
This causes a disparity between the way the model is trained (to produce a single output) and the
way it is used (to produce multiple outputs). Our proposed algorithm (MCL) provides a principled
way to directly optimize the multiple prediction min-set-loss.

There are a number of directions to extend this work. While we evaluated performance of all algo-
rithms in terms of oracle set-loss, it would be interesting to measure the impact of MCL and other
baselines on user experience or final stage performance in cascaded algorithms.

Further, our model assumes a modular scoring function S(Y ) = WTΦ(x, Y ) =∑
m∈[M ] w

T
mφm(x, ym), i.e., the score of a set is the sum of the scores of its members. In a number

of situations, the score S(Y ) might be a submodular function. Such scoring functions often arise
when we want the model to explicitly reward diverse subsets. We plan to make connections with
greedy-algorithms for submodular maximization for such cases.
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