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Abstract

Conditional Markov Chains (also known as Linear-Chain Conditional Random
Fields in the literature) are a versatile class of discriminative models for the dis-
tribution of a sequence of hidden states conditional on a sequence of observable
variables. Large-sample properties of Conditional Markov Chains have been first
studied in [1]. The paper extends this work in two directions: first, mixing prop-
erties of models with unbounded feature functions are being established; second,
necessary conditions for model identifiability and the uniqueness of maximum
likelihood estimates are being given.

1 Introduction

Conditional Random Fields (CRF) are a widely popular class of discriminative models for the dis-
tribution of a set of hidden states conditional on a set of observable variables. The fundamental
assumption is that the hidden states, conditional on the observations, form a Markov random field
[2,3]. Of special importance, particularly for the modeling of sequential data, is the case where the
underlying undirected graphical model forms a simple linear chain. In the literature, this subclass
of models is often referred to as Linear-Chain Conditional Random Fields. This paper adopts the
terminology of [4] and refers to such models as Conditional Markov Chains (CMC).

Large-sample properties of CRFs and CMCs have been first studied in [1] and [5]. [1] defines CMCs
of infinite length and studies ergodic properties of the joint sequences of observations and hidden
states. The analysis relies on fundamental results from the theory of weak ergodicity [6]. The
exposition is restricted to CMCs with bounded feature functions which precludes the application,
e.g., to models with linear features and Gaussian observations. [5] considers weak consistency
and central limit theorems for models with a more general structure. Ergodicity and mixing of the
models is assumed, but no explicit conditions on the feature functions or on the distribution of the
observations are given. An analysis of model identifiability in the case of finite sequences can be
found in [7].

The present paper studies mixing properties of Conditional Markov Chains with unbounded feature
functions. The results are fundamental for analyzing the consistency of Maximum Likelihood es-
timates and establishing Central Limit Theorems (which are very useful for constructing statistical
hypothesis tests, e.g., for model misspecificiations and the signficance of features). The paper is or-
ganized as follows: Sec. 2 reviews the definition of infinite CMCs and some of their basic properties.
In Sec. 3 the ergodicity results from [1] are extended to models with unbounded feature functions.
Sec. 4 establishes various mixing properties. A key result is that, in order to allow for unbounded
feature functions, the observations need to follow a distribution such that Hoeffding-type concentra-
tion inequalities can be established. Furthermore, the mixing rates depend on the tail behaviour of
the distribution. In Sec. 5 the mixture properties are used to analyze model identifiability and con-
sistency of the Maximum Likelihood estimates. Sec. 6 concludes with an outlook on open problems
for future research.



2 Conditional Markov Chains

Preliminaries. We use N, Z and R to denote the sets of natural numbers, integers and real numbers,
respectively. Let X’ be a metric space with the Borel sigma-field .4, and ) be a finite set. Further-
more, consider a probability space (2, F,P) and let X = (X¢)ez, Y = (Y;):ez be sequences of
measurable mappings from € into X’ and ), respectively. Here,

e X is an infinite sequence of observations ranging in the domain X,

e Y is an aligned sequence of hidden states taking values in the finite set ).

For now, the distribution of X is arbitrary. Next we define Conditional Markov Chains, which
parameterize the conditional distribution of Y given X.

Definition. Consider a vector f of real-valued functions f : X x ) x ) — R, called the feature
functions. Throughout this paper, we assume that the following condition is satisfied:

(A1) All feature functions are finite: |f(z,4,5)| < coforallz € X and¢,j € V.

Associated with the feature functions is a vector A of real-valued model-weights. The key in the
definition of Conditional Markov Chains is the matrix M (z) with the (7, j)-th component

m(m,z’,j) = exp()\Tf(w,i,j)).

In terms of statistical physics, m(x, i, j) measures the potential of the transition between the hidden
states ¢ and j from time ¢ —1 to ¢, given the observation x at time ¢. Next, for a sequence = (1 )iez
in X and time points s,t € Z with s < ¢, introduce the vectors

al(x) = M) .. Mz)"(1,1,...,1)7T,
Bi(x) = M(zeq)...M(z)(1,1,..., D)7,
and write o (z,i) and B¢(x, j) to denote the ith respectively jth components. Intuitively, o, (x, )
measures the potential of the hidden state ¢ at time ¢ given the observations x, ..., x; and assuming

that at time s — 1 all hidden states have potential equal to 1. Similarly, 8%(z, j) is the potential of
7 at time s assuming equal potential of all hidden states at time ¢. Now lett € Z and k € N, and

define the distribution of the labels Y3, ..., Y;4 conditional on X,
k
PY; =yt s Yigh = Ygr | X) = Hm(Xt+i7 Ytrio1, Yi+i)
i=1

li aifn(Xayt)ﬂfi]]:Jrn(XaytJrk)
x nl—{r;o t T at+k+n
o, (X)TB, (X)

Note that, under assumption (A1), the limit on the right hand side is well-defined (see Theorem 2 in
[1]). Furthermore, the family of all marginal distributions obtained this way satisfies the consistency
conditions of Kolmogorov’s Extension Theorem. Hence we obtain a unique distribution for Y
conditional on X parameterized by the feature functions f and the model weights A. Intuitively, the
distribution is obtained by conditioning the marginal distributions of Y on the finite observational
context (Xy_,,, ..., X¢1k1n), and then letting the size of the context going to infinity.

Basic properties. We introduce the following notation: For any matrix P = (p;;) with strictly
positive entries let ¢(P) denote the mixing coefficient

$(P) = min DELIL
i.5,k,l DjkDil

Note that 0 < ¢(P) < 1. This coefficient will play a key role in the analysis of mixing properties.
The following proposition summarizes fundamental properties of the distribution of Y conditional
on X, which directly follow from the above definition (also see Corollary 1 in [1]).



Proposition 1. Suppose that condition (A1) holds true. Then'Y conditional on X forms a time-
inhomogeneous Markov chain. Moreover, if X is strictly stationary, then the joint distribution
of the aligned sequences (X,Y) is strictly stationary. The conditional transition probabilities
Pix,i,j) =P(Y; =j|Yi—1 =i, X =) of Y given X = x have the following form:
- oy o Bl g)
Pi(x,1, = mlxzy,1, lim ————.

t( ) j) ( ts j) nﬁooﬁtn_l(w,l)

In particular, a lower bound for Py(x, i, j) is given by
m(l‘t, Z.v ]) (minkey m(xt-i-l) ia k))

V| (maxpey m(ze, j, k) (maxp, ey m(zet1, k, 1)
and the matrix of transition probabilities P(x), with the (i, j)-th component given by P(x,1, j),

satisfies (P (x)) = o(M ()

Pt(x7i7j) >

3 Ergodicity

In this section we establish conditions under which the aligned sequences (X,Y") are jointly er-
godic. Let us first recall the definition of ergodicity of X (see [8]): By X we denote the space of
sequences & = (2¢)tez in X, and by A the corresponding product o-field. Consider the probability
measure Px on (X, .A) defined by Px(A) := P(X € A) for A € A. Finally, let 7 denote the
operator on X’ which shifts sequences one position to the left: 7& = (2441)tez. Then ergodicity of
X is formally defined as follows:

(A2) X is ergodic, that is, Px(A) = Px (7 1A) forevery A € A, and Px(A) € {0,1} for
every set A € A satisfying A = 771 A,

As a particular consequence of the invariance Px (A) = Px (771 A), we obtain that X is strictly
stationary. Now we are able to formulate the key result of this section, which will be of central
importance in the later analysis. For simplicity, we state it for functions depending on the values
of X and Y only at time ¢. The generalization of the statement is straight-forward. In our later
analysis, we will use the theorem to show that the time average of feature functions f(X;,Y;_1,Y})
converges to the expected value E[f(X;, Yi—1,Y:)].

Theorem 1. Suppose that conditions (A1) and (A2) hold, and g : X x Y — R is a function which
satisfies E[|g(X¢, Y:)|] < co. Then

1 n
nan;OE;g(Xt,K) = E[g(X:,Y;)] P-almost surely.

Proof. Consider the sequence Z = (Z;)en given by Z; := (771X ,Y}), where we write 7/ to
denote the (¢t — 1)th iterate of 7. Note that Z; represents the hidden state at time ¢ together with the
entire aligned sequence of observations 7¢~! X . In the literature, such models are known as Markov
sequences in random environments (see [9]). The key step in the proof is to show that Z is ergodic.
Then, for any function & : X x Y — R with E[|[h(Z;)|] < oo, the time average 1 > | h(Z;)
converges to the expected value E[h(Z;)] P-almost surely. Applying this result to the composition
of the function g and the projection of (7~ X, Y;) onto (X;, Y;) completes the proof. The details
of the proof that Z is ergodic can be found in an extended version of this paper, which is included
in the supplementary material. O

4 Mixing properties

In this section we are going to study mixing properties of the aligned sequences (X, Y"). To establish
the results, we will assume that the distribution of the observations X satisfies conditions under
which certain concentration inequalities hold true:

(A3) Let A C A be a measurable set, with p := P(X; € A) and S, (x) := L >0 1(z; € A)

T on

for x € X. Then there exists a constant  such that, forall n € N and € > 0,
P(|Su(X) —p| >€) < exp(—vén).



If X is a sequence of independent random variables, then (A3) follows by Hoeffding’s inequality. In
the dependent case, concentration inequalities of this type can be obtained by imposing Martingale
or mixing conditions on X (see [12,13]). Furthermore, we will make the following assumption,
which relates the feature functions to the tail behaviour of the distribution of X

(A4) Let h : [0,00) — [0,00) be a differentiable decreasing function with h(z) = O(z~ (1))
for some x > 0. Furthermore, let
F) = Y \'f(w4.k)
J,k€Y
for x € X. Then E[h(F(X;))~!] and E[h’(F(X;)) ] both exist and are finite.

The following theorem establishes conditions under which the expected conditional covariances of
square-integrable functions are summable. The result is obtained by studying ergodic properties of
the transition probability matrices.

Theorem 2. Suppose that conditions (A1) - (A3) hold true, and g : X x Y — R is a function with
finite second moment, E[|g(X;,Y;)|?] < oo. Let v 1(X) = Cov(g(Xt, Y1), 9(Xisk, Yisr) | X)
denote the covariance of g(X+,Y:) and g(Xiik, Yiyr) conditional on X. Then, for every t € Z:

Tim SUEa(X)] < oo
k=1

Proof. Without loss of generality we may assume that g can be written as g(x,y) = g(z)1(y = 7).
Hence, using Holder’s inequality, we obtain

Ellven(X)l] < E[lg(X) ] E[lg(Xesr) | E[[Cov(1(Y; = i), 1(Yigr = i) | X)|].

According to the assumptions, we have E[|g(X})|] = E[|g(X¢+x)|] < 00, so we only need to bound
the expectation of the conditional covariance. Note that

Cov(1(Y; = 1), 1(Yesr = 1) | X) = P(Y; = i, Vi g = i| X) — P(Y; =i | X) P(Yyy = 1| X).
Recall the definition of ¢(P) before Corollary 1. Using probabilistic arguments, it is not difficult to
show that the ratio of P(Y; = ¢, Yy = i| X) to P(Y; = i| X) P(Yi4x = @] X) is greater than or
equal to ¢(Py1(X) ... Pyyi (X)), where Pyy1(X), ..., Py (X) denote the transition matrices
introduced in Proposition 1. Hence,

[Cov(L(Y: = i), 1(Yerx = )| X)| < P(Yi = i, Yiup = i| X)[L = $(Prs1(X)... Pepn(X))).
Now, using results from the theory of weak ergodicity (see Chapter 3 in [6]), we can establish

k

1= Vo(Pr(@) ... Pryk(x)  _ 11 1— /¢(Pryj(x))

L+ /(P () ... Prok(®)) — o 1+ V/0(Pryj())
for all z € X. Using Bernoulli’s inequality and the fact ¢( Py ;(x)) = M (x.4;) established in
Proposition 1, we obtain (P41 (x) ... Pryp(x)) > 1—4 H?Zl [1—¢(M (x44;))]. Consequently,

k
[Cov(1(Ye = 4), 1(Yigr =) [ X)| < 4 H[l — (M (Xi5))]-

With the notation introduced in assumption (A3), let § > 0 and A C X with p > 0 be such that
x € A implies ¢(M (z)) > ¢. Furthermore, let € be a constant with 0 < € < p. In order to
bound |Cov(1(Y; = 4),1(Yiyr = i) | X)| for a given k& € N, we distinguish two different cases: If
|Sk(X) — p| < €, then we obtain

k
4] (- o(M(Xesy))) < 4(1—6)HF70.

If |Sk(X) — p| > €, then we use the trivial upper bound 1. According to assumption (A3), the
probability of the latter event is bounded by an exponential, and hence

E[[Cov(1(Y; =), 1(Yix =) | X)|] < 4(1—06)* P79 + exp(—v €%k).

Obviously, the sum of all these expectations is finite, which completes the proof. O



The next theorem bounds the difference between the distribution of Y conditional on X and finite
approximations of it. Introduce the following notation: For ¢,k > 0O with ¢t + k < n let

P(Ozn)(y{t = yty.-.,Y%Jrk = Yt+k |X = w)
2

= Hm(x Y 1, Yeri) lim aé(m’yt)6?+k($7yt+k)
= s Yetim1s Ytsi
11 iy i—1, [Z S srgn a(t)(w)Tﬂ?(LE)

Accordingly, write E(%") for expectations taken with respect to P(%"). As emphasized by the su-
perscrips, these quantities can be regarded as marginal distributions of Y conditional on the ob-
servations at times ¢ = 0,1,...,n. To simplify notation, the following theorem is stated for
1-dimensional conditional marginal distributions, however, the extension to the general case is
straight-forward.

Theorem 3. Suppose that conditions (A1) - (A4) hold true. Then the limit
PO) (Y, =i | X) := lim PO (Y, =i| X)
n—oo

is well-defined P-almost surely. Moreover; there exists a measurable function C(x) of x € X with
finite expectation, E[|C(X)|] < oo, and a function h(z) satisfying the conditions in (A4), such that

‘P(O:oo)(yt —i|X)— p(0:n) Y, =i X)‘ < C(r'X)h(n—t).

Proof. Define G, (x) := M (x¢41)... M (x,) and write g,(x,,7) for the (¢, j)-th component
of G,,(x). Note that B} (z) = G, (x)(1,1,...,1)T. According to Lemma 3.4 in [6], there exist
numbers r;;(x) such that

li gn(wyi,k)

im , rij(x)
n—oo g (iL‘], k;) J

for all k € ). Consequently, the ratio of 5} (, %) to 87*(x, j) converges to r;;(x), and hence

i 0@ 1) B (@,0) 1

n=oe o (x)" By () q;(x)"ri(z)
where we use the notation g,(z) = af(x)/af(x,i) and r;(x) denotes the vector with the kth
component 7; (). This proves the first part of the theorem. In order to prove the second part, note
that |z — y| < |[#7! — y~!| forany z,y € (0, 1], and hence

PO (Y, =i | X) = POM(V;, =i | X)| <

qi(X)TT‘i(X) _ aé(X)T/@?(X) ‘

af (X, 4) B (X, )
To bound the latter expression, introduce the vectors = (x) and 7' () with the kth components

rii(@) = min (g"(wkl)> and  77(z) = max (gn(f”’”))
S

gn(x,1,1) 1€y \ gn(x,i,l)

7 7

It is easy to see that g, (z)Tr?(z) < q;(z)Tr;(x) < q,(x)T7!(x), and
(

Hence,

o) (X)" B (X)
ap(X,1) B (X, 1)
Due to space limitations, we only give a sketch of the proof how the latter quantity can be bounded.
For details, see the extended version of this paper in the supplementary material. The first step is
to show the existence of a function C (x) with E[|C(X)|] < oo such that [r},(X) — 7, (X)| <

C1(7tX) (1 — ¢)"~* for some ¢ > 0. With the function F'(z) introduced in assumption (A4), we
define Cy(z) := exp(F(x)) for x € X and arrive at

POy, = i| X) —PO™(Y, =i| X)| < [VPCL(r'X)Ca(Xy) (1 -

7;(X)"ri(X) -

?

|:(X)" (7 (X) — o} (X)].



The next step is to construct a function C3(x) satisfying the following two conditions: (i) If
Co(x)(1 — O)F > 1, then C3(z)h(k) > 1. (ii) If Ca(z)(1 — ()* < 1, then Csz(z)h(k) >
Co(x) (1 — ¢)*. Since the difference between two probabilities cannot exceed 1, we obtain

POy, =i | X) ~ PO (Y, =i | X)| < [VPCi(r'X) Ca(X) hin —1).
The last step is to show that E[|C5(X})|] < oco.

O

The following result will play a key role in the later analysis of empirical likelihood functions.

Theorem 4. Suppose that conditions (A1) - (A4) hold, and the function g : X x Y — R satisfies
E[lg(X,Y:)[] < oc. Then

HILH;OnEE“”) 9(X0Y)|X] = E[g(X,Y)] Palmost surely.

Proof. Without loss of generality we may assume that g can be written as g(z,y) = g(z)1(y = 7).
Using the result from Theorem 3, we obtain

S EOM (X, ¥ X] = STEC® (X, V) | X]| < D 1g(X0)| IO X)] h(n — 1),
t=1 t=1 t=1
where h(z) is a function satisfying the conditions in assumption (A4). See the extended version of
this paper in the supplementary material for more details. Using the facts that X is ergodic and the
expectations of |g(X;)| and |C(7!X)| are finite, we obtain

nlggon’z;Em" 9(X, ) | X] — Z]E (0:00) Xt,Yt)\X}‘ _—
By similar arguments to the proof of the first part of Theorem 3 one can show that the difference
|E(O:)[g(X,Y:) | X] — E[g(X¢,Y;) | X]| tends to 0 as t — co. Thus,

n—o00 N

lim 421&0“ 90X YD) X] = D Elg(X,,Y) | X)| = 0,
t=1

Now, noting that Eg (Xt7 Y}) | X] = E[g(Xo,Y) | 7t X] for every t, the theorem follows by the
ergodicity of X. O

5 Maximum Likelihood learning and model identifiability

In this section we apply the previous results to analyze asymptotic properties of the empirical
likelihood function. The setting is the following: Suppose that we observe finite subsequences
X, = Xo,...,Xn)and Y,, = (Yp,...,Y,) of X and Y, where the distribution of Y condi-
tional on X follows a conditional Markov chain with fixed feature functions f and unknown model
weights .. We assume that A, lies in some parameter space ®, the structure of which will be-
come important later. To emphasize the role of the model weights, we will use subscripts, e.g.,
Py and Ej, to denote the conditional distributions. Our goal is to identify the unknown model
weights from the finite samples, X ,, and Y ,,. In order to do so, introduce the shorthand notation

fxn,y,) = Z?:l f(ze, y1-1,y:) for &, = (x0,...,2,) and y,, = (yo,...,yn). Consider the
normalized conditional likelihood,

L) = C(NHXLY) g Y e (W F(X0y,)).
y, €Y+l
Note that, in the context of finite Conditional Markov Chains, £,,(\) is the exact likelihood of Y,
conditional on X ,,. The Maximum Likelihood estimate of A, is given by

An = argmaxLy,(N).
Ae®
If £,,(\) is strictly concave, then the arg max is unique and can be found using gradient-based
search (see [14]). It is easy to see that £, () is strictly concave if and only if |Y| > 1, and there
exists a sequence y,, such that at least one component of f(X,,,v,,) is non-zero. In the following,
we study strong consistency of the Maximum Likelihood estimates, a property which is of central
importance in large sample theory (see [15]). As we will see, a key problem is the identifiability and
uniqueness of the model weights.



5.1 Asymptotic properties of the likelihood function
In addition to the conditions (A1)-(A4) stated earlier, we will make the following assumptions:

(Xt7Y'tflv}/;f)|2] < 0.

(A5) The feature functions have finite second moments: Ey_ |

(A6) The parameter space © is compact.

The next theorem establishes asymptotic properties of the likelihood function £,,(\).
Theorem 5. Suppose that conditions (A1)-(A6) are satisfied. Then the following holds true:

(i) There exists a function L(N) such that lim,,_, oo L, (A) = L(A) Py, -almost surely for
every X € ©. Moreover, the convergence of Ly (X) to L(X) is uniform on ©, that is,
lim, o0 SUPxc@ | Ln(A) — L(X)| = 0 Px_-almost surely.

(ii) The gradients satisfy lim, . VLo(A) = Ex.[f(Xs, Yio1,Y3)] — Ex[f(Xe, Yie1,Yy)]
P, -almost surely for every A € ©.

(iii) If the limit of the Hessian V?L,,(X) is finite and non-singular, then the function L(\) is
strictly concave on ©. As a consequence, the Maximum Likelihood estimates are strongly
consistent:

lim A, = A, Py, -almost surely.
n—roo

Proof. The statements are obtained analogously to Lemma 4-6 and Theorem 4 in [1], using the
auxiliary results for Conditional Markov Chains with unbounded feature functions established in
Theorem 1, Theorem 2, and Theorem 4. O

Next, we study the asymptotic behaviour of the Hessian V2L£,,(X). In order to compute the dervia-
tives, introduce the vectors A1, ..., A, with A; = A for¢t = 1,...,n. This allows us to write
AN F(X,,Y,) = S0 A £(X4,Yio1,Y;). Now, regard the argument X of the likelihood func-
tion as a stacked vector (Aq,..., A, ). Same as in [1], this gives us the expressions

82
aAtaAtJrk
(0:m) (0:n)

where Covy " is the covariance with respect to the measure [Py
Using these expressions, the Hessian of £,,(A) can be written as

1 n
Ln(A) = CO (0 )[f(Xt,YtA,Yt), F(Xetns Yerno1, Yegn)" | X]
introduced before Theorem 3.

n—1n—=k

5 (P
VL) = (ZaA ol £al Zzaxtmm ”()‘))'

k=1 t=1

The following theorem establishes an expression for the limit of V2L, (A). It differs from the
expression given in Lemma 7 of [1], which is incorrect.

Theorem 6. Suppose that conditions (A1) - (AS) hold. Then

n— oo

lim V2£,(A) = - ('yA(O) + 22’7)\(/6)) PPy, -almost surely
k=1

where ya(k) = E[Cova(f(X:,Yi—1,Yy), f(Xiyr, Yeirr—1, Yiix)| X)] is the expectation of the
conditional covariance (with respect to Px) between f(X;,Y;—1,Y:) and f( Xty Yerh—1, Yetk)
given X. In particular; the limit of V2L, () is finite.

Proof. The key step is to show the existence of a positive measurable function Uy (k, «) such that

n—1n—k n—1

nlirﬁzz‘a)\taxw "(A)‘ = nllr&];E[U*(k7X)]

k=1 t=1



with the limit on the right hand side being finite. Then the rest of the proof is straight-forward:
Theorem 4 shows that, for fixed k£ > 0,
n—k

82
lim —L,(A) = k P -almost surely.
B2 noar, N = m®) P g
Hence, in order to establish the theorem, it suffices to show that
n—1 n—k 82
lim 3 palk) = > LaN)| < e
et =1 0N

for all e > 0. Now let € > 0 be fixed. According to Theorem 2 we have Y -, |va(k)| < cc. Hence
we can find a finite N such that

n—1 n—1
lim Y k)] + lim Y E[UAKX)] < e
k=N k=N
On the other hand, Theorem 4 shows that
N-1 n—k (92
lim 37 k) = Y L] = 0.
n_m; (k) ;6&6)\?% n(A)
For details on how to construct Ux (k, ), see the extended version of this paper. O

5.2 Model identifiability

Let us conclude the analysis by investigating conditions under which the limit of the Hessian
V2L, () is non-singular. Note that V2L, () is negative definite for every n, so also the limit
is negative definite, but not necessarily strictly negative definite. Using the result in Theorem 6, we
can establish the following statement:

Corollary 1. Suppose that assumptions (A1)-(AS5) hold true. Then the following conditions are
necessary for the limit of V*L,,(\) to be non-singular:

(i) For each feature function f(x,i,j), there exists a set A C X with P(X; € A) > 0 such
that, for every x € A, we can find i, j, k,1 € Y with f(x,i,5) # f(x,k,1).

(ii) There does not exist a non-zero vector X and a subset A C X with P(X; € A) = 1 such
that XT f (x4, ) is constant for all x € X and i,j € Y.

Condition (¢) essentially says: features f(x,4,j) must not be constant in ¢ and j. Condition (i7)
says that features must not be expressible as linear combinations of each other. Clearly, features
violating condition (¢) can be assigned arbitrary model weights without any effect on the conditional
distributions. If condition (¢7) is violated, then there are infinitely many ways for parameterizing the
same model. In practice, some authors have found positive effects of including redundant features
(see, e.g., [16]), however, usually in the context of a learning objective with an additional penalizer.

6 Conclusions

We have established ergodicity and various mixing properties of Conditional Markov Chains with
unbounded feature functions. The main insight is that similar results to the setting with bounded
feature functions can be obtained, however, under additional assumptions on the distribution of the
observations. In particular, the proof of Theorem 2 has shown that the sequence of observations
needs to satisfy conditions under which Hoeffding-type concentration inequalities can be obtained.
The proof of Theorem 3 has reveiled an interesting interplay between mixing rates, feature func-
tions, and the tail behaviour of the distribution of observations. By applying the mixing proper-
ties to the empirical likelihood functions we have obtained necessary conditions for the Maximum
Likelihood estimates to be strongly consistent. We see a couple of interesting problems for future
research: establishing Central Limit Theorems for Conditional Markov Chains; deriving bounds for
the asymptotic variance of Maximum Likelihood estimates; constructing tests for the significance
of features; generalizing the estimation theory to an infinite number of features; finally, finding
sufficient conditions for the model identifiability.
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