
Approximating Concavely Parameterized
Optimization Problems

Joachim Giesen
Friedrich-Schiller-Universität Jena

Germany
joachim.giesen@uni-jena.de
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Abstract

We consider an abstract class of optimization problems that are parameterized
concavely in a single parameter, and show that the solution path along the param-
eter can always be approximated with accuracy ε > 0 by a set of sizeO(1/

√
ε). A

lower bound of size Ω(1/
√
ε) shows that the upper bound is tight up to a constant

factor. We also devise an algorithm that calls a step-size oracle and computes an
approximate path of size O(1/

√
ε). Finally, we provide an implementation of the

oracle for soft-margin support vector machines, and a parameterized semi-definite
program for matrix completion.

1 Introduction

Problem description. Let D be a set, I ⊆ R an interval, and f : I ×D → R such that

(1) f(t, ·) is bounded from below for every t ∈ I , and

(2) f(·, x) is concave for every x ∈ D.

We study the parameterized optimization problem h(t) = minx∈D f(t, x).

A solution x∗t ∈ D is called optimal at parameter value t if f(t, x∗t ) = h(t), and x ∈ D is called
an ε-approximation at t if ε(t, x) := f(t, x) − h(t) ≤ ε. Of course it holds ε(t, x∗t ) = 0. A subset
P ⊆ D is called an ε-path if P contains an ε-approximation for every t ∈ I . The size of a smallest
ε-approximation path is called the ε-path complexity of the parameterized optimization problem.

The aim of this paper is to derive upper and lower bounds on the path complexity, and to provide
efficient algorithms to compute ε-paths.

Motivation. The rather abstract problem from above is motivated by regularized optimization
problems that are abundant in machine learning, i.e., by problems of the form

min
x∈D

f(t, x) := r(x) + t · l(x),

where r(x) is a regularization- and l(x) a loss term. The parameter t controls the trade-off between
regularization and loss. Note that here f(·, x) is always linear and hence concave in the parameter t.
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Previous work. Due to the widespread use of regularized optimization methods in machine learn-
ing regularization path following algorithms have become an active area of research. Initially, exact
path tracking methods have been developed for many machine learning problems [16, 18, 3, 9]
starting with the algorithm for SVMs by Hastie et al. [10]. Exact tracking algorithms tend to be
slow and numerically unstable as they need to invert large matrices. Also, the exact regularization
path can be exponentially large in the input size [5, 14]. Approximation algorithms can overcome
these problems [4]. Approximation path algorithms with approximation guarantees have been de-
veloped for SVMs with square loss [6], the LASSO [14], and matrix completion and factorization
problems [8, 7].

Contributions. We provide a structural upper bound in O(1/
√
ε) for the ε-path complexity for

the abstract problem class described above. We show that this bound is tight up to a multiplicative
constant by constructing a lower bound in Ω(1/

√
ε). Finally, we devise a generic algorithm to com-

pute ε-paths that calls a problem specific oracle providing a step-size certificate. If such a certificate
exists, then the algorithm computes a path of complexity in O(1/

√
ε). Finally, we demonstrate the

implementation of the oracle for standard SVMs and a matrix completion problem. Resulting in the
first algorithms for both problems that compute ε-paths of complexity in O

(
1/
√
ε
)
. Previously, no

approximation path algorithms have been known for standard SVMs but only a heuristic [12] and an
approximation algorithm for square loss SVMs [6] with complexity in O(1/ε). The best approxi-
mation path algorithm for matrix completion also has complexity in O(1/ε). To our knowledge, the
only known approximation path algorithm with complexity in O

(
1/
√
ε
)

is [14] for the LASSO.

2 Upper Bound

Here we show that any problem that fits the problem definition from the introduction for a compact
interval I = [a, b] has an ε-path with complexity in O(1/

√
ε).

Let (a, b) be the interior of [a, b] and let g : (a, b) → R be concave, then g is continuous and has a
left- and right derivative g′−(t) and g′+(t), respectively, at every point t ∈ I (see for example [15]).
Note that f(·, x) is concave by assumption and h is concave as the minimum over a family of
concave functions.

Lemma 1. For all t ∈ (a, b), h′−(t) ≥ f ′−(t, x∗t ) ≥ f ′+(t, x∗t ) ≥ h′+(t).

Proof. For all t′ < t it holds h(t′) ≤ f(t′, x∗t ) and hence h(t)− h(t′) ≥ f(t, x∗t )− f(t′, x∗t ) which
implies

h′−(t) := lim
t′↑t

h(t)− h(t′)
t− t′

≥ lim
t′↑t

f(t, x∗t )− f(t′, x∗t )
t− t′

=: f ′−(t, x∗t ).

The inequality f ′+(t, x∗t ) ≥ h′+(t) follows analogously, and f ′−(t, x∗t ) ≥ f ′+(t, x∗t ) follows after
some algebra from the concavity of f(·, x∗t ) and the definition of the derivatives (see [15]).

Definition 2. Let I = [a, b] be a compact interval, ε > 0, and t0 = a. Let

Tk =
{
t | t ∈ (tk−1, b] such that ε(t, x∗tk−1

) := f(t, x∗tk−1
)− h(t) = ε

}
,

and tk = minTk for all integral k > 0 such that Tk 6= ∅. Finally, let

P ∗ = {x∗tk | k ∈ N such that Tk 6= ∅}.

Lemma 3. Let s1, . . . , sn ∈ R>0, then (s1 + . . .+ sn)(s−1
1 + . . .+ s−1

n ) ≥ n2.

Proof. The claim holds for n = 1 as s1s
−1
1 = 1 = 12. Assume the claim holds for n − 1 and

let a = s1 + . . . + sn−1 and b = s−1
1 + . . . + s−1

n−1. The rectangle with side lengths as−1
n and

bsn has circumference 2(as−1
n + bsn) and area as−1

n bsn = ab. Since the square minimizes the
circumference for a given area we have 2(as−1

n + bsn) ≥ 4
√
ab. The claim for n now follows from

(a+ sn)(b+ s−1
n ) = ab+as−1

n + bsn + 1 ≥ ab+ 2
√
ab+ 1 = (

√
ab+ 1)2 ≥ ((n− 1) + 1)2 = n2.
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Lemma 4. The size of P ∗ is at most
√(

(b− a)(h′−(a)− h′−(b))
)
/ε ∈ O

(
1/
√
ε
)
.

Proof. Let a = t0 ≤ t1 ≤ . . . be the sequence from Definition 2. Define δk = tk+1 − tk and
∆k = h′−(tk)− h′−(tk+1). We have

∆k δk ≥ (f ′−(tk, x∗tk)− h′−(tk+1))(tk+1 − tk)

≥
(
f(tk+1, x

∗
tk

)− f(tk, x∗tk)
tk+1 − tk

− h(tk+1)− h(tk)
tk+1 − tk

)
(tk+1 − tk)

= f(tk+1, x
∗
tk

)− h(tk+1) = ε(tk+1, x
∗
tk

),

where the first inequality follows from Lemma 1 and the second inequality follows from concavity
and the definition of derivatives (see [15]).

Thus, there exists sk > 0 such that δk ≥ εsk and ∆k ≥ s−1
k . It follows from Lemma 3 that

εn2 ≤ ε(s1 + . . .+ sn)(s−1
1 + . . .+ s−1

n ) ≤ (δ1 + . . .+ δn)(∆1 + . . .+ ∆n)

≤ (b− a)(∆1 + . . .+ ∆n) ≤ (b− a)(h′−(a)− h′−(b)),

where the last inequality follows from h′−(b) ≤ h′−(t) for t ≤ b (which can be proved from con-
cavity, see again [15]). Hence, the sequence (tk) and thus the size of P ∗ must be finite, or more

specifically n is bounded by
√(

(b− a)(h′−(a)− h′−(b))
)
/ε.

Theorem 5. P ∗ is an ε-path for I = [a, b].

Proof. For any x ∈ D, ε(·, x) is a continuous function. Hence, x∗tk is an ε-approximation for all
t ∈ [tk, tk+1], because if there would be t ∈ (tk, tk+1] with ε(t, x∗tk) > ε, then by continuity, there
would be also t′ ∈ (tk, tk+1) with ε(t, x∗tk) = ε which contradicts the minimality of tk+1. The
claim of the theorem follows since the proof of Lemma 4 shows that the sequence (tk) is finite and
hence the intervals [tk, tk+1] cover the whole [a, b].

3 Lower Bound

Here we show that there exists a problem that fits the problem description from the introduction
whose ε-path complexity is in Ω(1/

√
ε). This shows that the upper bound from the previous section

is tight up to a constant.

Let I = [a, b], D = R, f(t, x) = 1
2x

2 − tx and thus

h(t) = min
x∈R

(
1
2
x2 − tx

)
=

1
2
(
x∗t
)2 − tx∗t = −1

2
t2,

where the last equality follows from the convexity and differentiability of f(t, x) in xwhich together
imply ∂f

∂x (t, x∗t ) = x∗t − t = 0.

For ε > 0 and x ∈ R let Ix =
{
t ∈ [a, b]

∣∣ ε(t, x) := 1
2x

2 − tx+ 1
2 t

2 ≤ ε
}
, which is an interval

since 1
2x

2 − tx + 1
2 t

2 is a quadratic function in t. The length of this interval is 2
√

2ε independent
of x. Hence, the ε-path complexity for the problem is at least (b− a)/2

√
2ε.

Let us compare this lower bound with the upper from the previous section which gives for the

specific problem at hand,
√(

(b− a)(h′−(a)− h′−(b))
)
/ε =

√
(b−a)2

ε = b−a√
ε
. Hence the upper

bound is tight up to constant of at most 2
√

2.

4 Generic Algorithm

So far we have only discussed structural complexity bounds for ε-paths. Now we give a generic
algorithm to compute an ε-path of complexity in O(1/

√
ε). When applying the generic algorithm to
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a specific problem a plugin-subroutine PATHPOLYNOMIAL needs to be implemented for the specific
problem. The generic algorithm builds on the simple idea that has been introduced in [6] to compute
an (ε/γ)-approximation (for γ > 1) and only update this approximation along the parameter inter-
val I = [a, b] when it fails to be an ε-approximation. The plugin-subroutine PATHPOLYNOMIAL
provides a bound on the step-size for the algorithm, i.e., a certificate for how long the approximation
is valid along the interval I . Hence we describe the idea behind the construction of this certificate
first.

4.1 Step-size certificate and algorithm

We always consider a problem that fits the problem description from the introduction.

Definition 6. Let P be the set of all concave polynomials p : I → R of degree at most 2. For
t ∈ I, x ∈ D and ε > 0 let

Pt(x, ε) := {p ∈ P | p ≤ h, f(t, x)− p(t) ≤ ε},

where p ≤ h means p(t′) ≤ h(t′) for all t′ ∈ I .

Note that P contains constant and linear polynomials with second derivative p′′ = 0 and quadratic
polynomials with constant second derivative p′′ < 0. If Pt(x, ε) 6= ∅, then x is an ε-approximation
at parameter value t, because there exists p ∈ P such that ε(t, x) ≤ f(t, x)− p(t) ≤ ε.
Definition 7. [Step-size] For t ∈ I = [a, b], p ∈ P, ε > 0, and γ > 1, let δt := t− a and

ρt(p, ε) =
ε

γ δ2
t |p′′|

, if p′′ < 0 and δt > 0.

The step-size is given as

∆t(p, ε) =


∆(1)
t (p) : p′′ = 0

∆(2)
t (p, ε) : p′′ < 0, ρt(p, ε) ≥ 1

2

∆(3)
t (p, ε) : p′′ < 0, ρt(p, ε) ≤ 1

2

where ∆(1)
t (p) = δt(γ − 1)

∆(2)
t (p, ε) =

√
2ε
|p′′|

+ δ2
t

(
ρt(p, ε)−

1
2

)2

− δt
(
ρt(p, ε) +

1
2

)

∆(3)
t (p, ε) =

√
2ε
|p′′|

(
1− 1
√
γ

)

To simplify the notation we will skip the argument ε of the step-size ∆t whenever the value of ε is
obvious from the context.

Observation 8. If ρt(p, ε) = 1/2, then ∆(2)
t (p) = ∆(3)

t (p), because ρt(p, ε) = 1/2 implies δt =√
2ε

γ |p′′| .

Lemma 9. For t ∈ (a, b), x ∈ D, ε > 0 and γ > 1. If there exists p ∈ Pt(x, ε/γ), then x is an
ε-approximation for all t′ ∈ [t, b] with t′ ≤ t+ ∆t(p).

Proof. Let g : [a, b]→ R be the following linear function,

g(t′) = (t′ − t)p(t) + ε/γ − p(a)
t− a

+ p(t) +
ε

γ
.

Then, for all t′ ∈ [t, b],

f(t′, x) ≤ (t′ − t)f(t, x)− f(a, x)
t− a

+ f(t, x) ≤ (t′ − t)p(t) + ε/γ − p(a)
t− a

+ p(t) +
ε

γ
= g(t′)
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where the first inequality follows from the concavity of f(·, x), and the second inequality follows
from f(t, x)− p(t) ≤ ε/γ and from p(a) ≤ h(a) ≤ f(a, x). Thus, x is an ε-approximation for all
t′ ∈ [t, b] that satisfy g(t′)− p(t′) ≤ ε because

ε(t′, x) = f(t′, x)− h(t′) ≤ f(t′, x)− p(t′) ≤ g(t′)− p(t′) ≤ ε.
We finish the proof by considering three cases.

(i) If p′′ = 0, then g(t′)− p(t′) is a linear function in t′, and g(t′)− p(t′) ≤ ε solves to t′ − t ≤
δt(γ − 1) = ∆(1)

t (p) = ∆t(p).

(ii) If p′′ < 0, then g(t′) − p(t′) is a quadratic polynomial in t′ with second derivative −p′′ > 0,
and the equation g(t′)−p(t′) ≤ ε solves to t′−t ≤ ∆(2)

t (p). Note that we do not need the condition
ρt(p) ≥ 1/2 here.

(iii) The case p′′ < 0 and ρt(p) ≤ 1/2 can be reduced to Case (ii). From ρt(p) ≤ 1/2 we obtain
t − a = δt ≥

√
2ε
|p′′|γ and thus a ≤ t −

√
2ε
|p′′|γ =: â. Let p̂ the restriction of p onto the interval

[â, b] and δ̂t = t− â, then p̂′′ = p′′, and thus ρt(p̂) = ε/
(
γ δ̂2

t |p̂′′|
)

= 1
2 . Hence by Observation 8,

∆(3)
t (p) = ∆(3)

t (p̂) = ∆(2)
t (p̂). The claim follows from Case (ii).

Assume now that we have an oracle PATHPOLYNOMIAL available that on input t ∈ (a, b) and
ε/γ > 0 returns x ∈ D and p ∈ Pt(x, ε/γ), then the following algorithm GENERICPATH returns an
ε-path if it terminates.

Algorithm 1 GENERICPATH

Input: f : [a, b]×D → R that fits the problem description, and ε > 0
Output: ε-path for the interval [a, b]

choose t̂ ∈ (a, b)
P := COMPUTEPATH (f, t̂, ε)
define f̂ : [a, b]×D → R, (t, x) 7→ f(a+ b− t, x) [then f̂ also fits the problem description]
P := P ∪ COMPUTEPATH (f̂ , a+ b− t̂, ε)
return P

Algorithm 2 COMPUTEPATH

Input: f : [a, b]×D → R that fits the problem description, t̂ ∈ (a, b) and ε > 0
Output: ε-path for the interval [t̂, b]

t := t̂ and P := ∅
while t ≤ b do

(x, p) := PATHPOLYNOMIAL
(
t, ε/γ

)
P := P ∪ {x}
t := min

{
b, t+ ∆t(p)

}
end while
return P

4.2 Analysis of the generic algorithm

The running time of the algorithm GENERICPATH is essentially determined by the complexity of
the computed path times the cost of the oracle PATHPOLYNOMIAL. In the following we show that
the complexity of the computed path is at most O(1/

√
ε).

Observation 10. For c ∈ R let φc : R[
>
√
|c|
] → R, x 7→

√
x2 + c− x. Then we have

1. limx→∞ φc(x) = 0

2. φ′c(x) = x√
x2+c

− 1 for the derivative of φc. Thus, φ′c(x) > 0 for c < 0 and φc is
monotonously increasing.
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Furthermore, ∆(2)
t (p) =

√
2ε
|p′′| + δ2

t

(
ρt(p)− 1

2

)2 − δt (ρt(p) + 1
2

)
=

√
δ2t

(
ρt(p) + γ − 1

2

)2

+ δ2t γ(1− γ) − δt

(
ρt(p) +

1

2

)
=

√
δ2t

(
ρt(p) + γ − 1

2

)2

+ δ2t γ(1− γ) − δt

(
ρt(p) + γ − 1

2

)
+ δt(γ − 1)

= φδ2
t
γ(1−γ)

(
δt

(
ρt(p) + γ − 1

2

))
+ δt(γ − 1).

Lemma 11. Given t ∈ I and p ∈ P , then ∆t(p) is continuous in |p′′|.

Proof. The continuity for |p′′| > 0 follows from the definitions of ∆(2)
t (p) and ∆(3)

t (p), and from
Observation 8. Since ρt(p) > 1/2 for small |p′′| the continuity at |p′′| = 0 follows from Observa-
tion 10, because

lim
|p′′|→0

∆(2)
t (p) = lim

|p′′|→0
φδ2t γ(1−γ) (δt · (ρt(p) + γ − 1/2)) + δt(γ − 1) = δt(γ − 1) = ∆(1)

t (p),

where we have used ρt(p)→∞ as |p′′| → 0.

Lemma 12. Given t ∈ I and p1, p2 ∈ P , then ∆t(p1) ≥ ∆t(p2) if |p′′1 | ≤ |p′′2 |.

Proof. The claim is that ∆t(p) is monotonously decreasing in |p′′|. Since ∆t is continuous in |p′′|
by Lemma 11 it is enough to check the monotonicity of ∆(1)

t (p),∆(2)
t (p) and ∆(3)

t (p). The mono-
tonicity of ∆(1)

t (p) and ∆(3)
t (p) follows directly from the definitions of the latter. The monotonicity

of ∆(2)
t (p) follows from Observation 10 since we have

∆(2)
t (p) = φδ2t γ(1−γ)

(
δt

(
ρt(p) + γ − 1

2

))
+ δt(γ − 1),

and thus ∆(2)
t (p) is monotonously decreasing in |p′′| because δ2

t γ(1 − γ) < 0 and ρt(p) is
monotonously decreasing in |p′′|.

Lemma 13. Given t ∈ I and p ∈ P , then ∆t(p) is monotonously increasing in δt and hence in t.

Proof. Since ∆t(p) is continuous in δt by Observation 8 it is enough to check the monotonicity of
∆(1)
t (p),∆(2)

t (p) and ∆(3)
t (p). The monotonicity of ∆(1)

t (p) and ∆(3)
t (p) follows directly from the

definitions of the latter. It remains to show the monotonicity of ∆(2)
t (p) for ρt(p) ≥ 1

2 . For c ≥ 0

let φ−1 : R>0 → R, y 7→ 1
2

(
c
y − y

)
. The notation is justified because for φ−1

c (y) > 0 we have

φc(φ−1
c (y)) = y. Apparently, φ−1

c is monotonously decreasing, and we have

∆(2)
t (p) = φc1(φ−1

c2 (δt))− δt = φc1(φ−1
c2 (δt))− φc2(φ−1

c2 (δt)),

with c1 = 2ε
|p′′| and c2 = c1

γ . Note that φ−1
c2 (δt) > 0 since ρt(p) ≥ 1

2 , and c2 < c1 since γ > 1.
Because φ′c1 − φ

′
c2 < 0 for c1 > c2, both φ−1

c2 and φc1 − φc2 are monotonously decreasing in their
respective arguments. Hence, ∆(2)

t (p) is monotonously increasing in δt.

Theorem 14. If there exists p ∈ P and ε̂ > 0 such that |q′′| ≤ |p′′| for all q that are returned by the
oracle PATHPOLYNOMIAL on input t ∈ [a, b] and ε ≤ ε̂. Then Algorithm 1 terminates after at most
O
(
1/
√
ε
)

steps, and thus returns an ε-path of complexity in O(1/
√
ε).

Proof. For all t ∈ [t̂, b], where t̂ ∈ (a, b) is chosen in algorithm GENERICPATH, we have ∆t(q) ≥
∆t(p) ≥ ∆t̂(p). Here the first inequality is due to Lemma 12 and the second inequality is due
to Lemma 13. Hence, the number of steps in the first call of COMPUTEPATH is upper bounded by
(b− t̂)/(min{∆t̂(p), b− t̂})+1. Similarly, the number of steps in the second call of COMPUTEPATH

is upper bounded by (t̂− a)/(min{∆a+b−t̂(p), t̂− a}) + 1.
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For the asymptotic behavior, observe that ∆t̂(p) = ∆(1)

t̂
(p) does not depend on ε for p′′ = 0. For

|p′′| > 0 observe that limε→0 ρt̂(p, ε) = 0. Hence, there exists ε̂ > 0 such that ρt̂(p, ε) < 1/2 and
∆(3)

t̂
(p, ε) ≤ b− t̂ for all ε < ε̂, and thus

b− t̂
min{∆t̂(p), b− t̂}

+ 1 =
b− t̂

∆(3)

t̂
(p)

+ 1 =

√
|p′′|
2ε

√
γ

√
γ − 1

(b− t̂) + 1 ∈ O
(

1√
ε

)
.

Analogously, (t̂− a)/(min{∆a+b−t̂(p), t̂− a}) + 1 ∈ O
(
1/
√
ε
)
, which completes the proof.

5 Applications

Here we demonstrate on two examples that Lagrange duality can be a tool for implementing the ora-
cle PATHPOLYNOMIAL in the generic path algorithm. This approach obtains the step-size certificate
from an approximate solution that has to be computed anyway.

5.1 Support vector machines

Given data points xi ∈ Rd together with labels yi ∈ {±1} for i = 1, . . . , n. A support vector
machine (SVM) is the following parameterized optimization problem

min
w∈Rd,b∈R

(
1
2
‖w‖2 + t

n∑
i=1

max{0, 1− yi(wTxi + b)} =: f(t, w)

)
parameterized in the regularization parameter t ∈ [0,∞). The Lagrangian dual of the SVM is given
as

max
α∈Rn

(
−1

2
αTKα+ 1Tα =: d(α)

)
s.t. 0 ≤ αi ≤ t, yTα = 0,

where K = ATA, A = (y1x1, . . . , ynxn) ∈ Rd×n and y = (y1, . . . , yn) ∈ Rn.

Algorithm 3 PATHPOLYNOMIALSVM
Input: t ∈ (0,∞) and ε > 0
Output: w ∈ Rd and p ∈ Pt(w, ε)
compute a primal solution w ∈ Rd and a dual solution α ∈ Rn such that f(t, w)− d(α) < ε
define p : I → R, t′ 7→ d

(
αt′/t

)
return (w, p)

Lemma 15. Let (w, p) be the output of PATHPOLYNOMIALSVM on input t > 0 and ε > 0, then
p ∈ Pt(w, ε) and |p′′| ≤ max0≤α̂≤1 α̂

TKα̂. [Hence, Theorem 14 applies here.]

Proof. Let α be the dual solution computed by PATHPOLYNOMIALSVM and p be the polynomial
defined in PATHPOLYNOMIALSVM. Then,

p(t′) = − t
′2

t2
1
2
αTKα+

t′

t
1Tα and thus p′′(t′) = − 1

t2
αTKα ≤ 0

since K is positive semidefinite. Hence, p ∈ P . For p ∈ Pt(w, ε), it remains to show that p ≤ h =
minw∈Rd f(·, w) and f(t, w) − p(t) ≤ ε. The latter follows immediately from p(t) = d(α). For
t′ > 0 let α′ = αt′/t, then α′ is feasible for the dual SVM at parameter value t′ since α is feasible
for the dual SVM at t. It follows, p(t′) = d(α′) ≤ h(t′) = minw∈Rd f(·, w). Finally, observe that
αi ≤ t implies |p′′| = 1

t2α
TKα ≤ max0≤α̂≤1 α̂

TKα̂.

The same results hold when using any positive kernel K. In the kernel case one has the following
primal SVM (see [2]),

min
β∈Rm,b

(
1

2
βTKβ + t ·

n∑
i=1

max

{
0, 1− yi

(
n∑
j=1

βjyjKij + b

)}
=: f(t, β)

)
.
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We have implemented the algorithm GENERICPATH for SVMs in Matlab using LIBSVM [1] as the
SVM solver. To assess the practicability of the proposed algorithm we ran it on several datasets
taken from the LIBSVM website. For each dataset we have measured the size of the computed
ε-path (number of nodes) for t ∈ [0.1, 10] and ε ∈ {2−i | i = 2, . . . , 10}. Figure 5.1 shows the
size of paths as a function of ε using double logarithmic plots. A straight line plot with slope − 1

2

corresponds to an empirical path complexity that follows the function 1/
√
ε.
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(a) Path complexity for a linear SVM
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(b) Path complexity for a SVM with Gaussian
kernel exp(−γ‖u− v‖22) for γ = 0.5

5.2 Matrix completion

Matrix completion asks for a completion X of an (n×m)-matrix Y that has been observed only at
the indices in Ω ⊂ {1, . . . ,m} × {1, . . . , n}. The problem can be solved by the following convex
semidefinite optimization approach, see [17, 11, 13],

min
X∈Rn×m, A∈Rn×n, B∈Rm×m

∑
(i,j)∈Ω

(
Xij − Yij

)2 + t · 1
2
(
tr(A) + tr(B)

)
s.t.

(
A X
XT B

)
� 0.

The Lagrangian dual of this convex semidefinite program is given as

max
Λ∈Rn×m

−
∑

(i,j)∈Ω

1
2

Λ2
ij + ΛijYij s.t.

(
tI Λ
ΛT tI

)
� 0, and Λij = 0 if (i, j) /∈ Ω.

Let f(t, X̂) for X̂ = (X,A,B) be the primal objective function at parameter value t, and d(Λ) be
the dual objective function. Analogously to the SVM case we have the following:

Algorithm 4 PATHPOLYNOMIALMATRIXCOMPLETION

Input: t ∈ (0,∞) and ε > 0
Output: X̂ and p ∈ Pt(X̂, ε)

compute a primal solution X̂ and a dual solution Λ ∈ Rn×m such that f(t, X̂)− d(Λ) < ε
define p : I → R, t′ 7→ d

(
t′/tΛ

)
return (X̂, p)

Lemma 16. Let (X̂, p) be the output of PATHPOLYNOMIALMATRIXCOMPLETION on in-
put t > 0 and ε > 0, then p ∈ Pt(X̂, ε) and |p′′| ≤ maxΛ̂∈F1

‖Λ̂‖2F , where

Ft =
{

Λ ∈ Rn×m
∣∣∣ ( tI Λ

ΛT tI

)
� 0, Λij = 0, ∀(i, j) /∈ Ω

}
. �

The proof for Lemma 16 is similar to the proof of Lemma 15, and Lemma 16 shows that Theorem 14
can be applied here.
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