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Abstract

In many graph-based machine learning and data mining approaches, the quality
of the graph is critical. However, in real-world applications, especially in semi-
supervised learning and unsupervised learning, the evaluation of the quality of a
graph is often expensive and sometimes even impossible, duethe cost or the un-
availability of ground truth. In this paper, we proposed a robust approach with
convex optimization to “forge” a graph: with an input of a graph, to learn a graph
with higher quality. Our major concern is that an ideal graphshall satisfy all the
following constraints: non-negative, symmetric, low rank, and positive semidef-
inite. We develop a graph learning algorithm by solving a convex optimization
problem and further develop an efficient optimization to obtain global optimal so-
lutions with theoretical guarantees. With only one non-sensitive parameter, our
method is shown by experimental results to be robust and achieve higher accuracy
in semi-supervised learning and clustering under various settings. As a prepro-
cessing of graphs, our method has a wide range of potential applications machine
learning and data mining.

1 Introduction

Many machine learning algorithms use graphs as input, such as clustering [16, 14], manifold based
dimensional reduction [2, 15], and graph-based semi-supervised learning [23, 22]. In these ap-
proaches, we are particularly interested in thesimilarity among objects. However, the observation
of similarity graphs often contain noise which sometimes mislead the learning algorithm, especially
in unsupervised and semi-supervised learning. Deriving graphs with high quality becomes attractive
in machine learning and data mining research.

A robust and stable graph learning algorithm is especially desirable in unsupervised and semi-
supervised learning, because the unavailability or high cost of ground truth in real world appli-
cations. In this paper, we develop a novel graph learning algorithm based on convex optimization,
which leads to robust and competitive results.

1.1 Motivation and Main Problem

In this section, the properties of similarity matrix are revisited from point of view of normalized
cut clustering [19]. Given a symmetric similarity matrixW ∈ R

n×n onn objects, normalized cut
solves the following optimization problem [10].

min
H≥0

trH⊺(D−W)H s.t. H⊺DH = I, (1)
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whereH ∈ {0, 1}n×K is the cluster indicator matrix, or equivalently,

max
F≥0

trF⊺W̃F s.t. F⊺F = I, (2)

whereF = [f1, f2, · · · , fK ],H = [h1, h2, · · · , hK ], fk = D
1

2 hk/‖D
1

2hk‖, 1 ≤ k ≤ K,W̃ =

D− 1

2WD− 1

2 ,D = diag(d1, d2, · · · , dn), di =
∑n

j=1 Wij , I is the identity matrix, andK is the
number of groups. Eq. (2) can be further rewritten as,

min
F≥0
‖W̃ − FF⊺‖F s.t. F⊺F = I, (3)

where‖ · ‖F denotes the Frobenius norm. We notice that

‖W̃ −G+G− FF⊺‖F ≤ ‖W̃ −G‖F + ‖G− FF⊺‖F , (4)
for anyG ∈ R

n×n. Our goal is to minimize the LHS (left-hand side); Instead, we can minimize the
RHS which is the upper-bound of LHS.

Thus we need to find the intermediate matrixG, i.e., we learn asurrogate graph which is close but
not identical toW̃. Ourupper-bounding approach offers flexibility which allows us to impose cer-
tain desirable properties. Note that matrixFF⊺ holds the following properties: (P1) symmetric, (P2)
nonnegative, (P3) low rank, and (P4) positive semidefinite.This suggests aconvex graph learning

min
G

‖G− W̃‖2F s.t. G < 0, ‖G‖∗ ≤ c,G = G⊺, G ≥ 0, (5)

whereG < 0 denotes the positive semidefinite constraint,‖ · ‖∗ denotes the trace norm,i.e. the sum
of the singular values [8], andc is a model parameter which controls the rank ofG. The constraint
of G ≥ 0 is to force the similarity to be naturally non-negative. By intuition, one might impose row
rank constraint of rank(G) ≤ c. But this leads to anon-convex optimization, which is undesirable
in unsupervised and semi-supervised learning. Following matrix completion methods [5], the trace
constraint in Eq. (5) is a good surrogate for the low rank constraint. For notational convenience, the
normalized similarity matrixW̃ is denoted asW in the rest of the paper.

By solving Eq. (5), we are actually seeking a similarity matrix which satisfies all the properties of
a perfect similarity matrix (P1–P4) and which is close to theoriginal input matrixG. Our whole
paper is here dedicated to solve Eq. (5) and to demonstrate the usefulness of its optimal solution in
clustering and semi-supervised learning using both theoretical and empirical evidences.

1.2 Related Work

Our method can be viewed as a preprocessing for similarity matrix and a large number of machine
learning and data mining approaches require a similarity matrix (interpreted as a weighted graph) as
input. For example, in unsupervised clustering, Normalized Cut [19], Ratio Cut [11], Cheeger Cut
[3] have been widely applied in various real world applications. In graphical models for relational
data,e.g. Mixed Membership Block models [1] can be also interpreted asgenerative models on
the similarity matrices among objects. Thus a similarity matrix preprocessing model can be widely
applied.

A large number of approaches have been developed to learn similarity matrix with different empha-
sis. Local Linear Embedding (LLE ) [17, 18] and Linear Label Propagation [21] can be viewed as
obtaining a similarity matrix using sparse coding. Anotherway to perform the similarity matrix pre-
processing is to take a graph as input and to obtain a refined graph by learning, such as bi-stochastic
graph learning [13]. Our method falls in this category. We will compare our method with these
methods in the experimental section.

On the optimization techniques for problems with multiple constraints, there also exist many related
researches. First, von Neumann provided a convergence proof of successive projection method that
it guarantees to converge to feasible solution in convex optimization with multiple constraints, which
was employed in the paper by Liuet al. [13]. In this paper, we develop a novel optimization algo-
rithm to solve the optimization problem with multiple convex constraints (including the inequality
constraints), which is guaranteed to find the global solution. More explicitly, we develop a variant
of inexact Augmented Lagrangian Multiplier method to handle inequality constraints. We also de-
velop a useful Lemma to handle the subproblems with trace norm constraint in the main algorithm.
Interestingly, one of the derived subproblems is theℓ1 ball projection problem, which can be solved
elegantly by simple thresholding.
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Figure 1: A toy example of low rank and positive semidefinite graph learning. (a): A perfect
similarity matrix. (b): Adding noise from (a). (c1): the optimal solution of Eq. (5)by using the
matrix in (b) asG. (c2): the optimal solution of Eq. (6) by using the matrix in (b) asG. (d): sorted
eigenvalues for the two solutions of Eq. (5) and Eq. (6).

2 A Toy Example

We first emphasize the usefulness of the positive semidefinite and low rank constraints in problem of
Eq. (5) using a toy example. In this toy example, we also solvethe following problem for contrast,

min
G

‖G−W‖2F s.t. G = G⊺, Ge = e, G ≥ 0, (6)

wheree = [1, 1, · · · , 1]T and the constraints of positive semidefinite and low rank areremoved from
Eq. (5) and instead a bi-stochastic constraint is applied (Ge = e). Notice that the model defined in
Eq. (6) is used in the bi-stochastic graph learning [13]. We solve Eqs. (5) and (6) for the same input
G and compare the solution to see the effect of positive semidefinite and low rank constraints.

In the toy example, we first generate a perfect similarity matrix W in whichWij = 1 if data points
i, j are in the same group andWij = 0 otherwise. Three groups of data points (10 data points in
each group) are considered.G are shown in Figure 1(a) with black color denoting zeros values. We
then randomly add some positive noise onG which is shown in Figure 1(b). Then we solve Eqs.
(5) and (6) and the results ofG is shown in Figure 1(c1) and(c2). The observation is that Eq. (5)
recover the perfect similarity much more accurately than Eq. (6). The reason is that in model of
Eq. (6), the low rank and positive semidefinite constraints are ignored and the result deviates from
the ground truth.

We show the eigenvalues distributions ofG for solution in Figure 1 (d) for both methods in Eqs. (5)
and (6). One can observe that the solution Eq. (5) gives low rank and positive semidefinite results,
while the solution for Eq. (6) is full rank and has negative eigenvalues.

Since the solution of Eq. (5) is always positive, symmetric,low rank, and positive semidefinite, we
called our solution the Non-negative Low-rank Kernel (NLK).

2.1 NLK for Semi-supervised Learning

Although NKL is mainly developed for unsupervised learning, it can be easily extended to incor-
porate the label information in semi-supervised learning [23]. Assume we are given a set of data
X = [x1,x2, · · · ,xℓ,xℓ+1, · · · ,xn] where the firstl data points are labeled as[y1, y2, · · · , yℓ].
Then we have more information to learn a better similarity matrix. Here we add additional con-
straints on Eq. (5) by enforcing the similarity to be zeros for those paris of data points in different
classes,i.e. Gij = 0 if yi 6= yj , 1 ≤ i, j ≤ ℓ. By considering all the constraints, we optimize the
following,

min
G

‖G−W‖2F s.t. G < 0, ‖G‖∗ ≤ c,G = G⊺, G ≥ 0, Gij = 0, ∀yi 6= yj . (7)

We will demonstrate the advantage of these semi-supervision constraints in the experimental section.
The computational algorithm is given in§3.3.
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3 Optimization

The optimization problemss in Eqs. (5) and (7) are non-trivial since there are multiple constraints,
including both equality and inequality constraints. Our strategy is to introduce two extra copies of
optimization variableX andY to split the constraints into several directly solvable subproblems,

min
G

‖G−W‖2F , s.t. G ≥ 0 (8a)

min
X

‖X−W‖2F , s.t. X < 0, with X = G. (8b)

min
Y

‖Y −W‖2F , s.t. ‖Y‖∗ ≤ c, with Y = G (8c)

More formally, we solve the following problem,

minG ‖G−W‖2F (9a)

s.t. G ≥ 0 (9b)

X = G, X < 0, (9c)

Y = G, |Y‖∗ ≤ c, (9d)

One should notice that problem in Eqs. (9a) – (9d) is equivalent to our main problem in Eq. (5).
In the rest of this section, we will employ a variant of Augmented Lagrangian Multiplier (AML)
method to solve Eqs. (9a) – (9c).

3.1 Seeking Global Solutions: A Variant of ALM

The augmented Lagrangian multiplier function of Eqs. (9a) –(9d) is

Φ(G,X,Y) =‖G−W‖2F − 〈Λ,X−G〉+
µ

2
‖G−X‖2F − 〈Σ,Y −G〉+

µ

2
‖G−Y‖2F ,

(10)

with constraints ofG ≥ 0,X < 0, and‖Y‖∗ ≤ c, whereΛ,Σ are the Lagrangian multipliers.

Then ALM method leads to the following updating steps,

G ← arg min
G≥0

Φ(G,X,Y,Z) (11a)

X ← argmin
X<0

Φ(G,X,Y,Z) (11b)

Y ← arg min
‖Y‖∗≤c

Φ(G,X,Y,Z) (11c)

Λ ← Λ− µ (G−X) (11d)

Σ ← Σ− µ (G−Y) (11e)

µ ← γµ, t← t+ 1. (11f)

Notice that the symmetric constraint is removed here. We will later show that given a symmetric
inputW, the output of our algorithm automatically satisfies the symmetric constraints.

3.2 Solving the Subproblems in ALM

X andY updating algorithms in Eqs. (11b and 11c) contain eigenvalue constraints, which appear
complicated. Fortunately they have closed form solution. To show that, we first introduce the
following useful Lemma.

Lemma 3.1. Consider the following problem,

min
X

‖X−A‖2F , s.t. φi(X) ≤ ci, 1 ≤ i ≤ m, (12)

where φi(X) ≤ ci is any constraint on eigenvalues of X, i = 1, 2, · · · ,m and m is the num-
ber of constraints. Then there exists a diagonal matrix S such that USU⊺ is an optimizer of
Eq. (12), where UΣU⊺ = A is the eigenvector decomposition of A. S relates to eigenvalues of
Σ = diag(λ1, · · · , λn) and satisfying the constraints.
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Proof. Let VSV⊺ = X andUDU⊺ = A be the eigenvector decomposition ofX andA, respec-
tively. By applying von Neumann’s trace inequality, the following holds for anyX andA,

trX⊺A ≤ trSD. (13)

Then
trVSV⊺A = trX⊺A ≤ trSD = tr(USU⊺)(UDU⊺) = USU⊺A, (14)

which leads to
‖USU⊺ −A‖2F ≤ ‖VSV⊺ −A‖2F . (15)

Now assumeX = VSV⊺ is a minimizer of Eq. (12). By comparing two solutions ofX = VSV⊺

andZ = USU⊺, one should notice (a) thatZ satisfies all the constraints ofφi(Z) = φi(X) ≤
ci, 1 ≤ i ≤ m in Eq. (12) and (b) thatZ gives equal or less value of the objective, thusZ = USU⊺

ia also a minimizer of Eq. (12).

Lemma 3.1 shows an interesting property of the matrix approximation with eigenvalue or singular
value constraint: the optimal solution matrix shares the same subspace of the input matrix. This
is useful, because once the subspace is determined, the whole optimization becomes much easier.
Thus the lemma provides a powerful mathematical tool in computation of optimization problem
with eigenvalue and singular value constraints. Here, we apply Lemma 3.1 to solve the updating of
X andY in §3.2.2 - 3.2.3.

3.2.1 UpdatingG

By ignoring the irrelevant terms with respect toG , we can rewrite Eq. (11a) as following,

G ← arg min
G≥0
‖(2 + 2µ)G− (2W + µ(X+Y) + Λ + Σ) ‖2F + const (16)

= max

(

2W + µ(X+Y) + Λ + Σ

2 + 2µ
, 0

)

. (17)

3.2.2 UpdatingX

For Eq. (11b), we need to solve the following subproblem

min
X

‖X−P‖2F , X < 0, where P = G+ Λ/µ. (18)

Notice thatX < 0 is constraint on the eigenvalues ofX. Then we can directly apply Lemma 3.1,X
can be written asUSU⊺ and Eq. (18) becomes

min
S

‖USU⊺ −UDU⊺‖2F , s.t. S ≥ 0, (19)

whereUDU⊺ = P is the eigenvector decomposition ofP. Let S = diag(s1, s2, · · · , sn) and
D = diag(d1, d2, · · · , dn). Then Eq. (19) can be further rewritten as,

min
s1,s2,··· ,sn

n
∑

i=1

(si − di)
2
, s.t. si ≥ 0, i = 1, 2, · · · , n. (20)

Eq. (20) has simple closed form solution assi = max(di, 0), i = 1, 2, · · · , n.

3.2.3 UpdatingY

Eq. (11c) can be rewritten as,
min
Y

‖Y −Q‖2F , ‖Y‖∗ ≤ c, (21)

whereQ = G+ 1
µ
Σ. The corresponding Lagrangian function is,

L(Y, λ) = ‖Y −Q‖2F + λ (‖Y‖∗ − c) . (22)

Since we do not know the true Lagrangian multiplierλ, we cannot directly apply the singular value
thresholding technique [4]. However, we find Lemma 3.1 useful again. We notice thatY is symmet-
ric and the constraint of‖Y‖∗ ≤ c becomes a constraint on the eigenvalues ofY. LetY = USU⊺

and by directly applying Lemma 3.1, Eq. (21) can be further written as,

min
S

‖USU⊺ −UDU⊺‖2F , s.t.
n
∑

i=1

|si| ≤ c, (23)
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or,

min
s
‖s− d‖2, s.t.

n
∑

i=1

|si| ≤ c, (24)

whereS = diag(s), s = [s1, s2, · · · , sn]
⊺,D = diag(d), andd = [d1, d2, · · · , dn]

⊺.

Interestingly, the above problem is a standardℓ1 ball optimization problem which has been studied
for a long time and Duchiet al. has recently provided a simple and elegant solution [7]. Thefinal
solution is to search the leastθ ≥ 0 such that

∑

imax(|di| − θ, 0) ≤ c, i.e.

θ = argmin
θ

θ s.t.

n
∑

i=1

max(|di| − θ, 0) ≤ c. (25)

This can be easily done by sorting the|di| and try theθ values between two consecutive sorted|di|.
And the solution is

si = sign(di)max(|di| − θ, 0). (26)

Notice that in each step of algorithm, the solution has closed form solution and that the output of
G is always symmetric, which indicates that the constraint ofG = G⊺ is automatically satisfied in
each step.

3.3 NLK Algorithm For Semi-supervised Learning

In many real world settings, we know partially of data class labels and hope to further utilize such
information, as described in Eq. (7). Fortunately, the corresponding optimization problem remains
convex. The augmented Lagrangian multiplier function is

Φ(G,X,Y) = ‖G−W‖2F − 〈Λ,X−G〉+ µ
2 ‖X−G‖2F − 〈Σ,Y −G〉

+µ
2 ‖Y −G‖2F +

∑

(i,j)∈T

(

µ
2G

2
ij − ΩijGij

)

, (27)

This is identical to Eq. (10), except we addedΩ as additional Lagrangian multiplier for the semi-
supervised constraints, i.e. the desired similarityGij = 0 for (i, j) having different known class
labels. HereT = {(i, j) : yi 6= yj, i, j = 1, 2, · · · , ℓ}.

We modify Algorithm of Eqs. (11a–11f) to solve this problem.The updating ofX andY remains
the same as NLK algorithm described previously. To updateG, we set∂Φ(G,X,Y)/∂G = 0 and
obtain

Gij ←















max

(

2Wij + µ(Xij + Yij) + Λij +Σij +Ωij

2 + 3µ
, 0

)

if yi 6= yj,

max

(

2Wij + µ(Xij + Yij) + Λij +Σij

2 + 2µ
, 0

)

otherwise. (28)

For Lagrangian multiplierΩ, the corresponding updating is

Ωij ← Ωij − µGij , ∀yi 6= yj . (29)

Thus the semi-supervised learning algorithm is nearly identical to the unsupervised learning algo-
rithm — one strength of our unified NLK approach.

We summarize the NLK algorithms for unsupervised and semi-supervised learning in Algorithm 1.
In the algorithm, Lines 4 and 9 are updated for semi-supervised learning while other lines are shared.
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Algorithm 1 NLK Algorithm For Supervised Learning and Semi-supervisedLearning
Require: Weighted graphW, model parametersc, optimization parameterγ, partial labely for

semi-supervised learning.
1: Initialization : G = W,Λ = 0,Σ = 0,Ω = 0, µ = 1.
2: while Not convergeddo

3: For unsupervised learning,G← max
(

2W+µ(X+Y)+Λ+Σ
2+2µ , 0

)

.

4: For semi-supervised learning, updateG using Eq. (28).
5: X← UD+U

⊺ whereUDU⊺ = G+ Λ/µ.
6: Y← USU⊺ whereUDU⊺ = G+Σ/µ andS is computed by Eq. (26).
7: Λ← Λ − µ (X−G)
8: Σ← Σ− µ (Y −G)
9: For semi-supervised learning,Ωij ← Ωij − µGij , ∀yi 6= yj.

10: µ← γµ.
11: end while
12: return G

3.4 Theoretical Analysis of The Algorithm

Since the objective function and all the constraints are convex, we have the following [12]

Theorem 3.2. Algorithm 1 converges to the global solution of Eq. (5) or Eq. (7).

Notice that this conclusion is stronger than that in the related research papers [13] for graph learning.

4 Experimental Validation

As mentioned in the introduction section, the optimizationresults for NLK (Eq. (5)) can be used
as preprocessing for any graph based methods. Here we evaluated NLK on several state-of-the-art
graph based learning models, include Normalized Cut (Ncut)[19] for unsupervised learning and
Gaussian Fields and Harmonic Functions (GFHF) and local andglobal consistency learning (LGC)
for semi-supervised learning. We compare the clustering inboth clustering accuracy and normalized
mutual information (NMI). For the semi-supervised learning model (Eq. (7)), we evaluate the our
models on GFHF and LGC models. For semi-supervised learning, we measure the classification
accuracy. We verify the algorithms on four data sets: AT&T (n = 400, p = 644,K = 40), BinAlpha
(n = 1404, p = 320,K = 36), Segment (n = 2310, p = 19,K = 7), and Vehicle(n = 946, p =
18,K = 4) from UCI data [9], wheren, p, andK are the number of data points, features, and
classes, respectively.

4.1 Experimental Settings

For clustering, we compare three similarity matrices: (1) original from Gaussian kernel matrix,
wij = exp

(

−‖xi − xj‖
2/2σ2

)

, whereσ is set to the average pairwise distances among all the data
points. (2) the BBS (Bregmanian Bi-Stochastication) [20],and our method (NLK). The clustering
algorithm of Normalized Cut [19] is applied on the three similarity matrices. Then we have total
three clustering approaches: Normalized Cut (Ncut), BBS+Ncut, and NLK+Ncut. For each cluster-
ing method, we try 100 random trials for different clustering initializations. For the semi-supervised
learning, we test three basic graph-based semi-supervisedlearning models. Gaussian Fields and
Harmonic Functions (GFHF) [23], Local and Global Consistency learning (LGC) [22], and Green’s
function (Green) [6]. We compare 4 types of similarity matrices: original Gaussian kernel matrix, as
discussed before, BBS, NLK, and NLK with semi-supervised constraints (model in Eq. (7), denoted
by NLK Semi). Then we totally have3 × 4 methods. For each method, we random split the data
to 30%/70% where 30% is is used as labeled data an the other 70%as the testing data. We try 100
random split and we report the average and standard deviations.

4.2 Parameter Settings

For all the similarity learning approaches (BBS, NLK, and NLK Semi), we set the convergent crite-
ria as follows. If‖Gt+1 −Gt‖2F/‖G

t‖2F < 10−10 we stop the algorithms. For our methods (NLK

7



Table 1: Clustering accuracy and NMI comparison over 3 methods, Normalized Cut (Ncut),
BBS+Ncut, and NLK+Ncut on 4 data sets. The best results are highlighted in bold.

Accuracy NMI

Ncut BBS+Ncut NLK+Ncut Ncut BBS+Ncut NLK+Ncut
AT&T 0.607± 0.022 0.686± 0.021 0.767± 0.006 0.785± 0.025 0.836± 0.026 0.873± 0.025
BinAlpha 0.431± 0.018 0.444± 0.022 0.490± 0.009 0.618± 0.013 0.629± 0.015 0.673± 0.011
Segment 0.613± 0.018 0.593± 0.009 0.616± 0.002 0.528± 0.016 0.579± 0.013 0.538± 0.002
Vehicle 0.383± 0.001 0.383± 0.000 0.426± 0.000 0.121± 0.001 0.122± 0.000 0.184± 0.000

and NLK Semi), there is one model parameterc, which is always set to bec = 0.5‖W‖∗ whereW
is the input similarity matrix.

4.3 Experimental Results

We show that clustering results in Table 1 where we compare both measurements (accuracy, NMI)
over 3 methods on 4 data sets. For each method, we report the average performance and the corre-
sponding standard deviation. Out of 4 data sets, our method outperforms all the other methods with
all the measurements on 3 data sets (AT&T, BinAlpha, and Vehicle).

We also test the semi-supervised learning performance overthe 12 methods on 4 data sets. In
each method on each data, we show the original performance values with dots. Shown are also the
average accuracies and the corresponding standard deviations. Out of 4 data sets, our method (NLK
and NLK Semi) outperform the other methods.

(a) GFHF

Original
BBS
NLK
NLK_Semi

(b) LGC

Original
BBS
NLK
NLK_Semi

(c) Green

Original
BBS
NLK
NLK_Semi

AT&T BinAlpha Segmentation Vehicle
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Figure 2: Semi-supervised learning performance over the 12methods on 4 data sets. Original
accuracy value for each random split is plotted with dots. Shown are also the average accuracies and
the corresponding standard deviations.

5 Conclusions and Discussion

In this paper, we derive a similarity learning model based onconvex optimizations. We demonstrate
that the low rank and positive semidefinite constraints are nature in the similarity. Further more,
we develop new sufficient algorithm to obtain global solution with theoretical guarantees. We also
develop more optimization techniques that are potentiallyuseful in the related eigenvalues or singu-
lar values constraints optimization. The presented model is verified on extensive experiments, and
the results show that our method enhances the quality of the similarity matrix significantly, in both
clustering and semi-supervised learning.
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