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Abstract

Multi-task learning (MTL) aims to improve generalization performance by learn-
ing multiple related tasks simultaneously and identifying the shared information
among tasks. Most of existing MTL methods focus on learning linear models
under the supervised setting. We propose a novel semi-supervised and nonlinear
approach for MTL using vector fields. A vector field is a smooth mapping from
the manifold to the tangent spaces which can be viewed as a directional derivative
of functions on the manifold. We argue that vector fields provide a natural way to
exploit the geometric structure of data as well as the shared differential structure
of tasks, both of which are crucial for semi-supervised multi-task learning. In this
paper, we develop multi-task vector field learning (MTVFL) which learns the pre-
dictor functions and the vector fields simultaneously. MTVFL has the following
key properties. (1) The vector fields MTVFL learns are close to the gradient fields
of the predictor functions. (2) Within each task, the vector field is required to be as
parallel as possible which is expected to span a low dimensional subspace. (3) The
vector fields from all tasks share a low dimensional subspace. We formalize our
idea in a regularization framework and also provide a convex relaxation method
to solve the original non-convex problem. The experimental results on synthetic
and real data demonstrate the effectiveness of our proposed approach.

1 Introduction

In many applications, labeled data are expensive and time consuming to obtain while unlabeled data
are abundant. The problem of using unlabeled data to improve the generalization performance is
often referred to as semi-supervised learning (SSL). It is well known that in order to make semi-
supervised learning work, some assumptions on the dependency between the predictor function and
the marginal distribution of data are needed. The manifold assumption [15, 5], which has been
widely adopted in the last decade, states that the predictor function lives in a low dimensional man-
ifold of the marginal distribution.

Multi-task learning was proposed to enhance the generalization performance by learning multiple
related tasks simultaneously. The abundant literature on multi-task learning demonstrates that the
learning performance indeed improves when the tasks are related [4, 6, 7]. The key step in MTL
is to find the shared information among tasks. Evgeniou et al. [12] proposed a regularization MTL
framework which assumes all tasks are related and close to each other. Ando and Zhang [2] pro-
posed a structural learning framework, which assumed multiple predictors for different tasks shared
a common structure on the underlying predictor space. An alternating structure optimization (ASO)
method was proposed for linear predictors which assumed the task parameters shared a low dimen-
sional subspace. Arvind et al. [1] generalized the idea of sharing a subspace by assuming that all
task parameters lie on a manifold.



(a) A parallel field on R? (b) A parallel field on Swiss roll

Figure 1: Examples of parallel fields. The parallel field on R? spans a one dimensional subspace
and the parallel field on the Swiss roll spans a two dimensional subspace.

In this paper, we consider semi-supervised multi-task learning (SSMTL). Although many SSL meth-
ods have been proposed in the literature [10], these methods are often not directly amenable to MTL
extensions [18]. Liu et al. [18] proposed an SSMTL framework which encouraged related models
to have similar parameters. However they require that related tasks share similar representations [9].
Wang et al. [19] proposed another SSMTL method under the assumption that the tasks are clus-
tered [4, 14]. The cluster structure is characterized by task parameters of linear predictor functions.
For linear predictors, the task parameters they used are actually the constant gradient of the predictor
functions which form a first order differential structure. For general nonlinear predictor functions,
we show it is more natural to capture the shared differential structure using vector fields.

In this paper, we propose a novel SSMTL formulation using vector fields. A vector field is a smooth
mapping from the manifold to the tangent spaces which can be viewed as a directional derivative
of functions on the manifold. In this way, a vector field naturally characterizes the differential
structure of functions while also providing a natural way to exploit the geometric structure of data;
these are the two most important aspects for SSMTL. Based on this idea, we develop the multi-task
vector field learning (MTVFL) method which learns the prediction functions and the vector fields
simultaneously. The vector fields we learned are forced to be close to the gradient fields of predictor
functions. In each task, the vector field is required to be as parallel as possible. We say that a
vector field is parallel if the vectors are parallel along the geodesics on the manifold. In extreme
cases, when the manifold is a linear (or an affine) space, then the geodesics of such manifold are
straight lines. In such cases, the space spanned by these parallel vectors is a simply one-dimensional
subspace. Thus when the manifold is flat (i.e., with zero curvature) or the curvature is small, it is
expected that these parallel vectors concentrate on a low dimensional subspace. As an example, we
can see from Fig. 1 that the parallel field on the plane spans a one-dimensional subspace and the
parallel field on the Swiss roll spans a two-dimensional subspace. For the multi-task case, these
vector fields share a low dimensional subspace. In addition, we assume these vector fields share a
low dimensional subspace among all tasks. In essence, we use a first-order differential structure to
characterize the shared structure of tasks and use a second-order differential structure to characterize
the specific parts of tasks. We formalize our idea in a regularization framework and provide a convex
relaxation method to solve the original non-convex problem. We have performed experiments using
both synthetic and real data; results demonstrate the effectiveness of our proposed approach.

2 Multi-task Learning: A Vector Field Approach

In this section, we first introduce vector fields and then present multi-task learning via exploring
shared structure using vector fields.

2.1 Multi-task Learning Setting and Vector Fields

We first introduce notation and symbols. We are given m tasks, with n; samples z,i = 1,...,n;
for the I-th task. The total number of samples isn = > ; Tu. For the [-th task, we assume the data

{«!} are on a d;-dimensional manifold M. All of these data manifolds are embedded in the same



D-dimensional ambient space R”. It is worth noting that the dimensions of different data manifolds
are not required to be the same. Without loss of generality, we assume the first n) (n] < n;) samples
are labeled, with yg € R for regression and yé € {—1, 1} for classification, j = 1,. .., n}. The total
number of labeled samples is n' = Zl ng For the [-th task, we denote the regression function or
classification function by f;*. The goal of semi-supervised multi-task learning is to learn the function
value on unlabeled data, i.e., f;(z}),n) +1 <i < mny.

Given the [-th task we first construct a nearest nelghbor graph by either e -neighborhood or k nearest
neighbors. Let x! ~ a:l denote that ! and acj are neighbors. Let w - denote the weight which
measures the similarity between x! and 7! ;- It can be approximated by the heat kernel weight or the
simple 0-1 weight. For each point z}, we estimate its tangent space T),: M by performing PCA on its
neighborhood. We choose the largest d; eigenvectors as the bases since the tangent space Tgﬂé M has
the same dimension as the manifold M;. Let T} € RP*4 be the matrix whose columns constitute
an orthonormal basis for T,1 M. It is easy to show that P} = TT!" is the unique orthogonal
projection from R” onto the tangent space Tr,’L-M [13]. That is, for any vector a € R™, we have

Pla € T,yMand (a — Pla) L Pla.

We now formally define the vector field and show how to represent it in the discrete case.

Definition 2.1 ([16]). A vector field X on the manifold M is a continuous map X : M — TM
where T M is the set of tangent spaces, written as p — Xp,, with the property that for each p € M,
X, is an element of T, M.

We can think of a vector field on the manifold as an arrow in the same way as we think of the vector
field in the Euclidean space, with a given magnitude and direction attached to each point on the
manifold, and chosen to be tangent to the manifold. A vector field V' on the manifold is called a
gradient field if there exists a function f on the manifold such that V f = V where V is the covariant
derivative on the manifold. Therefore, gradient fields are one kind of vector fields. It plays a critical
role in connecting vector fields and functions.

Let V; be a vector field on the manifold M;. For each point x,li, let V: denote the value of the

vector field V; at a:ﬁ Recall the definition of vector field, V,: should be a vector in the tangent
space T /\/ll Therefore, we can represent it by the coordinates of the tangent space 1 /\/ll as
Vo = Tlvl where v} € R% is the local representation of V,; with respect of 7. Let f; be a function
on the manifold M ;- By abusing the notation without confusmn we also use f; to denote the vector

fi="(fila}),..., fi(z},))T and use V; to denote the vector V; = (vllT, oy T) € R4™, That

rung

is, V} is a d;yn;-dimensional big column vector which concatenates all the vf ’s for a fixed [. Then for
each task, we aim to compute the vector f; and the vector V.

2.2 Multi-task Vector Field Learning

In this section, we introduce multi-task vector field learning (MTVFL).

Many existing MTL methods capture the task relatedness by sharing task parameters. For linear
predictors, the task parameters they used are actually the constant gradient vectors of the predictor
functions. For general nonlinear predictor functions, we show it is natural to capture the shared
differential structure using vector fields. Let f denote the vector (f{,..., f£)T and V denote the

T , )
vector (ViT, ..., V)T = (v}",...,vm™)T. We propose to learn f and V' simultaneously:

e The vector field V; should be close to the gradient field V f; of f;, which can be formularized

as follows: .
in Ba(7,V Zm A=Y [ IRVl M
1=1 /M

e The vector field V; should be as parallel as possible:

mlnRg ZRQ V1) : Z/ IVVilis, 2



where V is the covariant derivative on the manifold, where || - ||gs denotes the Hilbert-
Schmidt tensor norm [11]. V'V measures the change of the vector field, therefore minimiz-
ing [, [[VVi[fs enforces the vector field V; to be parallel.

o All vector fields share an h-dimensional subspace where h is a predefined parameter:
Thl =ul +0%Tw!, s.t.007 = I.,. 3)

Since these vector fields are assumed to share a low dimensional space, it is expected that the residual
vector u! is small. We define another term R3 to control the complexity as follows:

m  n

Ry(v},w},©) = > allul|l® + BT )
=1 1i=1
m  n

= Y > alTii - 0wl + BT}l (5)
=1 1i=1

Note that o and [ are pre-specified coefficients, indicating the importance of the corresponding
regularization component. Since we would like the vector field to be parallel, the vector norm is not
expected to be too small. Besides, we assume the vector fields share a low dimensional subspace,
the residual vector u! is expected to be small. In practice we suggest to use a small 3 and a large a.
By setting 5 = 0, R3 will reduce to the regularization term proposed in ASO if we also replace the
tangent vectors by the task parameters. Therefore, this formulation is a generalization of ASO.

It can be verified that w!™ = ©T!v} = arg min,: R3(vl,w!,©). Thus we have u} = T}v} —
0Tw! = (I — ©TO)T!v!. Therefore, we can rewrite R as follows:

m

ny

Ry(V,0) = > > allufl® + BITi v
=1 1=1
m  n

= 3% (all(1 - ©TO)TI + BT ©)

=1 1=1
= aVTAeV +8VTHY,

where H is a block diagonal matrix with the diagonal blocks being TilTTil, and Ag is another block
diagonal matrix with the diagonal blocks being 7! (I—07©)T (I—0TO)T! = T!" (1—0TO)T}.
Therefore, the proposed formulation solves the following optimization problem:

arg min E(f,V,0) = Ro(f) + MiR1(f,V) + A2 Ra(V) + A\3R3(V,0)  s.t. oo’ = Insn, (7)
f,V,e

where Ro(f) is the loss function. For simplicity, we use the quadratic loss function Ro(f) =
Z?il Zgl(fl(xi) - 95)2
2.3 Objective Function in the Matrix Form

To simplify Eq. (7), in this section we rewrite our objective function in the matrix form.

Using the discrete methods in [17], we have the following discrete form equations:

Ry V) = Y wly (@ —ab) Tl — 1} + 1), ®)
inj

Ro(fiVi) = 3 wly | PITif — i), ©)
i~j

Interestingly, with some algebraic transformations, we have the following matrix forms for our
objective functions:

Ri(fi,Vi) = 2fF Lifyi + VPGV — 2V C fy, (10)



where L; is the graph Laplacian matrix, G; is a d;n; x d;n; block diagonal matrix, and C; =
[CﬁT, ey C,lLT}T is a dyn; x n; block matrix. Denote the i-th d; x d; diagonal block of G; by Gﬁi
and the i-th d; x n; block of C; by C’f, we have

1 Ll NG INT Ll ot T
Gy = Zwij(l’j - xi)(%‘ —z;)",C; = Zwij('rj - %)SU ) (11
jei i~
where st € R™ is a selection vector of all zero elements except for the i-th element being —1 and
the j-th element being 1. And R, becomes

Ry(Vi) = Vi" BV, (12)
where By is a djn; X d;n; sparse block matrix. If we index each d; x d; block by Bll-j, then we have
T
B, = > wi;(@Q,Q, +1), (13)
jri
Lol
le'j _ —2w;;Qyy, @i~y ’ (14)
0, otherwise
where Q}; = TZTT}. It is worth nothing that both R; and Ry depend on tangent spaces 7.
Thus we can further write Ry (f, V) and Ro(V) as follows
Ri(f.V) = Y Ri(fi,Vi) =2f"Lf+ VTGV —2v7CY, (15)
=1
Ry(V) = > Ry(V)=V'BY, (16)
=1

where L, G and B are block diagonal matrices with the corresponding [-th block matrix being L;,
G and By, respectively. C'is a column block matrix with the /-th block matrix being C}.

Let I denote an n x n diagonal matrix where I;; = 1 if the corresponding ¢-th data is labeled and
I;; = 0 otherwise. And let y € R™ be a column vector whose ¢-th element is the corresponding label
of the i-th labeled data and 0 otherwise. Then Ro(f) = = (f — y)"I(f — y). Finally, we get the

following matrix form for our objective function in Eq. (7) with the constraint ©07 = I, .}, as:
E(f,V.0) = Ro(f) + MEi(f,V) + A2 Ra(V) + A3 R3(V, ©)
1
—(f - WDTI(f —y) + MRFTLf+ VTGV —2VTCF) + VT BV + AV (ade + BH)V
1
= (- TI(f —y) + 20 fTLf + VI (MG + A2B + As(ade + BH))V — 21 VI CF.

It is worth noting that matrices L, G, B, C' depend on data, and only the matrix Ag is related to ©.

3 Optimization

In this section, we discuss how to solve the following optimization problem:

arg min E(f,V,0), s.t. 007 = I;. (17)
f,V,e

We use the alternating optimization to solve this problem.

e Optimization of f and V. For a fixed ©, the optimal f and V' can be obtained via solving

arg min E(f,V,0). (18)
(A%

o Optimization of ©. For a fixed V, the optimal © can be obtained via solving.

arg min R3(V,0), s.t. 00T = I;,),. (19)
(C]



3.1 Optimization of f/ and V" for a Given O

When O is fixed, the objective function is similar to that of the single task case. However, there are
some differences we would like to mention. Firstly, when constructing the nearest neighbor graph,
data points from different tasks are disconnected. Therefore when estimating tangent spaces, data
points from different tasks are independent. Secondly, we do not require the dimension of tangent
spaces from each task to be the same.

‘We note that

E 1 1
o8 _ 2 =I4+2)\L ) f—2),CTV —2—y, (20)
af n’ n’
oF
v - —2MCf +2(MG + Mo H + \3(ade + SH))V. @21
Requiring the derivatives to be vanish, we get the following linear system
%H + 2\ L -nCT I\ _ %y (22)
-\ C MG+ B+ XA(adeo+pH))\V ) L0 )

Except for the matrix Ag, all other matrices can be computed in advance and will not change during
the iterative process.

3.2 Optimization of © for a Given V/

Since functions Ro(f), R1(f,V) and R(V') are not related to the variable ©, we only need to
optimize R3(V, ©) subject to @O = I}, 5.

Recall Eq. (6), we rewrite R3(V, ©) as follows:

O = arg mini ia (ll(f —oTe)Tvj|* + BIITMIIQ)
® D= @
= arg@minatr (VT((l + g)l - @TG))V) (23)
= arg@max tr(evv’er),
where V = (T}vi, ... I o ) is a D x n matrix with each column being a tangent vector. The

optimal © can be obtained by using singular value decomposition (SVD). Let V = Z; 271 be the
SVD of V and we assume that the singular values are in a decreasing order in 3. Then the rows of
© are given by the first & columns of Z;.

3.3 Convex Relaxation

The orthogonality constraint in Eq. (23) is non-convex. Next, we propose to convert Eq. (23) into a
convex formulation by relaxing its feasible domain into a convex set.

Let 7 = 3/a. It can be verified that the following equality holds: (1+7)I —0T0 = n(1+n)(nl +
©7©)~!. Then we can rewrite R3(V,0) as R3(V,0) = an(l + n) tr (VI (nI + 670)71V).
Let M, be defined as M, = {M : M = 070,007 = I,0 € R"*4}, The convex hull [8] of M,
can be expressed as the convex set M, given by M. = {M : tr(M) = h, M < I,M € S%} and
each element in M, is referred to as an extreme point of M.

To convert the non-convex problem Eq. (23) into a convex formulation, we replace ©7'© with M,
and naturally relax its feasible domain into a convex set based on the relationship between M, and
M. presented above; this results in an optimization problem as

arg min R3(V, M), s.t.,tr(M)=h,M <I,M €S%, (24)
(C]

where R3(V, M) is defined as R3(V, M) = an(l + n) tr (VI (nI + M)~'V) . It follows from
[3, Theorem 3.1] that the relaxed Rj3 is jointly convex in V and M. After we obtain the optimal
M, the optimal © can be approximated using the first i eigenvectors (corresponding to the largest
h eigenvalues) of the optimal M.



4 Experiments

In this section, we evaluate our method on one synthetic data and one real data set. We compare
the proposed Multi-Task Vector Field Learning (MTVFL) algorithm against the following methods:
(a) Single Task Vector Field Learning (STVFL, or PFR), (b) Alternating Structure Optimization
(ASO) and (c) its nonlinear version - Kernelized Alternating Structure Optimization (KASO). The
kernel constructed in KASO uses both labeled data and unlabeled data. Thus it can be viewed as a
semi-supervised MTL method.

4.1 Synthetic Data
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Figure 2: (a) Performance of MTVFL and STVFL; (b) The singular value distribution.

We first construct a synthetic data to evaluate our method in comparison with the semi-supervised
single task learning method (STVFL). We generate two data sets including Swiss roll and Swiss roll
with hole embedded in 3-dimensional Euclidean space. The Swiss roll is generated by the following
equations © = tycosty;y = to;z = tysinty where t1 € [37/2,97/2];t2 € [0,21]. The Swill
roll with hole excludes points within ¢; € [9,12] and t; € [9,14]. The ground truth function is
f(x,y,z) = t1. This test is a semi-supervised multi-task regression problem. We randomly select a
number of labeled data in each task and try to predict the value on other unlabeled data.

Each data set has 400 points. We construct a nearest neighbor graph for each task. The number of
nearest neighbors is set to 5 and the manifold dimension is set to 2 as they are both 2 dimensional
manifolds. The shared subspace dimension is set to 2. The regularization parameters are chosen
via cross-validation. We perform 100 independent trials with randomly selected labeled sets. The
performance is measured by the mean squared error (MSE). We also try ASO and KASO, however
they perform poorly since the data is highly nonlinear. The averaged MSE over two tasks is presented
in Fig. 2. We can observe that MTVFL consistently outperforms STVFL which demonstrates the
effectiveness of SSMTL.

We also show the singular value distribution of the ground truth gradient fields. Given the ground
truth f, we can compute the gradient field V' by taking derivatives of R;(f, V') with respect to V.
Requiring the derivative to vanish, we get the following equation GV = C'f. After obtaining V/, the
gradient vector V. at each point can be obtained as V1 = T!vt. Then we perform PCA on these
vectors and the singular values of the covariance matrix of ng are shown in Fig. 2 (b). As can be
seen from Fig. 2 (b), the number of dominant singular values is 2 which indicates that the ground
truth gradient fields concentrate on a 2-dimensional subspace.

4.2 Landmine Detection

We use the landmine data set studied in [20]. There are totally 29 sets of data which are collected
from various real landmine fields. Each data example is represented by a 9-dimensional vector with
a binary label, which is either 1 for landmine or O for clutter. The problem of landmine detection

!The data set is available at http: //www.ee.duke.edu/~1lcarin/LandmineData. zip.
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Figure 3: (a) Performance of various MTL algorithms; (b) The singular value distribution.

is to predict the labels of unlabeled objects. Among the 29 data sets, 1-15 correspond to relatively
highly foliated regions and 16-29 correspond to bare earth or desert regions. Following [20], we
choose the data sets 1-10 and 16-24 to form 19 tasks.

The basic setup of all the algorithms is as follows. First, we construct a nearest neighbor graph
for each task. The number of nearest neighbors is set to 10 and the manifold dimension is set to 4
empirically. These two parameters are the same for all 19 tasks. The shared subspace dimension
is set to be 5 for both of MTVFL and ASO and the shared subspace dimension of KASO is set to
10. All the regularization parameters for the four algorithms are chosen via cross-validation. Note
that KASO needs to construct a kernel matrix. We use Gaussian kernel in KASO and the Gaussian
width is set to be optimal by searching within [0.01, 10].

We perform 100 independent trials with randomly selected labeled sets. We measure the perfor-
mance by AUC which denotes area under the Receiver Operation Characteristic (ROC) curve. A
large AUC value indicates good classification performance. Since the data have severely unbal-
anced labels, following [20], we do a special setting that assures there is at least one “1”” and one “0”
labeled sample in the training set of each task. The AUC averaged over the 19 tasks is presented in
Fig. 3 (a). As can be seen, MTVFL consistently outperforms the other three algorithms. When the
number of labeled data increases, KASO outperforms STVFL. ASO does not improve much when
the amount of labeled data increases, which is probably because the data have severely unbalanced
labels and the ground truth predictor function is nonlinear. We also show the singular value distri-
bution of the ground truth gradient fields in Fig. 3 (b). The computation of the singular values is the
same as in Section. 4.1. As can be seen from Fig. 3 (b), the number of dominant singular values
is 5. The percentage of the sum of the first 5 singular values over the total sum is 91.34%, which
indicates that the ground truth gradient fields concentrate on a 5-dimensional subspace.

5 Conclusion

In this paper, we propose a new semi-supervised multi-task learning formulation using vector fields.
We show that vector fields can naturally capture the shared differential structure among tasks as well
as the structure of the data manifolds. Our experimental results on synthetic and real data demon-
strate the effectiveness of the proposed method. There are several interesting directions suggested
in this work. One is the relation between learning on task parameters and learning on vector fields.
Ultimately, both of them are learning functions. Another one is to apply other assumptions made in
the multi-task learning community into vector field learning, e.g., the cluster assumption.
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