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Abstract

We study the problem of adaptive control of a high dimensional linear quadratic
(LQ) system. Previous work established the asymptotic convergence to an optimal
controller for various adaptive control schemes. More recently, for the average
cost LQ problem, a regret bound of O(

√
T ) was shown, apart form logarithmic

factors. However, this bound scales exponentially with p, the dimension of the
state space. In this work we consider the case where the matrices describing the
dynamic of the LQ system are sparse and their dimensions are large. We present
an adaptive control scheme that achieves a regret bound of O(p

√
T ), apart from

logarithmic factors. In particular, our algorithm has an average cost of (1 + ε)
times the optimum cost after T = polylog(p)O(1/ε2). This is in comparison to
previous work on the dense dynamics where the algorithm requires time that scales
exponentially with dimension in order to achieve regret of ε times the optimal cost.
We believe that our result has prominent applications in the emerging area of
computational advertising, in particular targeted online advertising and advertising
in social networks.

1 Introduction

In this paper we address the problem of adaptive control of a high dimensional linear quadratic (LQ)
system. Formally, the dynamics of a linear quadratic system are given by

x(t+ 1) = A0x(t) +B0u(t) + w(t+ 1),

c(t) = x(t)TQx(t) + u(t)TRu(t), (1)

where u(t) ∈ Rr is the control (action) at time t, x(t) ∈ Rp is the state at time t, c(t) ∈ R is
the cost at time t, and {w(t + 1)}t≥0 is a sequence of random vectors in Rp with i.i.d. standard
Normal entries. The matrices Q ∈ Rp×p and R ∈ Rr×r are positive semi-definite (PSD) matrices
that determine the cost at each step. The evolution of the system is described through the matrices
A0 ∈ Rp×p andB0 ∈ Rp×r. Finally by high dimensional system we mean the case where p, r � 1.

A celebrated fundamental theorem in control theory asserts that the above LQ system can be op-
timally controlled by a simple linear feedback if the pair (A0, B0) is controllable and the pair
(A0, Q1/2) is observable. The optimal controller can be explicitly computed from the matrices
describing the dynamics and the cost. Throughout this paper we assume that controllability and
observability conditions hold.

When the matrix Θ0 ≡ [A0, B0] is unknown, the task is that of adaptive control, where the system
is to be learned and controlled at the same time. Early works on the adaptive control of LQ systems
relied on the certainty equivalence principle [2]. In this scheme at each time t the unknown param-
eter Θ0 is estimated based on the observations collected so far and the optimal controller for the
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estimated system is applied. Such controllers are shown to converge to an optimal controller in the
case of minimum variance cost, however, in general they may converge to a suboptimal controller
[11]. Subsequently, it has been shown that introducing random exploration by adding noise to the
control signal, e.g., [14], solves the problem of converging to suboptimal estimates.

All the aforementioned work have been concerned with the asymptotic convergence of the controller
to an optimal controller. In order to achieve regret bounds, cost-biased parameter estimation [12, 8,
1], in particular the optimism in the face of uncertainty (OFU) principle [13] has been shown to be
effective. In this method a confidence set S is found such that Θ0 ∈ S with high probability. The
system is then controlled using the most optimistic parameter estimates, i.e., Θ̂ ∈ S with the smallest
optimum cost. The asymptotic convergence of the average cost of OFU for the LQR problem was
shown in [6]. This asymptotic result was extended in [1] by providing a bound for the cumulative
regret. Assume x(0) = 0 and for a control policy π define the average cost

Jπ = limsup
T→∞

1
T

T∑
t=0

E[ct] . (2)

Further, define the cumulative regret as

R(T ) =
T∑
t=0

(cπ(t)− J∗) , (3)

where cπ(t) is the cost of control policy π at time t and J∗ = J(Θ0) is the optimal average cost.
The algorithm proposed in [1] is shown to have cumulative regret Õ(

√
T ) where Õ is hiding the

logarithmic factors. While no lower bound was provided for the regret, comparison with the multi-
armed bandit problem where a lower bound of O(

√
T ) was shown for the general case [9], suggests

that this scaling with time for the cumulative regret is optimal.

The focus of [1] was on scaling of the regret with time horizon T . However, the regret of the pro-
posed algorithm scales poorly with dimension. More specifically, the analysis in [1] proves a regret
bound of R(T ) < Cpp+r+2

√
T . The current paper focuses on (many) applications where the state

and control dimensions are much larger than the time horizon of interest. A powerful reinforcement
learning algorithm for these applications should have regret which depends gracefully on dimension.
In general, there is little to be achieved when T < p as the number of degrees of freedom (pr + p2)
is larger than the number of observations (Tp) and any estimator can be arbitrary inaccurate. How-
ever, when there is prior knowledge about the unknown parameters A0, B0, e.g., when A0, B0 are
sparse, accurate estimation can be feasible. In particular, [3] proved that under suitable conditions
the unknown parameters of a noise driven system (i.e., no control) whose dynamics are modeled by
linear stochastic differential equations can be estimated accurately with as few as O(log(p)) sam-
ples. However, the result of [3] is not directly applicable here since for a general feedback gain L
even if A0 and B0 are sparse, the closed loop gain A0 − B0L need not be sparse. Furthermore,
system dynamics would be correlated with past observations through the estimated gain matrix L.
Finally, there is no notion of cost in [3] while here we have to obtain bounds on cost and its scaling
with p. In this work we extend the result of [3] by showing that under suitable conditions, un-
known parameters of sparse high dimensional LQ systems can be accurately estimated with as few
as O(log(p + r)) observations. Equipped with this efficient learning method, we show that sparse
high dimensional LQ systems can be adaptively controlled with regret Õ(p

√
T ).

To put this result in perspective note that even when x(t) = 0, the expected cost at time t + 1 is
Ω(p) due to the noise. Therefore, the cumulative cost at time T is bounded as Ω(pT ). Comparing
this to our regret bound, we see that for T = polylog(p)O( 1

ε2 ), the cumulative cost of our algorithm
is bounded by (1 + ε) times the optimum cumulative cost. In other words, our algorithm performs
close to optimal after polylog(p) steps. This is in contrast with the result of [1] where the algorithm
needs Ω(p2p) steps in order to achieve regret of ε times the optimal cost.

Sparse high dimensional LQ systems appear in many engineering applications. Here we are par-
ticularly motivated by an emerging field of applications in marketing and advertising. The use of
dynamical optimal control models in advertising has a history of at least four decades, cf. [17, 10]
for a survey. In these models, often a partial differential equation is used to describe how advertising
expenditure over time translates into sales. The basic problem is to find the advertising expendi-
ture that maximizes the net profit. The focus of these works is to model the temporal dynamics of
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the advertising expenditure (the control variable) and the variables of interest (sales, goodwill level,
etc.). There also exists a rich literature studying the spatial interdependence of consumers’ and
firms’ behavior to devise marketing schemes [7]. In these models space can be generalized beyond
geographies to include notions like demographies and psychometry.

Combination of spatial interdependence and temporal dynamics models for optimal advertising was
also considered [16, 15]. A simple temporal dynamics model is extended in [15] by allowing state
and control variables to have spatial dependence and introducing a diffusive component in the con-
trolled PDE which describes the spatial dynamics. The controlled PDE is then showed to be equiv-
alent to an abstract linear control system of the form

dx(t)
dt

= Ax(t) +Bu(t). (4)

Both [15] and [7] are concerned with the optimal control and the interactions are either dictated
by the model or assumed known. Our work deals with a discrete and noisy version of (4) where
the dynamics is to be estimated but is known to be sparse. In the model considered in [15] the
state variable x lives in an infinite dimensional space. Spatial models in marketing [7] usually
consider state variables which have a large number of dimensions, e.g., number of zip codes in the
US (∼ 50K). High dimensional state space and control is a recurring theme in these applications.

In particular, with the modern social networks customers are classified in a highly granular way, po-
tentially with each customer representing his own class. With the number of classes and complexity
of their interactions, its unlikely that we could formulate an effective model a priori for how classes
interact. Further, the nature of these interactions change over time with the changing landscape of
Internet services and information available to customers. This makes it important to efficiently learn
from real-time data about the nature of these interactions.

Notation: We bundle the unknown parameters into one variable Θ0 = [A0, B0] ∈ Rp×q where
q = p+ r and call it the interaction matrix. For v ∈ Rn, M ∈ Rm×n and p ≥ 1, we denote by ‖v‖p
the standard p-norm and by ‖M‖p the corresponding operator norm. For 1 ≤ i ≤ m, Mi represents
the ith row of matrix M . For S ⊆ [m], J ⊆ [n], MSJ is the submatrix of M formed by the rows in
S and columns in J . For a set S denote by |S| its cardinality. For an integer n denote by [n] the set
{1, . . . , n}.

2 Algorithm

Our algorithm employs the Optimism in the Face of Uncertainty (OFU) principle in an episodic
fashion. At the beginning of episode i the algorithm constructs a confidence set Ω(i) which is
guaranteed to include the unknown parameter Θ0 with high probability. The algorithm then chooses
Θ̃(i) ∈ Ω(i) that has the smallest expected cost as the estimated parameter for episode i and applies
the optimal control for the estimated parameter during episode i.

The confidence set is constructed using observations from the last episode only but the length of
episodes are chosen to increase geometrically allowing for more accurate estimates and shrinkage
of the confidence set by a constant factor at each episode. The details of each step and the pseudo
code for the algorithm follows.

Constructing confidence set: Define τi to be the start of episode i with τ0 = 0. Let L(i) be the
controller that has been chosen for episode i. For t ∈ [τi, τi+1) the system is controlled by u(t) =
−L(i)x(t) and the system dynamics can be written as x(t+ 1) = (A0−B0L(i))x(t) +w(t+ 1). At
the beginning of episode i+1, first an initial estimate Θ̂ is obtained by solving the following convex
optimization problem for each row Θu ∈ Rq separately:

Θ̂(i+1)
u ∈ argmin L(Θu) + λ‖Θu‖1, (5)

where

L(Θu) =
1

2∆τi+1

τi+1−1∑
t=τi

{xu(t+ 1)−ΘuL̃
(i)x(t)}2, ∆τi+1 = τi+1 − τi, (6)
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ALGORITHM: Reinforcement learning algorithm for LQ systems.

Input: Precision ε, failure probability 4δ, initial (ρ, Cmin, α) identifiable controller L(0), `(Θ0, ε)
Output: Series of estimates Θ̃(i), confidence sets Ω(i) and controllers L(i)

1: Let `0 = max(1,maxj∈[r] ‖L
(0)
j ‖2), and

n0 =
4 · 103 k2`20
α(1− ρ)C2

min

(
1
ε2

+
k

(1− ρ)2

)
log(

4kq
δ

),

n1 =
4 · 103 k2`(Θ0, ε)2

(1− ρ)C2
min

(
1
ε2

+
k

(1− ρ)2

)
log(

4kq
δ

).

Let ∆τ0 = n0, ∆τi = 4i(1 + i/ log(q/δ))n1 for i ≥ 1, and τi =
∑i
j=0 ∆τj .

2: for i = 0, 1, 2, . . . do
3: Apply the control u(t) = −L(i)x(t) until τi+1 − 1 and observe the trace {x(t)}τi≤t<τi+1 .
4: Calculate the estimate Θ̂(i+1) from (5) and construct the confidence set Ω(i+1).
5: Calculate Θ̃(i+1) from (9) and set L(i+1) ← L(Θ̃(i+1)).

and L̃(i) = [I,−L(i)T]T. The estimator Θ̂u is known as the LASSO estimator. The first term
in the cost function is the normalized negative log likelihood which measures the fidelity to the
observations while the second term imposes the sparsity constraint on Θu. λ is the regularization
parameter.

For Θ(1),Θ(2) ∈ Rp×q define the distance d(Θ(1),Θ(2)) as

d(Θ(1),Θ(2)) = max
u∈[p]

‖Θ(1)
u −Θ(2)

u ‖2, (7)

where Θu is the uth row of the matrix Θ. It is worth noting that for k-sparse matrices with k
constant, this distance does not scale with p or q. In particular, if the absolute value of the elements
of Θ(1) and Θ(2) are bounded by Θmax then d(Θ(1),Θ(2)) ≤ 2

√
kΘmax.

Having the estimator Θ̂(i) the algorithm constructs the confidence set for episode i as

Ω(i) = {Θ ∈ Rp×q | d(Θ, Θ̂(i)) ≤ 2−iε}, (8)

where ε > 0 is an input parameter to the algorithm. For any fixed δ > 0, by choosing τi judiciously
we ensure that with probability at least 1− δ, Θ0 ∈ Ω(i), for all i ≥ 1. (see Theorem 3.2).

Design of the controller: Let J(Θ) be the minimum expected cost if the interaction matrix is
Θ = [A,B] and denote by L(Θ) the optimal controller that achieves the expected cost J(Θ). The
algorithm implements OFU principle by choosing, at the beginning of episode i, an estimate Θ̃(i) ∈
Ω(i) such that

Θ̃(i) ∈ argmin
Θ∈Ω(i)

J(Θ). (9)

The optimal control corresponding to Θ̃(i) is then applied during episode i, i.e., u(t) =
−L(Θ̃(i))x(t) for t ∈ [τi, τi+1). Recall that for Θ = [A,B], the optimal controller is given through
the following relations

K(Θ) = Q+ATK(Θ)A−ATK(Θ)B(BTK(Θ)B +R)−1BTK(Θ)A , (Riccati equation)

L(Θ) = (BTK(Θ)B +R)−1BTK(Θ)A .

The pseudo code for the algorithm is summarized in the table.

3 Main Results

In this section we present performance guarantees in terms of cumulative regret and learning ac-
curacy for the presented algorithm. In order to state the theorems, we first need to present some
assumptions on the system.
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Given Θ ∈ Rp×q and L ∈ Rr×p, define L̃ = [I,−LT]T ∈ Rq×p and let Λ ∈ Rp×p be a solution to
the following Lyapunov equation

Λ−ΘL̃ΛL̃TΘT = I. (10)
If the closed loop system (A0−B0L) is stable then the solution to the above equation exists and the
state vector x(t) has a Normal stationary distribution with covariance Λ.

We proceed by introducing an identifiable regulator.

Definition 3.1. For a k-sparse matrix Θ0 = [A0, B0] ∈ Rp×q and L ∈ Rr×p, define L̃ =
[I,−LT]T ∈ Rq×p and let H = L̃ΛL̃T where Λ is the solution of Eq. (10) with Θ = Θ0. De-
fine L to be (ρ, Cmin, α) identifiable (with respect to Θ0) if it satisfies the following conditions for
all S ⊆ [q], |S| ≤ k.

(1) ‖A0 −B0L‖2 ≤ ρ < 1, (2) λmin(HSS) ≥ Cmin, (3) ‖HScSH
−1
SS‖∞ ≤ 1− α.

The first condition simply states that if the system is controlled using the regulator L then the closed
loop autonomous system is asymptotically stable. The second and third conditions are similar to
what is referred to in the sparse signal recovery literature as the mutual incoherence or irreprep-
resentable conditions. Various examples and results exist for the matrix families that satisfy these
conditions [18]. Let S be the set of indices of the nonzero entries in a specific row of Θ0. The
second condition states that the corresponding entries in the extended state variable y = [xT, uT] are
sufficiently distinguishable from each other. In other words, if the trajectories corresponding to this
group of state variables are observed, non of them can be well approximated as a linear combination
of the others. The third condition can be thought of as a quantification of the first vs. higher order
dependencies. Consider entry j in the extended state variable. Then, the dynamic of yj is directly
influenced by entries yS . However they are also influenced indirectly by other entries of y. The third
condition roughly states that the indirect influences are sufficiently weaker than the direct influences.
There exists a vast literature on the applicability of these conditions and scenarios in which they are
known to hold. These conditions are almost necessary for the successful recovery by `1 relaxation.
For a discussion on these and other similar conditions imposed for sparse signal recovery we refer
the reader to [19] and [20] and the references therein.

Define Θmin = mini∈[p],j∈[q],Θ0
ij 6=0 |Θ0

ij |. Our first result states that the system can be learned
efficiently from its trajectory observations when it is controlled by an identifiable regulator.
Theorem 3.2. Consider the LQ system of Eq. (1) and assume Θ0 = [A0, B0] is k-sparse. Let
u(t) = −Lx(t) where L is a (ρ, Cmin, α) identifiable regulator with respect to Θ0 and define
` = max(1,maxj∈[r] ‖Lj‖2). Let n denote the number of samples of the trajectory that is observed.
For any 0 < ε < min(Θmin,

`
2 ,

3
1−ρ ), there exists λ such that, if

n ≥ 4 · 103 k2`2

α2(1− ρ)C2
min

(
1
ε2

+
k

(1− ρ)2

)
log(

4kq
δ

) , (11)

then the `1-regularized least squares solution Θ̂ of Eq. (5) satisfies d(Θ̂,Θ0) ≤ ε with probability
larger than 1− δ. In particular, this is achieved by taking λ = 6`

√
log(4q/δ)/(nα2(1− ρ)) .

Our second result states that equipped with an efficient learning algorithm, the LQ system of Eq. (1)
can be controlled with regret Õ(p

√
T log

3
2 (1/δ)) under suitable assumptions.

Define an ε-neighborhood of Θ0 asNε(Θ0) = {Θ ∈ Rp×q | d(Θ0,Θ) ≤ ε}. Our assumption asserts
the identifiably of L(Θ) for Θ close to Θ0.

Assumption: There exist ε, C > 0 such that for all Θ ∈ Nε(Θ0), L(Θ) is identifiable w.r.t. Θ0 and

σL(Θ0, ε) = sup
Θ∈Nε(Θ0)

‖L(Θ)‖2 ≤ C, σK(Θ0, ε) = sup
Θ∈Nε(Θ0)

‖K(Θ)‖2 ≤ C.

Also define

`(Θ0, ε) = sup
Θ∈Nε(Θ0)

max(1,max
j∈[r]
‖Lj(Θ)‖2) .

Note that `(Θ0, ε) ≤ max(C, 1), since maxj∈[r] ‖Lj(Θ)‖2 ≤ ‖L(Θ)‖2.
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Theorem 3.3. Consider the LQ system of Eq. (1). For some constants ε, Cmin and 0 < α, ρ < 1,
assume that an initial (ρ, Cmin, α) identifiable regulator L(0) is given. Further, assume that for any
Θ ∈ Nε(Θ0), L(Θ) is (ρ, Cmin, α) identifiable. Then, with probability at least 1− δ the cumulative
regret of ALGORITHM (cf. the table) is bounded as

R(T ) ≤ Õ(p
√
T log

3
2 (1/δ)) , (12)

where Õ is hiding the logarithmic factors.

4 Analysis

4.1 Proof of Theorem 3.2

To prove theorem 3.2 we first state a set of sufficient conditions for the solution of the `1-regularized
least squares to be within some distance, as defined by d(·, ·), of the true parameter. Subsequently,
we prove that these conditions hold with high probability.

Define X = [x(0), x(1), . . . , x(n − 1)] ∈ Rp×n and let W = [w(1), . . . , w(n)] ∈ Rp×n be the
matrix containing the Gaussian noise realization. Further let the Wu denote the uth row of W .

Define the normalized gradient and Hessian of the likelihood function (6) as

Ĝ = −∇L(Θ0
u) =

1
n
L̃XWT

u , Ĥ = ∇2L(Θ0
u) =

1
n
L̃XXTL̃T . (13)

The following proposition, a proof of which can be found in [20], provides a set of sufficient condi-
tions for the accuracy of the `1-regularized least squares solution.
Proposition 4.1. Let S be the support of Θ0

u with |S| < k, and H be defined per Definition 3.1.
Assume there exist 0 < α < 1 and Cmin > 0 such that

λmin(HS,S) ≥ Cmin , ‖HSc,SH
−1
S,S‖∞ ≤ 1− α . (14)

For any 0 < ε < Θmin if the following conditions hold

‖Ĝ‖∞ ≤
λα

3
, ‖ĜS‖∞ ≤

εCmin

4k
− λ, (15)

‖ĤSCS −HSCS‖∞ ≤
α

12
Cmin√
k
, ‖ĤSS −HSS‖∞ ≤

α

12
Cmin√
k
, (16)

the `1-regularized least square solution (5) satisfies d(Θ̂u,Θ0
u) ≤ ε.

In the sequel, we prove that the conditions in Proposition 4.1 hold with high probability given that the
assumptions of Theorem 3.2 are satisfied. A few lemmas are in order proofs of which are deferred
to the Appendix.

The first lemma states that Ĝ concentrates in infinity norm around its mean of zero.
Lemma 4.2. Assume ρ = ‖A0 − B0L‖2 < 1 and let ` = max(1,maxi∈[r] ‖Li‖2). Then, for any
S ⊆ [q] and 0 < ε < `

2

P
{
‖ĜS‖∞ > ε

}
≤ 2|S| exp

(
−n(1− ρ)ε2

4`2

)
. (17)

To prove the conditions in Eq. (16) we first bound in the following lemma the absolute deviations
of the elements of Ĥ from their mean H , i.e., |Ĥij −Hij |.
Lemma 4.3. Let i, j ∈ [q], ρ = ‖A0 −B0L‖2 < 1, and 0 < ε < 3

1−ρ < n . Then,

P(|Ĥij −Hij | > ε) ≤ 2 exp
(
−n(1− ρ)3ε2

24`2

)
. (18)

The following corollary of Lemma 4.3 bounds ‖ĤJS −HJS‖∞ for J, S ⊆ [q].
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Corollary 4.4. Let J, S ⊆ [q], ρ = ‖A0 −B0L‖2 < 1, ε < 3|S|
1−ρ , and n > 3

1−ρ . Then,

P(‖ĤJS −HJS‖∞ > ε) ≤ 2|J ||S| exp
(
−n(1− ρ)3ε2

24|S|2`2

)
. (19)

The proof of Corollary 4.4 is by applying union bound as

P(‖ĤJS −HJS‖∞ > ε) ≤ |J ||S| max
i∈J,j∈S

P(|Ĥij −Hij | > ε/|S|). (20)

Proof of Theorem 3.2. We show that the conditions given by Proposition 4.1 hold. The conditions
in Eq. (14) are true by the assumption of identifiability of L with respect to Θ0. In order to make the
first constraint on Ĝ imply the second constraint on Ĝ, we assume that λα/3 ≤ εCmin/(4k) − λ,
which is ensured to hold if λ ≤ εCmin/(6k). By Lemma 4.2, P(‖Ĝ‖∞ > λα/3) ≤ δ/2 if

λ2 =
36`2

n(1− ρ)α2
log(

4q
δ

) . (21)

Requiring λ ≤ εCmin/(6k), we obtain

n ≥ 362 k2`2

ε2α2C2
min(1− ρ)

log(
4q
δ

) . (22)

The conditions on Ĥ can also be aggregated as ‖Ĥ[q],S−H[q],S‖∞ ≤ αCmin/(12
√
k) . By Corollary

4.4, P(‖Ĥ[q]S −H[q]S‖∞ > αCmin/(12
√
k)) ≤ δ/2 if

n ≥ 3456 k3`2

α2(1− ρ)3C2
min

log(
4kq
δ

). (23)

Merging the conditions in Eq. (22) and (23) we conclude that the conditions in Proposition 4.1 hold
with probability at least 1− δ if

n ≥ 4 · 103 k2`2

α2(1− ρ)C2
min

(
1
ε2

+
k

(1− ρ)2

)
log(

4kq
δ

). (24)

Which finishes the proof of Theorem 3.2.

4.2 Proof of Theorem 3.3

The high-level idea of the proof is similar to the proof of main Theorem in [1]. First, we give a
decomposition for the gap between the cost obtained by the algorithm and the optimal cost. We then
upper bound each term of the decomposition separately.

4.2.1 Cost Decomposition

Writing the Bellman optimality equations [5, 4] for average cost dynamic programming, we get

J(Θ̃t) + x(t)TK(Θ̃t)x(t) = min
u

{
x(t)TQx(t) + uTRu+ E

[
z(t+ 1)TK(Θ̃t)z(t+ 1)|Ft

]}
,

where Θ̃t = [Ã, B̃] is the estimate used at time t, z(t + 1) = Ãtx(t) + B̃tu + w(t + 1), and Ft
is the σ-field generated by the variables {(zτ , xτ )}tτ=0. Notice that the left-hand side is the average
cost occurred with initial state x(t) [5, 4]. Therefore,

J(Θ̃t) + x(t)TK(Θ̃t)x(t) = x(t)TQx(t) + u(t)TRu(t)

+ E
[
(Ãtx(t) + B̃tu(t) + w(t+ 1))TK(Θ̃t)(Ãtx(t) + B̃tu(t) + w(t+ 1))|Ft

]
= x(t)TQx(t) + u(t)TRu(t) + E

[
(Ãtx(t) + B̃tu(t))TK(Θ̃t)(Ãtx(t) + B̃tu(t))|Ft

]
+ E

[
w(t+ 1)TK(Θ̃t)w(t+ 1)|Ft]

= x(t)TQx(t) + u(t)TRu(t) + E
[
x(t+ 1)TK(Θ̃t)x(t+ 1)|Ft

]
+
(

(Ãtx(t) + B̃tu(t))TK(Θ̃t)(Ãtx(t) + B̃tu(t))

− (A0x(t) +B0u(t))TK(Θ̃t)(A0x(t) +B0u(t))
)
.
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Consequently
T∑
t=0

(
x(t)TQx(t) + u(t)TRu(t)

)
=

T∑
t=0

J(Θ̃t) + C1 + C2 + C3, (25)

where

C1 =
T∑
t=0

(
x(t)TK(Θ̃t)x(t)− E

[
x(t+ 1)TK(Θ̃t+1)x(t+ 1)

∣∣Ft]), (26)

C2 = −
T∑
t=0

E
[
x(t+ 1)T(K(Θ̃t)−K(Θ̃t+1))x(t+ 1)

∣∣Ft], (27)

C3 = −
T∑
t=0

(
(Ãtx(t) + B̃tu(t))TK(Θ̃t)(Ãtx(t) + B̃tu(t))

− (A0x(t) +B0u(t))TK(Θ̃t)(A0x(t) +B0u(t))
)
. (28)

4.2.2 Good events

We proceed by defining the following two events in the probability space under which we can bound
the terms C1, C2, C3. We then provide a lower bound on the probability of these events.

E1 = {Θ0 ∈ Ω(i), for i ≥ 1}, E2 = {‖w(t)‖ ≤ 2
√
p log(T/δ), for 1 ≤ t ≤ T + 1}.

4.2.3 Technical lemmas

The following lemmas establish upper bounds on C1, C2, C3.
Lemma 4.5. Under the event E1 ∩ E2, the following holds with probability at least 1− δ.

C1 ≤
√

128C
(1− ρ)2

√
T p log(

T

δ
)

√
log(

1
δ

) . (29)

Lemma 4.6. Under the event E1 ∩ E2, the following holds.

C2 ≤
8C

(1− ρ)2
p log(

T

δ
) log T . (30)

Lemma 4.7. Under the event E1 ∩ E2, the following holds with probability at least 1− δ.

|C3| ≤ 800
( C

1− ρ

) 5
2
k

√(
1 +

kε2

(1− ρ)2

)
· 1 + C

Cmin
· log(

pT

δ
)

√
log(

4kq
δ

) · p log T
√
T . (31)

Lemma 4.8. The following holds true.
P(E1) ≥ 1− δ, P(E2) ≥ 1− δ. (32)

Therefore, P(E1 ∩ E2) ≥ 1− 2δ.

We are now in position to prove Theorem 3.3.

Proof (Theorem 3.3). Using cost decomposition (Eq. (25)), under the event E1 ∩ E2, we have
T∑
t=0

(x(t)TQx(t) + u(t)TRu(t)) =
T∑
t=0

J(Θ̃t) + C1 + C2 + C3

≤ TJ(Θ0) + C1 + C2 + C3,

where the last inequality stems from the choice of Θ̃t by the algorithm (cf. Eq (9)) and the fact that
Θ0 ∈ Ωt, for all t under the event E1. Hence, R(T ) ≤ C1 + C2 + C3 . Now using the bounds on
C1, C2, C3, we get the desired result.
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