
Action-Model Based Multi-agent Plan Recognition

Hankz Hankui Zhuo
Department of Computer Science

Sun Yat-sen University, Guangzhou, China 510006
zhuohank@mail.sysu.edu.cn

Qiang Yang
Huawei Noah’s Ark Research Lab

Core Building 2, Hong Kong Science Park, Shatin, Hong Kong
qyang@cse.ust.hk

Subbarao Kambhampati
Department of Computer Science and Engineering

Arizona State University, Tempe, Arizona, US 85287-5406
rao@asu.edu

Abstract

Multi-Agent Plan Recognition (MAPR) aims to recognize dynamic
team structures and team behaviors from the observed team traces (ac-
tivity sequences) of a set of intelligent agents. Previous MAPR ap-
proaches required a library of team activity sequences (team plans) be
given as input. However, collecting a library of team plans to ensure
adequate coverage is often difficult and costly. In this paper, we relax
this constraint, so that team plans are not required to be provided be-
forehand. We assume instead that a set of action models are available.
Such models are often already created to describe domain physics; i.e.,
the preconditions and effects of effects actions. We propose a novel ap-
proach for recognizing multi-agent team plans based on such action
models rather than libraries of team plans. We encode the resulting
MAPR problem as a satisfiability problem and solve the problem using
a state-of-the-art weighted MAX-SAT solver. Our approach also allows
for incompleteness in the observed plan traces. Our empirical studies
demonstrate that our algorithm is both effective and efficient in compar-
ison to state-of-the-art MAPR methods based on plan libraries.

1 Introduction

Multi-Agent Plan Recognition (MAPR) seeks an explanation of observed team-action traces. From
the activity sequences of a set of agents, MAPR aims to identify the dynamic team structures and
team behaviors of agents. The MAPR problem has important applications in analyzing data from
automated monitoring, situation awareness, intelligence surveillance and analysis [4]. Many ap-
proaches have been proposed in the past to automatically recognize team plans given an observed
team trace as input. For instance, Banerjee et al. [4, 3] proposed to formalize MAPR with a new
model. They solved MAPR problems using a first-cut approach, provided that a fully observed team
trace and a library of full team plans were given as input. To relax the full observability constraint,
Zhuo and Li [19] proposed a MARS system to recognize team plans based on partially observed team
traces and libraries of partial team plans.

1

Despite the success of these previous approaches, they all assume that a library of team plans has
been collected beforehand and provided as input. However, there are many applications where col-
lecting and maintaining a library of team plans is difficult and costly. For example, in military opera-
tions, it is difficult and expensive to collect team plans, since activities of team-mates may consume
lots of resources such as ammunition and human labor. Collecting a smaller library is not an option
since it is infeasible to recognize team plans if they are not covered by the library. It is thus useful to
design approaches for solving the MAPR problem where we do not require libraries of team plans
to be known.

In this paper, we advocate replacing the plan library with a compact action model of the domain. In
contrast to plan libraries, action models are easier to specify (in terms of preconditions and effects
of each type of activity). Moreover, in principle action models provide full coverage to recognize
any team plans. The specific algorithmic framework we develop is called DARE, which stands for
Domain- model based multi-Agent REcognition, to recognize multi-agent plans. DARE does not
require plan libraries to be given as input. Instead, DARE takes as input a team trace and a set of
action models. DARE also allows the observed traces to be incomplete, i.e., there can be To fill these
gaps, DARE leverages all possible constraints both from the plan traces and from its knowledge
of how a plan works in terms of its causal structure. To do this, DARE first builds a set of hard
constraints that encode the correctness property of the team plans, and a set of soft constraints that
encode the optimal utility property of team plans based on the input team trace and action models.
After that, it solves all these constraints using a state-of-the-art weighted MAX-SAT solver, such as
MaxSatz [10], and converts the solution to a set of team plans as output.

We organize the rest of the paper as follows. In the next section, we first introduce the related
work including single agent plan recognition and multi-agent plan recognition, and then give our
formulation of the MAPR problem. After that, we present DARE and discuss its properties. Finally,
we evaluate DARE in the experimental section and present our conclusions.

2 Related work

The plan recognition problem has been addressed by many researchers. Kautz and Allen proposed
an approach to recognize plans based on parsing observed actions as sequences of subactions and
essentially model this knowledge as a context-free rule in an “action grammar” [9]. Bui et al. pre-
sented approaches to probabilistic plan recognition problems [5, 7]. Instead of using a library of
plans, Ramrez and Geffner [12] proposed an approach to solving the plan recognition problem us-
ing slightly modified planning algorithms, assuming the action models were given as input. Note
that action models can be created by experts or learnt by previous systems, such as ARMS [18] and
LAMP [20]. Singla and Mooney proposed an approach to abductive reasoning using a first-order
probabilistic logic to recognize plans [15]. Amir and Gal addressed a plan recognition approach to
recognizing student behaviors using virtual science laboratories [1]. Ramirez and Geffner exploited
off-the-shelf classical planners to recognize probabilistic plans [13]. Despite the success of these
systems, a limitation is that they all focus only on single agent plans.

For multi-agent plan recognition, Sukthankar and Sycara presented an approach that leveraged sev-
eral types of agent resource dependencies and temporal ordering constraints in the plan library to
prune the size of the plan library considered for each observation trace [16]. Avrahami-Zilberbrand
and Kaminka preferred a library of single agent plans to team plans, but identified dynamic teams
based on the assumption that all agents in a team executing the same plan under the temporal con-
straints of that plan [2]. The constraint on activities of the agents that can form a team can be severely
limiting when team-mates can execute coordinated but different behaviors.

Instead of using the assumption that agents in the same team should execute a common activity,
besides the approaches introduced in the introduction section [4, 3, 19], Sadilek and Kautz provided
a unified framework to model and recognize activities that involved multiple related individuals
playing a variety of roles [14]; Masato et al. proposed a probabilistic model based on conditional
random fields to automatically recognize the composition of teams and team activities in relation to
a plan [11]. In these systems, although coordinated activities can be recognized, they either assume
there is a set of real-world GPS data available, or assume that team traces and team plans can be
fully observed. In this paper, we allow that: (1) agents can execute coordinated different activities in
a team, (2) team traces can be partial, and (3) neither GPS data nor team plans are needed.

2

3 Problem Definition

We first define a team trace. Let � = {�1,�2, . . . ,�n} be a set of agents, and O = [otj] be an
observed team trace. Let otj be the observed activity executed by agent j at time step t, where
0 < t  T and 0 < j  n. A team trace O is partial, if some elements in O are empty (denoted by
null), i.e., there are missing values in O.

We then define an action model. In the STRIPS language [6], an action model is a tuple
ha, Pre(a),Add(a),Del(a)i, where a is an action name with zero or more parameters, Pre(a) is
a list of preconditions of a, Add(a) is a list of add effects, and Del(a) is a list of deleting effects.
A set of action models is denoted by A. An action name with zero of more parameters is called an
activity. An observed activity otj in a partial team trace O is either an instantiated action of A or
noop or null, where noop is an empty activity that does nothing.

An initial state s0 is a set of propositions that describes a closed world state from which the team
trace O starts to be observed. In other words, activities at time step t = 0 can be applied in the initial
state s0. When we say an activity can be applied in a state, we mean the activity’s preconditions are
satisfied by the state. A set of goals G, each of which is a set of propositions, describes the probable
targets of the team trace. We assume s0 and G can both be observed by sensing devices.

A team is composed of a subset of agents �

0
= {�j1 ,�j2 , . . . ,�jm}. A team plan is defined as

p = [atk]
0<km
0<tT , where m  n, and atk is an activity or noop. A set of correct team plans P is

required to have properties P1-P5.

P1: P is a partition of the team trace O, i.e., each element of O should be in exactly one p of P and
each activity of p should be an element of O;

P2: P should cover all the observed activities, i.e., for each p 2 P and 0 < t  T and 0 < k  m,
if otjk 6= null, then atk = otjk , where atk 2 p and otjk 2 O;

P3: P is executable starting from s0 and achieves some goal g 2 G, i.e., at⇤ is executable in state
st�1 for all 0 < t  T , and achieves g after step T , where at⇤ = hat1, at2, . . . , atmi;

P4: Each team plan p 2 P is associated with a likelihood µ(p): P 7! R

+. µ(p) specifies the
likelihood of recognizing team plan p, and can be affected by many factors, including the
number of agents in the team, the cost of executing p, etc. The value of µ(p) is composed of
two parts µ1(Nactivity(p)) and µ2(Nagent(p)), i.e., µ(p) = 1

µ1(Nactivity(p))+µ2(Nagent(p))
,

where µ1(Nactivity(p)) depends on Nactivity(p), the number of activities of p, and
µ2(Nagent(p)) depends on Nagent(p), the number of agents (i.e., team-mates) of p.
Generally, µ1(Nactivity(p)) (or µ2(Nagent(p))) becomes larger when Nactivity(p) (or
Nagent(p)) increases. Note that more agents would have a smaller likelihood (or larger
cost) to coordinate these agents to successfully execute p. Thus, we require that µ2 should
satisfy the condition: µ2(n1 + n2) > µ2(n1) + µ2(n2). For each goal g 2 G, the output
plan P should have the largest likelihood, i.e.,

P = argmax

P 0

X

p2P 0

µ(p),

where P

0 is a team-plan set that achieves g. Note that we presume that teams are (usually)
organized with the largest likelihood.

P5: Any pair of interacting agents must belong to the same team plan. In other words, if an agent
�i interacts with another agent �j , i.e., �i provides or deletes some conditions of �j , then
�i and �j should be in the same team, and activities of agents in the same team compose a
team plan. Agents exist in exactly one team plan, i.e., team plans do not share any common
agents.

Our multi-agent plan recognition problem can be stated as: Given a partially observed team trace
O, a set of action models A, an initial state s0, and a set of goals G, the recognition algorithm must
output a set of team plans P with the maximal likelihood to achieve some goal g 2 G, where P

satisfies the properties P1-P5.

3

(a). team trace

pickup(?x – block)
precondition: (handempty)(clear ?x)(ontable ?x)
effect: (holding ?x)(not (handempty))
 (not (clear ?x))(not (ontable))
putdown(?x – block)
precondition: (holding ?x)
effect: (clear ?x) (ontable ?x)(handempty)
 (not (holding ?x))
unstack(?x – block ?y – block)
precondition: (on ?x ?y) (clear ?x) (handempty)
effect: (holding ?x)(clear ?y)(not (clear ?x))
 (not (handempty))(not (on ?x ?y))
stack(?x – block ?y – block)
precondition: (holding ?x) (clear ?y)
Effect: (not (holding ?x))(not (clear ?y))
 (clear ?x) (handempty) (on ?x ?y)

(d). action models

a1: unstack(C B); a2: stack(B A); a3: unstack(E D);
a4: stack (C B); a5: stack(F D); a6: putdown(D); a7:
pickup(G);

T

1

2

3

h1

a1

h3

noop

noop

null

null

a2

h4

null

null

a6

4

5

a4

noop

null

noop

noop

noop

h5

a7

noop

null

noop

null

null

null

h2

a3

a5

null

C
BA

E
D
F G

(b). initial state

C
B
A ED

F
G

(c). goals {g}

(I). inputs

T

1

2

3

h1

a1

h3

noop

noop

noop

a8

a2

4

5

a4

noop

noop

noop

a1: unstack(C B); a2: stack(B A); a3: unstack(E D);
a4: stack (C B); a5: stack(F D); a6: putdown(D);
a7: pickup(G); a8: pickup(B); a9: unstack(D F);
a10: putdown(E); a11: pickup(F); a12: stack(G F);

T

1

2

3

h4

noop

a9

a6

4

5

noop

noop

h5

a7

noop

noop

noop

a12

a10

a11

h2

a3

a5

noop

(a). team plan p1 (b). team plan p2

(II). outputs

Figure 1: An example of the input and output of our problem from the blocks domain. (I) is an input
example, where “(b) the initial state s0” is a set of propositions: {(ontable A)(ontable B)(ontable
F)(ontable G)(on C B)(on D F)(on E D)(clear A)(clear C)(clear E)(clear G)(handempty)}; “(c) goals
{g}” is a goal set composed of one goal g, and g is composed of propositions: {(ontable A)(ontable
D)(ontable E)(on B A)(on C B)(on F D)(on G F)(clear C)(clear G)(clear E)}. (II) is an output exam-
ple, which is the set of team plans {p1, p2}.

Figure 1 shows an example multi-agent plan recognition problem from blocks world1. In part (a) of
Figure 1(I), the first column indicates the time steps from 1 to 5. h1, . . . , h5 are five hoist agents.
The value null suggests the missing observation, and noop suggests the empty activity. We assume
µ1 and µ2 are defined by: µ1(k) = k, and µ2(k) = k

2. Based on µ1 and µ2, the corresponding
output is shown in Figure 1(II), which is the set of two team plans {p1, p2}.

4 DARE Algorithm Framework

Algorithm 1 below describes the plan recognition process in DARE. In the subsequent subsections,
we describe each step of this algorithm in detail.

Algorithm 1 An overview of our algorithm framework
input: a partial team trace O, an initial state s0, a set of goals G, and a set of action models A;
output: a set of team plans P ;

1: max = 0;
2: for each g 2 G do
3: build a set of candidate activities ⇥;
4: build a set of hard constraints based on ⇥;
5: build a set of soft constraints based on the likelihood µ;
6: solve all the constraints using a weighted MAX-SAT solver, with hmax

0
, soli as output;

7: if max

0
> max then

8: max = max

0;
9: convert the solution sol to a set of team plans P 0, and let P = P

0;
10: end if
11: end for
12: return P ;

4.1 Candidate activities

In Step 3 of Algorithm 1, we build a set of candidate activities ⇥ by instantiating each parameter
of action models in A with all objects in the initial state s0, team trace O and goal g. We perform
the following phases. We first scan each parameter of propositions (or activities) in s0, O, and g,
and collect sets of different objects (note that each set of objects corresponds to a type, e.g., there

1http://www.cs.toronto.edu/aips2000/

4

is a type “block” in the blocks domain). Second, we substitute each parameter of each action model
in A with its corresponding objects (the correspondence relationship is reflected by type, i.e., the
parameters of action models and objects should belong to the same type), which results in a set of
different activities, called candidate activities ⇥. Note that we also add an noop activity in ⇥.

For example, there are seven objects {A, B, C, D, E, F, G} corresponding to type “block” in Fig-
ure 1(I). The set of candidate activities ⇥ is: {noop, pickup(A), pickup(B), pickup(C), pickup(D),
pickup(E), pickup(F), pickup(G), . . .}, where the “dots” suggests other activities that are generated
by instantiating parameters of actions “putdown, stack, unstack”.

4.2 Hard constraints

With the set of candidate activities ⇥, we build a set of hard constraints to ensure the properties P1 to
P3 in Step 4 of Algorithm 1. We associate each element otj 2 O with a variable vtj , i.e., we have a
set of variables V = [vtj]

0<jn
0<tT , which is also called a variable matrix. Each variable in the variable

matrix will be assigned with a specific activity in candidate activities ⇥, and we will partition these
variables to attain a set of team plans that have the properties P1-P5 based on the assignments.
According to properties P2 and P3, we build two kinds of hard constraints: Observation constraints
and Causal-link constraints. Note that P1 is guaranteed since the set of team plans that is output is
a partition of the team trace.

Observation constraints For P2, i.e., given a team plan p = [atk]
0<km
0<tT composed of agents

�

0
= {�j1 ,�j2 , . . . ,�jm}, if otjk 6= null, then atk = otjk , this suggests vtjk should have

the same activity of otjk if otjk 6= null, since the team plan p is a partition of V and atk

is an element of of p. Thus, we build hard constraints as follows. For each 0 < t  T and
0 < j  n, we have

(otj 6= null) ! (vtj = otj).

We call this kind of hard constraints the observation constraints, since they are built based
on the partially observed activities of O.

Causal-link constraints For P3, i.e., each team plan p should be executable starting from the initial
state s0, this suggests each row of variables hvt1, vt2, . . . , vtni should be executable, where
0 < t  T . Note that “executable” suggests that the preconditions of vtj should be satisfied.
This means, for each 0 < t  T and 0 < j  n, the following constraints should be
satisfied:
• each precondition of vtj either exists in the initial state s0 or is added by vt0j0 , and is

not deleted by any activity between t

0 and t, where t

0
< t and 0 < j

0  n.
• likewise, each proposition in goal g either exists in the initial state s0 or is added

by vt0j0 , and is not deleted by any activity between t

0 and T , where t

0
< T and

0 < j

0  n.
We call this kind of hard constraints causal-link constraints, since they are created accord-
ing to the causal link requirement of executable plans.

4.3 Soft constraints

In Step 5 of Algorithm 1, we build a set of soft constraints based on the likelihood function µ. Each
variable in V can be assigned with any element of the candidate activities ⇥. We require that all
variables in V should be assigned with exactly one activity from ⇥. For each ha1, a2, . . . , a|V |i 2
⇥⇥ . . .⇥⇥, we have ^

0<i|V |

(vi = ai).

We calculate the weights of these constraints by the following phases. First, we partition the variable
matrix V based on property P5 into a set of team plans P , i.e., agent �i provides or deletes some
conditions of �j , then �i and �j should be in the same team, and activities of agents in the same
team compose a team plan. Second, for all team plans, we calculate the total likelihood µ(P), i.e.,

µ(P) =

X

p2P

µ(p) =

X

p2P

1

µ1(Nactivity(p)) + µ2(Nagent(p))
,

5

and let µ(P) be the weights of the soft constraints. Note that we aim to maximize the total likelihood
when solving these constraints (together with hard constraints) with a weighted MAX-SAT solver.

4.4 Solving the constraints

In Step 6 of Algorithm 1, we put both hard and soft constraints together, and solve these constraints
using Maxsatz [10], a MAX-SAT solver . The solution sol is an assignment for all variables in V ,
and max

0 is the total weight of the satisfied constraints corresponding to the solution sol. In Step 8
of Algorithm 1, we partition V into a set of team plans P based on P5.

As an example, in (a) of Figure 1(I), the team trace’s corresponding variable in V is assigned with
activities, which means the null values in (a) of Figure 1(I) are replaced with the corresponding
assigned activities in V . According to property P5, we can simply partition the team trace into two
team plans, as is shown in Figure 1(II), by checking preconditions and effects of activities in the
team trace.

4.5 Properties of DARE

DARE can be shown to have the following properties:

Theorem 1: (Conditional Soundness) If the weighted MAX-SAT solver is powerful enough to
optimally solve all solvable SAT problems, DARE is sound.

Theorem 2: (Conditional Completeness) If the weighted MAX-SAT solver we exploit in DARE is
complete, DARE is also complete.

For Theorem 1, we only need to check that the solutions output by DARE satisfy P1-P5. P2 and P3
are guarranteed by observation constraints and causal-link constraints; P4 is guaranteed by the soft
constraints built in Section 4.3 and the MAX-SAT solver; P1 and P5 are both guaranteed by the
partition step in Section 4.4, i.e., partitioning the variable matrix into a set of team plans; that is to
say, the conditional soundness property holds.

For Theorem 2, since all steps in Algorithm 1, except Step 6 that calls a weighted MAX-SAT solver,
can be executed in finite time, the completeness property only depends on the weighted MAX-SAT
solver, which means the conditional completeness property holds.

5 Experiments

5.1 Dataset and Evaluation Criterion

We evaluate DARE in three planning domains: blocks, driverlog2 and rovers2. We modify the three
domains for multi-agent setting. In blocks, there are multiple hoists, which are viewed as agents
that perform actions of pickup, putdown, stack and unstack. In driverlog, there are multiple trucks,
drivers and hoists, which are agents that can group together to form different teams (trucks and
drivers can be in the same team, likewise for hoists.). In rovers, there are multiple rovers that can
group together to form different teams. For each domain, we set T = 50 and generate 50 team traces
with the size of T ⇥ n for each n 2 {20, 40, 60, 80, 100}. For each team trace, we have a set of
optimal team plans (which is viewed as the ground truth), denoted by Ptrue, and its corresponding
goal gtrue, which best explains the team trace according to the likelihood function µ. We define the
likelihood function by: µ = µ1 + µ2, where µ1(k) = k and µ2(k) = k

2, as is presented in the end
of the problem definition section.

We randomly delete a subset of activities from each team trace with respect to a specific percentage
⇠. We will test different ⇠ values with 0%, 10%, 20%, 30%, 40%, 50%. As an example, ⇠ = 10%

suggests there are 10 activities deleted from a team trace with 100 activities. We also randomly
add 10 additional goals, together with gtrue, to form the goal set G, as is presented in the problem
definition section. We define the accuracy � by:

� =

the number of correctly recognized team plan sets
the total number of team traces

,

2http://planning.cis.strath.ac.uk/competition/

6

where “correctly recognized team plan sets” suggests the recognized team plan sets and goals are
the same as the expected team plan sets {Ptrue} and goals G.

We generate 100 team plans as the library as is described by MARS [19], and compare the recognition
results with MARS as a baseline.

5.2 Experimental Results

We evaluate DARE in the following aspects: (1) accuracy with respect to different number of agents;
(2) accuracy with respect to different percentages of null values; and (3) the running time.

5.2.1 Varying the number of agents

20 40 60 80 100
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

number of agents

λ

← DARE

← MARS

(a). blocks

20 40 60 80 100
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

number of agents

λ
DARE→

← MARS

(b). driverlog

20 40 60 80 100
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

number of agents

λ

← DARE

← MARS

(c). rovers

Figure 2: Accuracies with respect to different number of agents

We would like to evaluate the change of accuracies when the number of agents increases. We set the
percentage of null values to be 30%, and also ran DARE five times to calculate an average of accu-
racies. The result is shown in Figure 2. From the figure, we found that the accuracies of both DARE
and MARS generally decreased when the number of agents increased. This is because the problem
space is enlarged when the number of agents increases, which makes the available information be
decreased comparing to the large problem space, and not enough to attain high accuracies.

We also found that the accuracy of DARE was lower than MARS at the beginning, and then became
better than MARS as the number of agents became larger. This indicates that DARE has better per-
formance in handling large number of agents based on action models. This is because DARE builds
the MAX-SAT problem space (described as proposition variables and constraints) based on model
inferences (i.e., action models), while MARS is based on instances (i.e., plan library). When the num-
ber of agents is small, the problem space built by MARS is smaller than that built by DARE; when the
number of agents becomes larger, the problem space built by MARS becomes larger than that built
by DARE; the larger the problem space is, the more difficult it is for MAX-SAT to solve the problem;
thus, DARE performs worse than MARS with less agents, while better with more agents.

0 10 20 30 40 50
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

percentage

λ

← DARE

← MARS

(a). blocks

0 10 20 30 40 50
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

percentage

λ

DARE→

← MARS

(b). driverlog

0 10 20 30 40 50
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

percentage

λ

← DARE

← MARS

(c). rovers

Figure 3: Accuracies with respect to different percentages of null values.

5.2.2 Varying the percentage of null values

We set the number of agents to be 60, and run DARE five times to calculate average of accuracies
with a percentage ⇠ of null values. We found both accuracies of DARE and MARS decreased when

7

the percentage ⇠ increased, due to less information provided when the percentage increasing. When
the percentage is 0%, both DARE and MARS can recognize all the team traces successfully.

By observing all three domains in Figure 3, we find that DARE does not function as well as MARS
when the percentage of incompleteness is large. This relative advantage for the library-based ap-
proach is due in large part to the fact that all team plans to be recognized are covered by the small
library in the experiment, and the library of team plans will help reduce the recognition problem
space compared to DARE. We conjecture that if the team plans to be recognized are not covered by
the library (because of the size restrictions on the library), DARE will perform better than MARS. In
this case, MARS cannot successfully recognize some team plans.

5.2.3 The running time

20 40 60 80 100
0

200

400

600

800

1000

1200

number of agents

cp
u
 t
im

e
 (

se
co

n
d
s)

(a) blocks

20 40 60 80 100
0

200

400

600

800

1000

1200

number of agents

cp
u
 t
im

e
 (

se
co

n
d
s)

(b) driverlog

20 40 60 80 100
0

200

400

600

800

1000

1200

number of agents

cp
u
 t
im

e
 (

se
co

n
d
s)

(c) rovers

Figure 4: The CPU time of DARE.

We show the average CPU time of DARE over 50 team traces with respect to different number of
agents in Figure 4. As can be seen from the figure, the running time increases polynomially with the
number of input agents. This can be verified by fitting the relationship between the number of agents
and the running time to a performance curve with a polynomial of order 2 or 3. For example, the fit
polynomial for blocks is �0.0821x

2
+ 20.1171x� 359.8.

6 Final Remark

In this paper, we presented a system called DARE for recognizing multi-agent team plans from
incomplete observed plan traces based on action models . This approach has significant advantage
over previous approaches that make use of a library of predefined team plans. Such plan libraries
are difficult to obtain in many applications. With the action model based approach, we first build a
set of candidate activities, and then build sets of hard and soft constraints to finally recognize team
plans. Our experiments show that DARE is effective in three benchmark domains compared to the
state-of-the-art multi-agent plan recognition system MARS that relies on a library of team plans. Our
approach is thus well suited for scenarios where collecting a library of team plans is infeasible before
performing team plan recognition tasks.

In the current work, we assume that the action models are complete. A more realistic assumption
is to allow the models to be incomplete [8, 17]. In future, we plan to extend DARE to work with
incomplete action models. Another assumption in the current model is that it expects as input the
alternative sets of goals, one of which the observed plan is expected to be targeting. We plan to relax
this so DARE can take as input a set of potential goals, with the understanding that the observed plan
is achieving a bounded subset of these goals. We believe that both these extensions can be easily
accommodated into the MAX-SAT framework of DARE.

Acknowledgments

Hankz Hankui Zhuo thanks Natural Science Foundation of Guangdong Province of China (No.
S2011040001869) and Research Fund for the Doctoral Program of Higher Education of China
(No. 20110171120054) for the support of this research. Qiang Yang thanks Hong Kong RGC GRF
Projects 621010 and 621211 for the support of this research. Kambhampati’s research is supported
in part by the NSF grant IIS201330813 and ONR grants N00014-09-1-0017, N00014-07-1-1049,
and N000140610058.

8

References

[1] Ofra Amir and Yaakov (Kobi) Gal. Plan recognition in virtual laboratories. In Proceedings of
IJCAI, 2011.

[2] Dorit Avrahami-Zilberbrand and Gal A. Kaminka. Towards dynamic tracking of multi-agents
teams: An initial report. In Proceedings of the AAAI Workshop on Plan, Activity, and Intent
Recognition (PAIR 2007), 2007.

[3] Bikramjit Banerjee and Landon Kraemer. Branch and price for multi-agent plan recognition.
In Proceedings of AAAI, 2011.

[4] Bikramjit Banerjee, Landon Kraemer, and Jeremy Lyle. Multi-agent plan recognition: formal-
ization and algorithms. In Proceedings of AAAI, 2010.

[5] Hung H. Bui. A general model for online probabilistic plan recognition. In Proceedings of
IJCAI, 2003.

[6] R. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of theorem proving to
problem solving. Artificial Intelligence Journal, pages 189–208, 1971.

[7] Christopher W. Geib and Robert P. Goldman. A probabilistic plan recognition algorithm based
on plan tree grammars. Artificial Intelligence, 173(11):1101–1132, 2009.

[8] Subbarao Kambhampati. Model-lite planning for the web age masses: The challenges of plan-
ning with incomplete and evolving domain models. In AAAI, 2007.

[9] Henry A. Kautz and James F. Allen. Generalized plan recognition. In Proceedings of AAAI,
1986.

[10] Chu Min LI, Felip Manya, Nouredine Mohamedou, and Jordi Planes. Exploiting cycle struc-
tures in Max-SAT. In In proceedings of 12th international conference on the Theory and
Applications of Satisfiability Testing (SAT-09), pages 467–480, 2009.

[11] Daniele Masato, Timothy J. Norman, Wamberto W. Vasconcelos, and Katia Sycara. Agent-
oriented incremental team and activity recognition. In Proceedings of IJCAI, 2011.

[12] Miquel Ramrez and Hector Geffner. Plan recognition as planning. In Proceedings of IJCAI,
2009.

[13] Miquel Ramrez and Hector Geffner. Probabilistic plan recognition using off-the-shelf classical
planners. In Proceedings of AAAI, 2010.

[14] Adam Sadilek and Henry Kautz. Recognizing multi-agent activities from gps data. In Pro-
ceedings of AAAI, 2010.

[15] Parag Singla and Raymond Mooney. Abductive markov logic for plan recognition. In Pro-
ceedings of AAAI, 2011.

[16] Gita Sukthankar and Katia Sycara. Hypothesis pruning and ranking for large plan recognition
problems. In Proceedings of AAAI, 2008.

[17] Minh Do. Tuan Nguyen, Subbarao Kambhampati. Synthesizing robust plans under incomplete
domain models. In Proc. AAAI Workshop on Generalized Planning, 2011.

[18] Qiang Yang, Kangheng Wu, and Yunfei Jiang. Learning action models from plan examples
using weighted MAX-SAT. Artificial Intelligence, 171:107–143, February 2007.

[19] Hankz Hankui Zhuo and Lei Li. Multi-agent plan recognition with partial team traces and plan
libraries. In Proceedings of IJCAI, 2011.

[20] Hankz Hankui Zhuo, Qiang Yang, Derek Hao Hu, and Lei Li. Learning complex action models
with quantifiers and implications. Artificial Intelligence, 174(18):1540 – 1569, 2010.

9

