
Value Pursuit Iteration

Amir-massoud Farahmand∗ Doina Precup †
School of Computer Science, McGill University, Montreal, Canada

Abstract

Value Pursuit Iteration (VPI) is an approximate value iteration algorithm that finds
a close to optimal policy for reinforcement learning problems with large state
spaces. VPI has two main features: First, it is a nonparametric algorithm that
finds a good sparse approximation of the optimal value function given a dictio-
nary of features. The algorithm is almost insensitive to the number of irrelevant
features. Second, after each iteration of VPI, the algorithm adds a set of functions
based on the currently learned value function to the dictionary. This increases the
representation power of the dictionary in a way that is directly relevant to the goal
of having a good approximation of the optimal value function. We theoretically
study VPI and provide a finite-sample error upper bound for it.

1 Introduction

One often has to use function approximation to represent the near optimal value function of the
reinforcement learning (RL) and planning problems with large state spaces. Even though the con-
ventional approach of using a parametric model for the value function has had successes in many
applications, it has one main weakness: Its success critically depends on whether the chosen func-
tion approximation method is suitable for the particular task in hand. Manually designing a suitable
function approximator, however, is difficult unless one has considerable domain knowledge about
the problem. To address this issue, the problem-dependent choice of function approximator and
nonparametric approaches to RL/Planning problems have gained considerable attention in the RL
community, e.g., feature generation methods of Mahadevan and Maggioni [1], Parr et al. [2], and
nonparametric regularization-based approaches of Farahmand et al. [3, 4], Taylor and Parr [5] .

One class of approaches that addresses the aforementioned problem is based on the idea of finding
a sparse representation of the value function in a large dictionary of features (or atoms). In this
approach, the designer does not necessarily know a priori whether or not a feature is relevant to the
representation of the value function. The feature, therefore, is simply added to the dictionary with
the hope that the algorithm itself figures out the necessary subset of features. The usual approach to
tackle irrelevant features is to use sparsity-inducing regularizers such as the l1-norm of the weights
in the case of linear function approximators, e.g., Kolter and Ng [6], Johns et al. [7], Ghavamzadeh
et al. [8]. Another approach is based on greedily adding atoms to the representation of the target
function. Examples of these approaches in the supervised learning setting are Matching Pursuit and
Orthogonal Matching Pursuit (OMP) [9, 10]. These greedy algorithms have successfully been used
in the signal processing and statistics/supervised machine learning communities for years, but their
application in the RL/Planning problems has just recently attracted some attention. Johns [11] em-
pirically investigated some greedy algorithms, including OMP, for the task of feature selection using
dictionary of proto-value functions [1]. A recent paper by Painter-Wakefield and Parr [12] considers
two algorithms (OMP-TD and OMP-BRM; OMP-TD is the same as one of the algorithms by [11])
in the context of policy evaluation and provides some conditions under which OMP-BRM can find
the minimally sparse solution.
∗Academic.SoloGen.net.
†This research was funded in part by NSERC and ONR.

1

Academic.SoloGen.net

To address the problem of value function representation in RL when not much a priori knowledge
is available, we introduce the Value Pursuit Iteration (VPI) algorithm. VPI, which is an Approx-
imate Value Iteration (AVI) algorithm (e.g., [13]), has two main features. The first is that it is a
nonparametric algorithm that finds a good sparse approximation of the optimal value function given
a set of features (dictionary), by using a modified version of OMP. The second is that after each
iteration, the VPI algorithm adds a set of functions based on the currently learned value function to
the dictionary. This potentially increases the representation power of the dictionary in a way that is
directly relevant to the goal of approximating the optimal value function.

At the core of VPI is the OMP algorithm equipped with a model selection procedure. Using OMP
allows VPI to find a sparse representation of the value function in large dictionaries, even countably
infinite ones1. This property is very desirable for RL/Planning problems for which one usually does
not know the right representation of the value function, and so one wishes to add as many features
as possible and to let the algorithm automatically detect the best representation. A model selection
procedure ensures that OMP is adaptive to the actual difficulty of the problem.

The second main feature of VPI is that it increases the size of the dictionary by adding some basis
functions computed from previously learned value functions. To give an intuitive understanding of
how this might help, consider the dictionary B = {g1, g2, . . . }, in which each atom gi is a real-
valued function defined on the state-action space. The goal is to learn the optimal value function by
a representation in the form of Q =

∑
i≥1 wigi.

2 Suppose that we are lucky and the optimal value
function Q∗ belongs to the dictionary B, e.g., g1 = Q∗. This is indeed an ideal atom to have in the
dictionary since one may have a sparse representation of the optimal value function in the form of
Q∗ =

∑
i≥1 wigi with w1 = 1 and wi = 0 for i ≥ 2. Algorithms such as OMP can find this sparse

representation quite effectively (details will be specified later). Of course, we are not usually lucky
enough to have the optimal value function in our dictionary, but we may still use approximation of
the optimal value function. In the exact Value Iteration, Qk → Q∗ exponentially fast. This ensures
thatQk andQk+1 = T ∗Qk are close enough, so one may useQk to explain a large part ofQk+1 and
use the other atoms of the dictionary to “explain” the residual. In an AVI procedure, however, the
estimated value function sequence (Qk)k≥1 does not necessarily converge to Q∗, but one may hope
that it gets close to a region around the optimum. In that case, we may very well use the dictionary
of {Q1, . . . , Qk} as the set of candidate atoms to be used in the representation of Qk+1. We show
that adding these learned atoms does not hurt and may actually help.

To summarize, the algorithmic contribution of this paper is to introduce the VPI algorithm that finds
a sparse representation of the optimal value function in a huge function space and increases the
representation capacity of the dictionary problem-dependently. The theoretical contribution of this
work is to provide a finite-sample analysis of VPI and to show that the method is sound.

2 Definitions

We follow the standard notation and definitions of Markov Decision Processes (MDP) and Rein-
forcement Learning (RL) (cf. [14]). We also need some definitions regarding the function spaces
and norms, which are defined later in this section.

For a space Ω with σ-algebra σΩ,M(Ω) denotes the set of all probability measures over σΩ. B(Ω)
denotes the space of bounded measurable functions w.r.t. (with respect to) σΩ and B(Ω, L) denotes
the subset of B(Ω) with bound 0 < L <∞.

A finite-action discounted MDP is a 5-tuple (X ,A, P,R, γ), where X is a measurable state space,
A is a finite set of actions, P : X ×A →M(X) is the transition probability kernel,R : X ×A →
M(R) is the reward kernel, and γ ∈ [0, 1) is a discount factor. Let r(x, a) = E [R(·|x, a)], and
assume that r is uniformly bounded by Rmax. A measurable mapping π : X → A is called a
deterministic Markov stationary policy, or just a policy for short. A policy π induces the m-step
transition probability kernels (Pπ)m : X →M(X) and (Pπ)m : X ×A →M(X ×A) form ≥ 1.

We use V π and Qπ to denote the value and action-value function of a policy π. We also use V ∗
and Q∗ for the optimal value and optimal action-value functions, with the corresponding optimal

1From the statistical viewpoint and ignoring the computational difficulty of working with large dictionaries.
2The notation will be defined precisely in Section 2.

2

policy π∗. A policy π is greedy w.r.t. an action-value function Q, denoted π = π̂(·;Q), if π(x) =
argmaxa∈AQ(x, a) holds for all x ∈ X (if there exist multiple maximizers, one of them is chosen in
an arbitrary deterministic manner). Define Qmax = Rmax/(1− γ). The Bellman optimality operator
is denoted by T ∗. We use (PV)(x) to denote the expected value of V after the transition according
to a probability transition kernel P . Also for a probability measure ρ ∈ M(X), the symbol (ρP)
represents the distribution over states when the initial state distribution is ρ and we follow P for
a single step. A typical choice of P is (Pπ)m for m ≥ 1 (similarly for ρ ∈ M(X × A) and
action-value functions).

2.1 Norms and Dictionaries

For a probability measure ρ ∈M(X), and a measurable function V ∈ B(X), we define the Lp(ρ)-

norm (1 ≤ p < ∞) of V as ‖V ‖p,ρ ,
[∫
X |V (x)|p dρ(x)

]1/p
. The L∞(X)-norm is defined as

‖V ‖∞ , supx∈X |V (x)|. Similarly for ν ∈ M(X × A) and Q ∈ B(X × A), we define ‖·‖p,ν as
‖Q‖pp,ν ,

∫
X×A |Q(x, a)|pdν(x, a) and ‖Q‖∞ , sup(x,a)∈X×A |Q(x, a)|.

Let z1:n denote the Z-valued sequence (z1, . . . , zn). For Dn = z1:n, define the empirical norm of
function f : Z → R as ‖f‖pp,z1:n = ‖f‖pp,Dn , 1

n

∑n
i=1 |f(zi)|p. Based on this definition, one

may define ‖V ‖Dn (with Z = X) and ‖Q‖Dn (with Z = X × A). Note that if Dn = Z1:n is
random with Zi ∼ ν, the empirical norm is random as well. For any fixed function f , we have
E
[
‖f‖p,Dn

]
= ‖f‖p,ν . The symbols ‖·‖ν and ‖·‖Dn refer to an L2-norm. When we do not want to

emphasize the underlying measure, we use ‖·‖ to denote an L2-norm.

Consider a Hilbert spaceH endowed with an inner product norm ‖·‖. We call a family of functions
B = {g1, g2, . . . , } with atoms gi ∈ H a dictionary. The class L1(B) = L1(B; ‖·‖) consists of those
functions f ∈ H that admits an expansion f =

∑
g∈B cgg with (cg) being an absolutely summable

sequence (these definitions are quoted from Barron et al. [15]). The norm of a function f in this
space is defined as ‖f‖L1(B;‖·‖) , inf{

∑
g∈B |cg| : f =

∑
g∈B cgg}. To avoid clutter, when the

norm is the empirical norm ‖·‖Dn , we may use L1(B;Dn) instead of L1(B; ‖·‖Dn), and when the
norm is ‖·‖ν , we may use L1(B; ν). We denote a ball with radius r > 0 w.r.t. the norm of L1(B; ν)
by Br(L1(B; ν)).

For a dictionary B, we introduce a fixed exhaustion B1 ⊂ B2 ⊂ . . . ⊂ B, with the number of atoms
|Bm| being m. If we index our dictionaries as Bk, the symbol Bk,m refers to the m-th element of
the exhaustion of Bk. For a real number α > 0, the space L1,α(B; ‖·‖) is defined as the set of
all functions f such that for all m = 1, 2, . . . , there exists a function h depending on m such that
‖h‖L1(Bm;‖·‖) ≤ C and ‖f − h‖ ≤ Cm−α. The smallest constant C such that these inequalities
hold defines a norm forL1,α(B; ‖·‖). Finally, we define the truncation operator βL : B(X)→ B(X)
for some real number L > 0 as follows. For any function f ∈ B(X), the truncated function of f at
the threshold level L is the function βLf : B(X) → R such that for any x ∈ X , βLf(x) is equal
to f(x) if −L ≤ f(x) ≤ L, is equal to L if f(x) > L, and is equal to −L if f(x) < −L. We
overload βL to be an operator from B(X × A) to B(X × A) by applying it component-wise, i.e.,
βLQ(x, ·) , [βLQ(x, a1), . . . , βLQ(x, aA)]>.

3 VPI Algorithm

In this section, we first describe the behaviour of VPI in the ideal situation when the Bellman op-
timality operator T ∗ can be applied exactly in order to provide the intuitive understanding of why
VPI might work. Afterwards, we describe the algorithm that does not have access to the Bellman
optimality operator and only uses a finite sample of transitions.

VPI belongs to the family of AVI algorithms, which start with an initial action-value function Q0

and at each iteration k = 0, 1, . . . , approximately apply the Bellman optimality operator T ∗ to the
most recent estimate Qk to get a new estimate Qk+1 ≈ T ∗Qk. The size of the error between Qk+1

and T ∗Qk is a key factor in determining the performance of an AVI procedure.

3

Suppose that T ∗Qk can be calculated, but it is not possible to represent it exactly. In this case, one
may use an approximant Qk+1 to represent T ∗Qk. In this paper we would like to represent Qk+1

as a linear function of some atoms in a dictionary B = {g1, g2, . . . } (g ∈ H(X × A) and ‖g‖ = 1
for all g ∈ B), that is Qk+1 =

∑
g∈B cgg. Our goal is to find a representation that is as sparse as

possible, i.e., uses only a few atoms in B. From statistical viewpoint, the smallest representation
among all those that have the same function approximation error is desirable as it leads to smaller
estimation error. The goal of finding the sparsest representation, however, is computationally in-
tractable. Nevertheless, it is possible to find a “reasonable” suboptimal sparse approximation using
algorithms such as OMP, which is the focus of this paper.

The OMP algorithm works as follows. Let Q̃(0) = 0. For each i = 1, 2, . . . , define the
residual r(i−1) = T ∗Qk − Q̃(i−1). Define the new atom to be added to the representation as
g(i) ∈ Argmaxg∈B

∣∣〈 r(i−1) , g
〉∣∣, i.e., choose an element of the dictionary that has the maxi-

mum correlation with the residual. Here 〈 · , · 〉 is the inner product for a Hilbert space H(X × A)
to which T ∗Qk and atoms of the dictionary belong. Let Π(i) be the orthogonal projection onto
span(g(1), . . . , g(i)), i.e., Π(i)T ∗Qk , argminQ∈span(g(1),...,g(i)) ‖Q− T ∗Qk‖. We then have
Q̃(i) = Π(i)T ∗Qk. OMP continues iteratively.

To quantify the approximation error at the i-th iteration, we use the L1(B; ‖·‖)-norm of the target
function of the OMP algorithm, which is T ∗Qk in our case (with the norm being the one induced by
the inner product used in the OMP procedure). Recall that this class consists of functions that admit
an expansion in the form

∑
g∈B cgg and (cg) being an absolutely summable sequence. If T ∗Qk

belongs to the class of L1(B; ‖·‖), it can be shown (e.g., Theorem 2.1 of Barron et al. [15]) that

after i iterations of OMP, the returned function Q̃(i) is such that ‖Q̃(i) − T ∗Qk‖ ≤
‖T∗Qk‖L1(B;‖·‖)√

i+1
.

The problem with this result is that it requires T ∗Qk to belong to L1(B; ‖·‖). This depends on how
expressive the dictionary B is. If it is not expressive enough, we still would like OMP to quickly
converge to the best approximation of T ∗Qk /∈ L1(B; ‖·‖) in L1(B; ‖·‖). Fortunately, such a result
exists (Theorem 2.3 by Barron et al. [15], quoted in the supplementary material) and we use it in the
proof of our main result.

We now turn to the more interesting case when we do not have access to T ∗Qk. Instead we
are only given a set of transitions in the form of D(k)

n = {(X(k)
i , A

(k)
i , R

(k)
i , X ′i

(k)
)}ni=1, where

(X
(k)
i , A

(k)
i) are drawn from the sampling distribution ν ∈ M(X × A), X ′i ∼ P (·|Xi, Ai), and

Ri ∼ R(·|Xi, Ai). Instead of using T ∗Qk, we use the empirical Bellman operator for the dataset
D(k)
n . The operator is defined as follows.

Definition 1 (Empirical Bellman Optimality Operator). Let Dn =
{(X1, A1, R1, X

′
1), . . . , (Xn, An, Rn, X

′
n)}, defined similarly as above. Define the ordered multi-

set Sn = {(X1, A1), . . . , (Xn, An)}. The empirical Bellman optimality operator T̂ ∗ : Sn → Rn is
defined as (T̂ ∗Q)(Xi, Ai) , Ri + γmaxa′ Q(X ′i, a

′) for 1 ≤ i ≤ n.

Since E
[
T̂ ∗Qk(X

(k)
i , A

(k)
i)

∣∣Qk, X(k)
i , A

(k)
i

]
= T ∗Qk(X

(k)
i , A

(k)
i), we can solve a regression

problem and find an estimate forQk+1, which is close T ∗Qk. This regression problem is the core of
the family of Fitted Q-Iteration (FQI) algorithms, e.g., [13, 4]. In this paper, the regression function
at each iteration is estimated using a modified OMP procedure introduced by Barron et al. [15].

We are now ready to describe the VPI algorithm (Algorithm 1). It gets as input a predefined dictio-
nary B0. This can be a dictionary of wavelets, proto-value functions, etc. The size of this dictionary
can be countably infinite. It also receives an integer m, which specifies how many atoms of B0

should be used by the algorithm. This defines the effective dictionary B0,m. This value can be set to
m = dnae for some finite a > 0, so it can actually be quite large. VPI also receives K, the number
of iterations, and ν, the sampling distribution. For the simplicity of analysis, we assume that the
sampling distribution is fixed, but in practice one may change this sampling distribution after each
iteration (e.g., sample new data according to the latest policy). Finally, VPI gets a set of m′ link
functions σi : B(X × A, Qmax) → B(X × A, Qmax) for some m′ that is smaller than m/K. We
describe the role of link functions shortly.

4

Algorithm 1 Value Pursuit Iteration(B0,m, {σi}m
′

i=1, ν,K)

Input: Initial dictionary B0, Number of dictionary atoms used m, Link functions {σi}m
′

i=1, State-
action distribution ν, Number of iterations K.
Return: QK
Q0 ← 0.
B′0 ← ∅.
for k = 0, 1, . . . ,K − 1 do

Construct a dataset D(k)
n =

{
(X

(k)
i , A

(k)
i , R

(k)
i , X ′i

(k)
)
}n
i=1

, (X
(k)
i , A

(k)
i)

i.i.d.∼ ν

Q̂
(0)
k+1 ← 0

// Orthogonal Matching Pursuit loop
Normalize elements of B0,m and B′k according to ‖·‖D(k)

n
and call them B̂k and B̂′k.

for i = 1, 2, . . . , c1n do
r(i−1) ← T̂ ∗Qk − Q̂(i−1)

k+1

g(i) ← Argmaxg∈B̂k
⋃
B̂′k

∣∣∣〈 r(i−1) , g
〉
D(k)
n

∣∣∣
Q̂

(i)
k+1 ← Π(i)T̂ ∗Qk {Π(i): Projection onto span(g(1), . . . , g(i))}

end for
i∗ ← argmini≥1

{∥∥∥βQmaxQ̂
(i)
k+1 − T̂ ∗Qk

∥∥∥2

D(k)
n

+ c2(Qmax) i ln(n)
n

}
{Complexity Regularization}

Qk+1 ← Q̂
(i∗)
k+1

B′k+1 ← B′k
⋃
{σi(βQmaxQk+1;Bk

⋃
B′k)}m

′
i=1 {Extending the dictionary}

end for

At the k-th iteration of the algorithm, we perform OMP for c1n iterations (c1 > 0), similar to
what is described above with the difference that instead of using T ∗Qk as the target, we use T̂ ∗Qk
over empirical samples.3 This means that we use the empirical inner product 〈Q1 , Q2 〉D(k)

n
,

1
n

∑n
i=1 |Q1(Xi, Ai) · Q2(Xi, Ai)| for (Xi, Ai) ∈ D(k)

n and the empirical orthogonal projection.4

The result would be a sequence (Q̂
(i)
k+1)i≥0. Next, we perform a model selection procedure to choose

the best candidate. This can be done in different ways such as using a separate dataset as a validation
set. Here we use a complexity regularization technique that penalizes more complex estimates (those
that have more atoms in their representation). Note that we use the truncated estimate βQmaxQ̂

(i)
k+1 in

the model selection procedure. This is required for the theoretical guarantees. The outcome of this
model selection procedure will determine Qk+1.

Finally we use link functions {σi}m
′

i=1 to generate m′ new atoms, which are vector-valued Qmax-
bounded measurable functions from X × A to R|A|, to be added to the learned dictionary B′k.
The link functions extract “interesting” aspects of Qk+1, potentially by considering the current
dictionary Bk

⋃
B′k. VPI is quite flexible in how the new atoms are generated and how large m′ can

be. The theory allows m′ to be in the order of na (a > 0), so one may add many potentially useful
atoms without much deterioration in the performance. Regarding the choice of the link functions,
the theory requires that at least Qk+1 itself is being added to the dictionary, but it leaves other
possibilities open. For example, one might apply nonlinearities (e.g., sigmoid functions) to Qk+1.
Or one might add atoms localized in parts of the state-action space with high residual errors – a
heuristic which has been used previously in basis function construction. This procedure continues
forK iterations and the outcome will beQK . In the next section, we study the theoretical properties
of the greedy policy w.r.t. QK , i.e., πK = π̂(·;QK).
Remark 1 (Comparison of VPI with FQI). Both VPI and FQI are indeed instances of AVI. If we
compare VPI with the conventional implementation of FQI that uses a fixed set of linear basis

3The value of c1 depends only on Qmax and a. We do not explicitly specify it since the value that is
determined by the theory shall be quite conservative. One may instead find it by the trial and error. Moreover,
in practice we may stop much earlier than n iterations.

4When the number of atoms is larger than the number of samples (i > n), one may use the Moore–Penrose
pseudoinverse to perform the orthogonal projection.

5

functions, we observe that FQI is the special case of VPI in which all atoms in the dictionary are
used in the estimation. As VPI has a model selection step, its chosen estimator is not worse than
FQI’s (up to a small extra risk) and is possibly much better if the target is sparse in the dictionary.
Moreover, extending the dictionary decreases the function approximation error with negligible effect
on the model selection error. The same arguments apply to many other FQI versions that use a fixed
data-independent set of basis functions and do not perform model selection.

4 Theoretical Analysis

In this section, we first study how the function approximation error propagates in VPI (Section 4.1)
and then provide a finite-sample error upper bound as Theorem 3 in Section 4.2. All the proofs are
in the supplementary material.

4.1 Propagation of Function Approximation Error

In this section, we present tools to upper bound the function approximation error at each iteration.
Definition 2 (Concentrability Coefficient of Function Approximation Error Propagation). (I) Let ν
be a distribution over the state-action pairs, (X,A) ∼ ν, νX be the marginal distribution of X ,
and πb(·|·) be the conditional probability of A given X . Further, let P be a transition probability
kernel P : X × A → M(X) and Px,a = P (·|x, a). Define the concentrability coefficient of one-

step transitions w.r.t. ν by Cν→∞ =
(
E
[
sup(y,a′)∈X×A

∣∣∣ 1
πb(a′|y)

dPX,A
dνX

(y)
∣∣∣]) 1

2

, where Cν→∞ =

∞ if Px,a is not absolutely continuous w.r.t. νX for some (x, a) ∈ X × A, or if πb(a′|y) = 0
for some (y, a′) ∈ X × A. (II) Furthermore, for an optimal policy π∗ and an integer m ≥ 0,
let ν(Pπ

∗
)m ∈ M(X × A) denote the future state-action distribution obtained after m-steps of

following π∗. Define cν(m) , ‖d(ν(Pπ
∗

)m)
dν ‖∞. If the future state-action distribution ν(Pπ

∗
)m is

not absolutely continuous w.r.t. ν, we let cν(m) =∞.

The constant Cν→∞ is large if after transition step, the future states can be highly concentrated at
some states where the probability of taking some action a′ is small or dνX is small. Hence, the name
“concentrability of one-step transitions”. The definition of Cν→∞ is from Chapter 5 of Farahmand
[16]. The constant cν(m) shows how much we deviate from ν whenever we follow an optimal policy
π∗. It is notable that if ν happens to be the stationary distribution of the optimal policy π∗ (e.g., the
samples are generated by an optimal expert), cν(m) = 1 for all m ≥ 0.

We now provide the following result that upper bounds the error caused by using Qk (which is the
newly added atom to the dictionary) to approximate T ∗Qk. The proof is provided in the supplemen-
tary material.
Lemma 1. Let (Qi)

k
i=0 ⊂ B(X × A, Qmax) be a Qmax-bounded sequence of measurable action-

value functions. Define εi , T ∗Qi − Qi+1 (0 ≤ i ≤ k − 1). Then, ‖Qk − T ∗Qk‖2ν ≤
(1+γCν→∞)2

1−γ

[∑k−1
i=0 γ

k−1−icν(k − 1− i) ‖εi‖2ν + γk(2Qmax)
2
]
.

If there was no error at earlier iterations (i.e., ‖εi‖ν = 0 for 0 ≤ i ≤ k−1), the error ‖Qk − T ∗Qk‖2ν
would be O(γkQ2

max), which is decaying toward zero with a geometrical rate. This is similar to the
behaviour of the exact VI, i.e., ‖T ∗Qk −Qk‖∞ ≤ (1 + γ)γk ‖Q∗ −Q0‖∞.

The following result is Theorem 5.3 of Farahmand [16]. For the sake of completeness, we provide
the proof in the supplementary material.

Theorem 2. Let (Qk)k−1
k=0 be a sequence of state-action value functions and define εi ,

T ∗Qi − Qi+1 (0 ≤ i ≤ k). Let F |A| : X × A → R|A| be a subset of vector-valued
measurable functions. Then, infQ′∈F |A| ‖Q′ − T ∗Qk‖ν ≤ infQ′∈F |A|

∥∥Q′ − (T ∗)(k+1)Q0

∥∥
ν

+∑k−1
i=0 (γ Cν→∞)

k−i ‖εi‖ν .

This result quantifies the behaviour of the function approximation error and relates it to the function
approximation error of approximating (T ∗)k+1Q0 (which is a deterministic quantity depending only
on the MDP itself, the function space F |A|, and Q0) and the errors of earlier iterations. This allows

6

us to provide a tighter upper bound for the function approximation error compared to the so-called
inherent Bellman error supQ∈F |A| infQ′∈F |A| ‖Q′ − T ∗Q‖ν introduced by Munos and Szepesvári
[17], whenever the errors at previous iterations are small.

4.2 Finite Sample Error Bound for VPI

In this section, we provide an upper bound on the performance loss ‖Q∗ −QπK‖1,ρ. This perfor-
mance loss indicates the regret of following the policy πK instead of an optimal policy when the
initial state-action is distributed according to ρ. We define the following concentrability coefficients
similar to Farahmand et al. [18].
Definition 3 (Expected Concentrability of the Future State-Action Distribution). Given
ρ, ν ∈ M(X × A), m ≥ 0, and an arbitrary sequence of stationary policies
(πm)m≥1, let ρPπ1Pπ2 . . . Pπm ∈ M(X × A) denote the future state-action distribu-
tion obtained after m transitions, when the first state-action pair is distributed accord-
ing to ρ and then we follow the sequence of policies (πk)mk=1. For integers m1,m2 ≥
1, policy π and the sequence of policies π1, . . . , πk define the concentrability coefficients

cVI1,ρ,ν(m1,m2;π) ,

(
E

[∣∣∣∣d
(
ρ(Pπ)m1 (Pπ

∗
)m2

)
dν (X,A)

∣∣∣∣2
]) 1

2

and cVI2,ρ,ν(m1;π1, . . . , πk) ,(
E
[∣∣∣d(ρ(Pπk)m1Pπk−1Pπk−2 ···Pπ1)

dν (X,A)
∣∣∣2]) 1

2

, where (X,A) ∼ ν. If the future state-action dis-

tribution ρ(Pπ)m1(Pπ
∗
)m2 (similarly, if ρ(Pπk)m1Pπk−1Pπk−2 · · ·Pπ1) is not absolutely continu-

ous w.r.t. ν, we let cVI1,ρ,ν(m1,m2;π) =∞ (similarly, cVI2,ρ,ν(m1;π1, . . . , πk) =∞).

Assumption A1 We make the following assumptions:
• For all values of 0 ≤ k ≤ K − 1, the dataset used by VPI at each iteration is
D(k)
n = {(X(k)

i , A
(k)
i , R

(k)
i , X ′i

(k)
)}ni=1 with independent and identically distributed (i.i.d.)

samples (X
(k)
i , A

(k)
i) ∼ ν ∈ M(X × A) and X ′i

(k) ∼ P (·|X(k)
i , A

(k)
i) and R

(k)
i ∼

R(·, ·|X(k)
i , A

(k)
i) for i = 1, 2, . . . , n.

• For 1 ≤ k, k′ ≤ K − 1 and k 6= k′, the datasets D(k)
n and D(k′)

n are independent.
• There exists a constant Qmax ≥ 1 such that for any Q ∈ B(X ×A;Qmax), |T̂ ∗Q(X,A)| ≤
Qmax almost surely (a.s).
• For all g ∈ B0, ‖g‖∞ ≤ L <∞.
• The number of atoms m used from the dictionary B0 is m = dnae for some finite a > 0.

The number of link functions m′ used at each iteration is at most m/K.
• At iteration k, each of the link functions {σi}m

′

i=1 maps βQmaxQk+1 and the dictionary
Bk
⋃
B′k to an element of the space of vector-valued Qmax-bounded measurable functions

X ×A → R|A|. At least one of the mappings returns βQmaxQk+1.

Most of these assumptions are mild and some of them can be relaxed. The i.i.d. assumption can be
relaxed using the so called independent block technique [19], but it results in much more complicated
proofs. We conjecture that the independence of datasets at different iterations might be relaxed as
well under certain condition on the Bellman operator (cf. Section 4.2 of [17]). The condition on the
number of atoms m and the number of link functions being polynomial in n are indeed very mild.

In order to compactly present our result, we define ak = (1−γ) γK−k−1

1−γK+1 for 0 ≤ k < K. Note that
the behaviour of ak ∝ γK−k−1, so it gives more weight to later iterations. Also define C1(k) ,∑k−1
i=0 γ

k−iC
2(k−i)
ν→∞ (k = 1, 2, . . .) and C2 , (1+γCν→∞)2

1−γ . For 0 ≤ s ≤ 1, define

CVI,ρ,ν(K; s) =

(
1− γ

2
)2 sup
π′1,...,π

′
K

K−1∑
k=0

a
2(1−s)
k

[∑
m≥0

γm
(
cVI1,ρ,ν(m,K − k;π′K) + cVI2,ρ,ν(m+ 1;π′k+1, . . . , π

′
K)
)]2

,

where in the last definition the supremum is taken over all policies. The following theorem is the
main theoretical result of this paper. Its proof is provided in the supplementary material.

7

Theorem 3. Consider the sequence (Qk)Kk=0 generated by VPI (Algorithm 1). Let Assumptions A1
hold. For any fixed 0 < δ < 1, recursively define the sequence (bi)

K
i=0 as follows:

b20 , c1Q
3
max

√
log
(
nK
δ

)
n

+ 3 inf
Q′∈BQmax (L1(B0,m;ν))

‖Q′ − T ∗Q0‖
2
ν ,

b2k , c2Q
3
max

√
log
(
nK
δ

)
n

+

c3 min

{
inf

Q′∈BQmax (L1(B0,m;ν))

∥∥Q′ − (T ∗)k+1Q0

∥∥2

ν
+ C1(k)

k−1∑
i=0

γk−ib2i ,

C2

(
k−1∑
i=0

γk−1−icν(k − 1− i) b2i + γk(2Qmax)
2

)}
, (k ≥ 1)

for some c1, c2, c3 > 0 that are only functions of Qmax and L. Then, for any k = 0, 1, . . . ,K − 1,
it holds that ‖Qk+1 − T ∗Qk‖2ν ≤ b2k, with probability at least 1 − kδ

K . Furthermore, define the
discounted sum of errors as E(s) ,

∑K−1
k=0 a2s

k bk (for s ∈ [0, 1]). Choose ρ ∈ M(X × A). The
ρ-weighted performance loss of πK is upper bounded as

‖Q∗ −QπK‖1,ρ ≤
2γ

(1− γ)2

[
inf

s∈[0,1]
C

1/2
VI,ρ,ν(K; s)E1/2(s) + 2γKQmax

]
,

with probability at least 1− δ.

The value of bk is a deterministic upper bound on the error ‖Qk+1 − T ∗Qk‖ν of each iteration of
VPI. We would like bk to be close to zero, because the second part of the theorem implies that
‖Q∗ −QπK‖1,ρ would be small too. If we study b2k, we observe two main terms: The first term,

which behaves as
√

log(nK/δ)
n , is the estimation error. The second term describes the function

approximation error. For k ≥ 1, it consists of two terms from which the minimum is selected.
The first term inside min{·, ·} describes the behaviour of the function approximation error when
we only use the predefined dictionary B0,m to approximate T ∗Qk (see Theorem 2). The second
term describes the behaviour of the function approximation error when we only consider Qk as
the approximant of T ∗Qk (see Lemma 1). The error caused by this approximation depends on
the error made in earlier iterations. The current analysis only considers the atom Qk from the
learned dictionary, but VPI may actually use other atoms to represent T ∗Qk. This might lead to
much smaller function approximation errors. Hence, our analysis shows that in terms of function
approximation error, our method is sound and superior to not increasing the size of the dictionary.
However, revealing the full power of VPI remains as future work. Just as an example, if B0 is
complete in L2(ν), by letting n,m→∞ both the estimation error and function approximation error
goes to zero and the method is consistent and converges to the optimal value function.

5 Conclusion

This work introduced VPI, an approximate value iteration algorithm that aims to find a close to
optimal policy using a dictionary of atoms (or features). The VPI algorithm uses a modified Orthog-
onal Matching Pursuit that is equipped with a model selection procedure. This allows VPI to find a
sparse representation of the value function in large, and potentially overcomplete, dictionaries. We
theoretically analyzed VPI and provided a finite-sample error upper bound for it. The error bound
shows the effect of the number of samples as well as the function approximation properties of the
predefined dictionary, and the effect of learned atoms.

This paper is a step forward to better understanding how overcomplete dictionaries and sparsity can
effectively be used in the RL/Planning context. A more complete theory describing the effect of
adding atoms to the dictionary remains to be established. We are also planning to study VPI’s em-
pirical performance, and comparing with other feature construction methods. We note that our main
focus was on the statistical properties of the algorithm, not on computational efficiency; optimizing
computation speed will be an interesting topic for future investigation.

8

References
[1] Sridhar Mahadevan and Mauro Maggioni. Proto-value functions: A Laplacian framework for learning

representation and control in markov decision processes. Journal of Machine Learning Research, 8:
2169–2231, 2007. 1

[2] Ronald Parr, Christopher Painter-Wakefield, Lihong Li, and Michael Littman. Analyzing feature gener-
ation for value-function approximation. In ICML ’07: Proceedings of the 24th international conference
on Machine learning, pages 737 – 744, New York, NY, USA, 2007. ACM. 1

[3] Amir-massoud Farahmand, Mohammad Ghavamzadeh, Csaba Szepesvári, and Shie Mannor. Regularized
policy iteration. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural
Information Processing Systems (NIPS - 21), pages 441–448. MIT Press, 2009. 1

[4] Amir-massoud Farahmand, Mohammad Ghavamzadeh, Csaba Szepesvári, and Shie Mannor. Regularized
fitted Q-iteration for planning in continuous-space Markovian Decision Problems. In Proceedings of
American Control Conference (ACC), pages 725–730, June 2009. 1, 4

[5] Gavin Taylor and Ronald Parr. Kernelized value function approximation for reinforcement learning. In
ICML ’09: Proceedings of the 26th Annual International Conference on Machine Learning, pages 1017–
1024, New York, NY, USA, 2009. ACM. 1

[6] J. Zico Kolter and Andrew Y. Ng. Regularization and feature selection in least-squares temporal difference
learning. In ICML ’09: Proceedings of the 26th Annual International Conference on Machine Learning,
pages 521–528. ACM, 2009. 1

[7] Jeff Johns, Christopher Painter-Wakefield, and Ronald Parr. Linear complementarity for regularized pol-
icy evaluation and improvement. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R.S. Zemel, and
A. Culotta, editors, Advances in Neural Information Processing Systems (NIPS - 23), pages 1009–1017.
2010. 1

[8] Mohammad Ghavamzadeh, Alessandro Lazaric, Rémi Munos, and Matthew Hoffman. Finite-sample
analysis of lasso-TD. In Lise Getoor and Tobias Scheffer, editors, Proceedings of the 28th International
Conference on Machine Learning (ICML-11), ICML ’11, pages 1177–1184, New York, NY, USA, June
2011. ACM. ISBN 978-1-4503-0619-5. 1

[9] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad. Orthogonal matching pursuit: Recursive function ap-
proximation with applications to wavelet decomposition. In Proceedings of the 27th Annual Asilomar
Conference on Signals, Systems, and Computers, pages 40–44, 1993. 1

[10] Geoffrey M. Davis, Stéphane Mallat, and Marco Avellaneda. Adaptive greedy approximations. Journal
of Constructive Approximation, 13:57–98, 1997. 1

[11] Jeff Johns. Basis Construction and Utilization for Markov Decision Processes using Graphs. PhD thesis,
University of Massachusetts Amherst, 2010. 1

[12] Christopher Painter-Wakefield and Ronald Parr. Greedy algorithms for sparse reinforcement learning. In
Proceedings of the 29th International Conference on Machine Learning (ICML) (Accepted), 2012. 1

[13] Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning. Jour-
nal of Machine Learning Research, 6:503–556, 2005. 2, 4

[14] Csaba Szepesvári. Algorithms for Reinforcement Learning. Morgan Claypool Publishers, 2010. 2

[15] Andrew R. Barron, Albert Cohen, Wolfgang Dahmen, and Ronald A. Devore. Approximation and learning
by greedy algorithms. The Annals of Statistics, 36(1):64–94, 2008. 3, 4

[16] Amir-massoud Farahmand. Regularization in Reinforcement Learning. PhD thesis, University of Alberta,
2011. 6

[17] Rémi Munos and Csaba Szepesvári. Finite-time bounds for fitted value iteration. Journal of Machine
Learning Research, 9:815–857, 2008. 7

[18] Amir-massoud Farahmand, Rémi Munos, and Csaba Szepesvári. Error propagation for approximate pol-
icy and value iteration. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta,
editors, Advances in Neural Information Processing Systems (NIPS - 23), pages 568–576. 2010. 7

[19] Bin Yu. Rates of convergence for empirical processes of stationary mixing sequences. The Annals of
Probability, 22(1):94–116, January 1994. 7

9

