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Abstract

In many graph-based machine learning and data mining agipesathe quality
of the graph is critical. However, in real-world applicat especially in semi-
supervised learning and unsupervised learning, the el@fuaf the quality of a
graph is often expensive and sometimes even impossibleheéusost or the un-
availability of ground truth. In this paper, we proposed bust approach with
convex optimization to “forge” a graph: with an input of a graph, to learn a graph
with higher quality. Our major concern is that an ideal graphll satisfy all the
following constraints: non-negative, symmetric, low raakd positive semidef-
inite. We develop a graph learning algorithm by solving avesnoptimization
problem and further develop an efficient optimization tcaddglobal optimal so-
lutions with theoretical guarantees. With only one nonsg@me parameter, our
method is shown by experimental results to be robust aneeehigher accuracy
in semi-supervised learning and clustering under variettings. As a prepro-
cessing of graphs, our method has a wide range of potenfiitafions machine
learning and data mining.

1 Introduction

Many machine learning algorithms use graphs as input, ssicluatering [16, 14], manifold based

dimensional reduction [2, 15], and graph-based semi-siget learning [23, 22]. In these ap-

proaches, we are particularly interested in ¢tnailarity among objects. However, the observation
of similarity graphs often contain noise which sometimeslead the learning algorithm, especially
in unsupervised and semi-supervised learning. Deriviaglgs with high quality becomes attractive
in machine learning and data mining research.

A robust and stable graph learning algorithm is especiadlgirdble in unsupervised and semi-
supervised learning, because the unavailability or higst o ground truth in real world appli-
cations. In this paper, we develop a novel graph learningréilgn based on convex optimization,
which leads to robust and competitive results.

1.1 Motivation and Main Problem

In this section, the properties of similarity matrix areis#ed from point of view of normalized
cut clustering [19]. Given a symmetric similarity matiW < R™*™ onn objects, normalized cut
solves the following optimization problem [10].

min trHT(D — W)H s.t. H'DH =1, 1)
H>0



whereH < {0, 1}"* X is the cluster indicator matrix, or equivalently,

maxtrFTWF s.t. FTF =1, 2)
F>0
whereF = [flvf?a"' 7fK]aH = [h17h27"' 7hK]afk = D%hk/HD%thal S k S K,W =
D-:WD~ 2, D = diag(dy,da, -+ ,dy),d; = >°7_, Wij, Tis the identity matrix, andy is the
number of groups. Eq. (2) can be further rewritten as,

min ||W — FFT||p s.t. FTF =1, (3)
F>0

where|| - || 7 denotes the Frobenius norm. We notice that
IW -G +G—FFT[|r < |W—G|r+|G—-FF|p, (4)

foranyG € R™*™. Our goal is to minimize the LHS (left-hand side); Instead,aan minimize the
RHS which is the upper-bound of LHS.

Thus we need to find the intermediate maft@xi.e., we learn aurrogate graph which is close but
not identical toW. Our upper-bounding approach offers flexibility which allows us to impose cer-
tain desirable properties. Note that ma#¥ T holds the following properties: (P1) symmetric, (P2)
nonnegative, (P3) low rank, and (P4) positive semidefifites suggests eonvex graph learning

min |G -WJ|% st. G=0, |G|l.<¢,G=GT, G>0, (5)

whereG ‘= 0 denotes the positive semidefinite constrgjnt].. denotes the trace noriine. the sum
of the singular values [8], andis a model parameter which controls the ranlGaf The constraint
of G > 0 is to force the similarity to be naturally non-negative. Byuition, one might impose row
rank constraint of ranlG) < c. But this leads to @aon-convex optimization, which is undesirable
in unsupervised and semi-supervised learning. Followiagrisncompletion methods [5], the trace
constraint in Eq. (5) is a good surrogate for the low rank taist. For notational convenience, the
normalized similarity matriXW is denoted a3V in the rest of the paper.

By solving Eq. (5), we are actually seeking a similarity matrhich satisfies all the properties of
a perfect similarity matrix (P1-P4) and which is close to thiginal input matrixG. Our whole
paper is here dedicated to solve Eq. (5) and to demonsttgstfulness of its optimal solution in
clustering and semi-supervised learning using both thigatend empirical evidences.

1.2 Related Work

Our method can be viewed as a preprocessing for similarityixrend a large number of machine
learning and data mining approaches require a similarityirn@nterpreted as a weighted graph) as
input. For example, in unsupervised clustering, Normdligait [19], Ratio Cut [11], Cheeger Cut
[3] have been widely applied in various real world applicat. In graphical models for relational
data,eg. Mixed Membership Block models [1] can be also interpreted@&serative models on
the similarity matrices among objects. Thus a similaritytnimgreprocessing model can be widely
applied.

A large number of approaches have been developed to leailagiyrmatrix with different empha-
sis. Local Linear Embedding (LLE ) [17, 18] and Linear Labebpagation [21] can be viewed as
obtaining a similarity matrix using sparse coding. Anotiay to perform the similarity matrix pre-
processing is to take a graph as input and to obtain a refirsgahday learning, such as bi-stochastic
graph learning [13]. Our method falls in this category. Wdl sompare our method with these
methods in the experimental section.

On the optimization techniques for problems with multipb@straints, there also exist many related
researches. First, von Neumann provided a convergencégireoccessive projection method that
it guarantees to converge to feasible solution in convexopation with multiple constraints, which
was employed in the paper by Laial. [13]. In this paper, we develop a novel optimization algo-
rithm to solve the optimization problem with multiple comveonstraints (including the inequality
constraints), which is guaranteed to find the global sotutidore explicitly, we develop a variant
of inexact Augmented Lagrangian Multiplier method to hanidlequality constraints. We also de-
velop a useful Lemma to handle the subproblems with tracemonstraint in the main algorithm.
Interestingly, one of the derived subproblems isghball projection problem, which can be solved
elegantly by simple thresholding.
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Figure 1. A toy example of low rank and positive semidefinitag learning. (a): A perfect
similarity matrix. (b): Adding noise from (a). (c1): the optimal solution of Eq. {B) using the
matrix in (b) asG. (c2): the optimal solution of Eq. (6) by using the matrix b) &sG. (d): sorted
eigenvalues for the two solutions of Eq. (5) and Eq. (6).

2 A Toy Example

We first emphasize the usefulness of the positive semidefinitl low rank constraints in problem of
Eqg. (5) using a toy example. In this toy example, we also sthledollowing problem for contrast,

min |G ~W]|% st.G=GT, Ge=e, G >0, (6)

wheree = [1,1, - -, 1]T and the constraints of positive semidefinite and low rankemeoved from
Eg. (5) and instead a bi-stochastic constraint is applieel € e€). Notice that the model defined in
Eq. (6) is used in the bi-stochastic graph learning [13]. BleesEqgs. (5) and (6) for the same input
G and compare the solution to see the effect of positive sémitieand low rank constraints.

In the toy example, we first generate a perfect similarityrim&V in which W;; = 1 if data points

i,j are in the same group atf;; = 0 otherwise. Three groups of data points (10 data points in
each group) are considergd.are shown in Figure (a) with black color denoting zeros values. We
then randomly add some positive noise@rwhich is shown in Figure {b). Then we solve Egs.
(5) and (6) and the results € is shown in Figure 1c1)and(c2). The observation is that Eq. (5)
recover the perfect similarity much more accurately than(B)y The reason is that in model of
Eq. (6), the low rank and positive semidefinite constrainésignored and the result deviates from
the ground truth.

We show the eigenvalues distributions@ffor solution in Figure 1q) for both methods in Egs. (5)
and (6). One can observe that the solution Eq. (5) gives lok aad positive semidefinite results,
while the solution for Eq. (6) is full rank and has negativgegivalues.

Since the solution of Eq. (5) is always positive, symmetde; rank, and positive semidefinite, we
called our solution the Non-negative Low-rank Kernel (NLK)

2.1 NLK for Semi-supervised Learning

Although NKL is mainly developed for unsupervised learniitgcan be easily extended to incor-
porate the label information in semi-supervised learn2@].| Assume we are given a set of data
X = [x1,X2, " ,Xs,Xe41, -+, Xn] Where the first data points are labeled &g, vz, -,y
Then we have more information to learn a better similaritytrira Here we add additional con-
straints on Eq. (5) by enforcing the similarity to be zerostfmse paris of data points in different
classesj.e. G;; = 0if y; # y;,1 < i,7 < £. By considering all the constraints, we optimize the
following,

min |G -WJ|F st. G20, |Gl.<c¢,G=GT, G>0, G;; =0,Yy; #y;. (7)

We will demonstrate the advantage of these semi-supensinstraints in the experimental section.
The computational algorithm is given §3.3.



3 Optimization

The optimization problemss in Egs. (5) and (7) are nonatisince there are multiple constraints,
including both equality and inequality constraints. Ouatggy is to introduce two extra copies of
optimization variabl&X andY to split the constraints into several directly solvablemoblems,

Irgn IG-WJ|%4, st. G=>0 (8a)
min | X - WJ32, st. X330, with X=G. (8b)
X

n%i(n Y - W%, st.  [[Y]«<ec with Y=G (8¢c)

More formally, we solve the following problem,
ming |G — W|% (9a)
st. G=>0 (9b)
X=G, X0, (9¢)
Y=G, [Y[.<q (9d)

One should notice that problem in Egs. (9a) — (9d) is equitdle our main problem in Eq. (5).
In the rest of this section, we will employ a variant of AugrteshLagrangian Multiplier (AML)
method to solve Eqs. (9a) — (9¢).

3.1 Seeking Global Solutions: A Variant of ALM
The augmented Lagrangian multiplier function of Egs. (96d) is

% %
®(G,X,Y) =[G - Wi - (A X - G)+ TG - X|[F - (5, Y - G) + TG - Y|,
(10)
with constraints oG > 0, X = 0, and|| Y. < ¢, whereA, ¥ are the Lagrangian multipliers.
Then ALM method leads to the following updating steps,

G <« arg g;% (G, X,Y,Z) (11a)
X <« arg %;% (G, X,Y,Z) (11b)
Y « arg H\r{rﬁin< (G, X,Y,Z) (11c)
A+« A—pu(G-X) (11d)
Y« Y-u(G-Y) (11e)
w4 yu, t+—t+1. (111)

Notice that the symmetric constraint is removed here. Welatiér show that given a symmetric
input W, the output of our algorithm automatically satisfies the syatric constraints.

3.2 Solving the Subproblems in ALM

X andY updating algorithms in Egs. (11b and 11c) contain eigemvatnstraints, which appear
complicated. Fortunately they have closed form solutiom. sfiow that, we first introduce the
following useful Lemma.

Lemma 3.1. Consider the following problem,
min || X — A%, st ¢i(X) <1 <i<m, (12)

where ¢;(X) < ¢; is any constraint on eigenvalues of X, ¢ = 1,2,--- ,m and m is the num-
ber of constraints. Then there exists a diagonal matrix S such that USUT is an optimizer of
Eq. (12), where UXUT = A isthe eigenvector decomposition of A. S relates to eigenvalues of
3 =diag(A1, - -, An) and satisfying the constraints.



Proof. Let VSVT = X andUDUT = A be the eigenvector decompositionXfand A, respec-
tively. By applying von Neumann’s trace inequality, theldaling holds for anyX and A,

trXTA < trSD. (13)
Then
trVSVTA = trXTA < trSD = tr(USUT)(UDUT) = USUTA, (14)
which leads to
IUSUT — A% < |[VSVT — A3, (15)

Now assuméX = VSVT is a minimizer of Eq. (12). By comparing two solutionsXf= VSVT
andZ = USUT, one should notice (a) th& satisfies all the constraints ¢f(Z) = ¢;(X) <
¢, 1 <i<minEg. (12) and (b) thaZ gives equal or less value of the objective, tlfus USUT
ia also a minimizer of Eq. (12). O

Lemma 3.1 shows an interesting property of the matrix agpration with eigenvalue or singular
value constraint: the optimal solution matrix shares theesgubspace of the input matrix. This
is useful, because once the subspace is determined, the whtiization becomes much easier.
Thus the lemma provides a powerful mathematical tool in asaiion of optimization problem
with eigenvalue and singular value constraints. Here, wdydpemma 3.1 to solve the updating of
X andY in §3.2.2-3.2.3.

3.2.1 UpdatingG

By ignoring the irrelevant terms with respect@, we can rewrite Eq. (11a) as following,

G e»a@ggn@+2MG—«ﬂV+MX+Y@+A+EH@+cma (16)
_ m%<ﬂV+MX+Y7+A+Eﬁ). 17)
242

3.2.2 UpdatingX

For Eq. (11b), we need to solve the following subproblem
m}énHX—PH%, X =0, where P = G + A/pu. (18)

Notice thatX = 0 is constraint on the eigenvaluesXf Then we can directly apply Lemma 3X,
can be written a¥®JSUT and Eqg. (18) becomes

min [USUT — UDUT|%, st. S>0, (19)
whereUDUT = P is the eigenvector decomposition Bf LetS = diag(s1, s2, - ,s,) and
D = diag(d;,ds, - ,dy,). Then Eq. (19) can be further rewritten as,

i i—d)?, stos;>0,i=1,2,-- ,n. 20
11?111; (si—di)”, st s; >0, n (20)
Eq. (20) has simple closed form solutiongs= max(d;,0),i =1,2,--- ,n.

3.2.3 UpdatingY

Eg. (11c) can be rewritten as, ,
min [Y = Q[ [[Y[l <, (21)

whereQ = G + %E. The corresponding Lagrangian function is,

LOYN) =Y -QlE+ (Y] o). (22)

Since we do not know the true Lagrangian multipleme cannot directly apply the singular value
thresholding technique [4]. However, we find Lemma 3.1 us&jain. We notice thaY is symmet-
ric and the constraint dfY ||.. < ¢ becomes a constraint on the eigenvalue¥otetY = USUT
and by directly applying Lemma 3.1, Eq. (21) can be furthéttem as,

i T UDUT| .t. il < 2
m§n||USU UDUT||%, s.t ;|s|_c, (23)

5



or,

min ||s — d||?, s.t. Z|sl| <eg¢, (24)
i=1

whereS = diag(s),s = [s1, 52, -+, $,]T,D = diag(d), andd = [d1,d2,--- ,d,]T.

Interestingly, the above problem is a standérdball optimization problem which has been studied
for a long time and Duchét al. has recently provided a simple and elegant solution [7]. firred
solution is to search the least> 0 such that) |, max(|d;| — 6,0) < ¢, i.e.

= i 2. i| — <ec.
0 argn%nﬁ s.t Zmax(|dz| 0,0)<c (25)

=1

This can be easily done by sorting thik| and try thef values between two consecutive sorféd.
And the solution is

s; = sign(d;) max(|d;| — 6, 0). (26)

Notice that in each step of algorithm, the solution has aldeem solution and that the output of
G is always symmetric, which indicates that the constrainGof GT is automatically satisfied in
each step.

3.3 NLK Algorithm For Semi-supervised Learning

In many real world settings, we know partially of data classels and hope to further utilize such
information, as described in Eq. (7). Fortunately, the egponding optimization problem remains
convex. The augmented Lagrangian multiplier function is

(G XY)= [G-W[;-(AX-G)+5|X-G[} - (XY -G)
+HEIY = GlI% + X jyer (563 — 24Gi) (27)

This is identical to Eq. (10), except we add@chs additional Lagrangian multiplier for the semi-
supervised constraints, i.e. the desired similafify = 0 for (¢, j) having different known class
labels. Herel” = {(Za.]) “Yi 7& yj7i7j =12 76}

We modify Algorithm of Egs. (11a—11f) to solve this problefirhe updating oiX andY remains
the same as NLK algorithm described previously. To up@ateve seto® (G, X,Y)/0G = 0 and
obtain

max Wij + pn(Xij +Yi5) + Ay + 555 +Q
2+ 3u
(QVVU + (X +Y55) + Ay + 245 0)

”',o) it s £y,
Gij <—

max

herwise. 2
5o otherwise (28)

For Lagrangian multiplief?, the corresponding updating is
Qij  Qij — pGij, Vyi # y;- (29)

Thus the semi-supervised learning algorithm is nearlytidahto the unsupervised learning algo-
rithm — one strength of our unified NLK approach.

We summarize the NLK algorithms for unsupervised and sempéesvised learning in Algorithm 1.
In the algorithm, Lines 4 and 9 are updated for semi-supetMsarning while other lines are shared.



Algorithm 1 NLK Algorithm For Supervised Learning and Semi-supervisedrning

Require: Weighted grapiw, model parameters, optimization parametey, partial labely for
semi-supervised learning.
1: Initialization: G=W,A=0,2=0,2=0,u= 1.
2: while Not convergedlo

3: For unsupervised learnin€; < max

W Hp(XY)+A+Y )
2420 J

4: For semi-supervised learning, upd&eusing Eq. (28).
5: X + UD,UT whereUDUT = G + A/ p.
6: Y < USUT whereUDUT = G + ¥/u andS is computed by Eqg. (26).
7 AeA—pn(X-G)
8 Y« X—pu(Y-G)
9: For semi-supervised learnin;; < Q;; — uGi;, Vy; # y;.
10: W= YL
11: end while
12: return G

3.4 Theoretical Analysis of The Algorithm

Since the objective function and all the constraints arezepywe have the following [12]
Theorem 3.2. Algorithm 1 converges to the global solution of Eg. (5) or Eq. (7).

Notice that this conclusion is stronger than that in theteelaesearch papers [13] for graph learning.

4 Experimental Validation

As mentioned in the introduction section, the optimizatiesults for NLK (Eqg. (5)) can be used
as preprocessing for any graph based methods. Here we ®hNBK on several state-of-the-art
graph based learning models, include Normalized Cut (NJA®) for unsupervised learning and
Gaussian Fields and Harmonic Functions (GFHF) and locab#otthl consistency learning (LGC)
for semi-supervised learning. We compare the clusteritugth clustering accuracy and normalized
mutual information (NMI). For the semi-supervised leagninodel (Eq. (7)), we evaluate the our
models on GFHF and LGC models. For semi-supervised learmiegmeasure the classification
accuracy. We verify the algorithms on four data sets: AT&H 400, p = 644, K = 40), BinAlpha

(n = 1404, p = 320, K = 36), Segment:f = 2310,p = 19, K = 7), and Vehiclef = 946,p =
18, K = 4) from UCI data [9], wheren,p, and K are the number of data points, features, and
classes, respectively.

4.1 Experimental Settings

For clustering, we compare three similarity matrices: (figioal from Gaussian kernel matrix,
w;; = exp (—||x; — x;]|?/20?), whereo is set to the average pairwise distances among all the data
points. (2) the BBS (Bregmanian Bi-Stochastication) [20]¢d our method (NLK). The clustering
algorithm of Normalized Cut [19] is applied on the three $amify matrices. Then we have total
three clustering approaches: Normalized Cut (Ncut), BB&#Nand NLK+Ncut. For each cluster-
ing method, we try 100 random trials for different clusterinitializations. For the semi-supervised
learning, we test three basic graph-based semi-superldaeding models. Gaussian Fields and
Harmonic Functions (GFHF) [23], Local and Global Consistelearning (LGC) [22], and Green'’s
function (Green) [6]. We compare 4 types of similarity meds: original Gaussian kernel matrix, as
discussed before, BBS, NLK, and NLK with semi-superviseustints (model in Eq. (7), denoted
by NLK_Semi). Then we totally havg x 4 methods. For each method, we random split the data
to 30%/70% where 30% is is used as labeled data an the othen3 @B testing data. We try 100
random split and we report the average and standard dewatio

4.2 Parameter Settings

For all the similarity learning approaches (BBS, NLK, andiNSemi), we set the convergent crite-
ria as follows. If| Gl — G!||2./||G!||% < 10~1° we stop the algorithms. For our methods (NLK



Table 1. Clustering accuracy and NMI comparison over 3 nmathdNormalized Cut (Ncut),
BBS+Ncut, and NLK+Ncut on 4 data sets. The best results atdighted in bold.

Accuracy NMI

Ncut BBS+Ncut NLK+Ncut Ncut BBS+Ncut NLK+Ncut
AT&T 0.607 £ 0.022 0.686+ 0.021 0.7674 0.006 0.785+ 0.025 0.836+ 0.026 0.873+ 0.025
BinAlpha 0.4314+ 0.018 0.444+ 0.022 0.490+4 0.009 0.618+ 0.013 0.629+0.015 0.673+ 0.011
Segment 0.613 0.018 0.593t 0.009 0.616+ 0.002 0.528+ 0.016 0.579+ 0.013 0.538+ 0.002
Vehicle  0.383+ 0.001 0.383+ 0.000 0.4264 0.000 0.121+4 0.001 0.122+ 0.000 0.184+ 0.000

and NLK_Semi), there is one model parametewhich is always set to be= 0.5|| W||. whereW
is the input similarity matrix.

4.3 Experimental Results

We show that clustering results in Table 1 where we compatte lneasurements (accuracy, NMI)

over 3 methods on 4 data sets. For each method, we reportehegavperformance and the corre-
sponding standard deviation. Out of 4 data sets, our methtpedorms all the other methods with

all the measurements on 3 data sets (AT&T, BinAlpha, anddlehi

We also test the semi-supervised learning performance tbeel2 methods on 4 data sets. In
each method on each data, we show the original performartgess/aith dots. Shown are also the
average accuracies and the corresponding standard degia®ut of 4 data sets, our method (NLK
and NLK_Semi) outperform the other methods.

(a) GFHF AT&T BinAlpha Segmentation Vehicle
Original oo 0.4807 = 0.0419 R [ 0.4720 £ 0.0772 o 0.7445 £ 0.0442 iz 0.6729 £ 0.0195
BBS e 05981 £0.0465| | oo L 04715 +0.0803 R A 0.7926 +0.0331 R e 0.6802 +0.0188
NLK B 0.7104 £0.0277| | oofeodeodr-: 0.4843 + 0.0770 R R 0.8038 + 0.0290 - e 0.6857 £ 0.0179
NLK_Semi H 0.7121 £ 0.0289 4t 0.4931 £ 0.0777 ] 0.8500 £ 0.0343 = 0.7257 +0.0213
02 0.4 0.6 0.8 02 0.4 0.6 08 0.7 08 09 1 065 07 075 08
(b) LGC
original |+ ~wdrapratecr 06561 +0.0480|  |-v.1- I 04250 £ 0.0745 B 0.4881 +0.0760 oo 0.4936 + 0.0671
BBS B 066054 0.0480(  [-ruspetperdent - 04252 +0.0755 ~ b 0.5892 + 0.0656 B e 0.5112 4 0.0666
NLK .- -4-'-’* 0.6649 £0.0452|  |ereer Hﬁ’l-» 0.4367 = 0.0791 ~-~*H 0.6850 = 0.0526 -*- 0.6233 £ 0.0292
NLK_Semi = 0.7213 £ 0.0451 ] 0.4805 £ 0.0789 - 0.6997 £ 0.0518 H 0.6707 +0.0313
05 06 07 08 02 04 06 08 02 04 06 08 02 04 06 08
(c) Green
Original R ald 0.7148 £ 0.0261 < b 05497 £0.0768| |, eheefobers - 0.6887 +0.0320 B 0.5299 + 0.0266
BBS B 0.7176 % 0.0269 npegors 0.5527 +0.0752 B A 0.7143 = 0.0325 B 0.5352 % 0.0255
NLK e - 0.7340 +0.0326 B 05545 + 0.0785 o had 0.7539 + 0.0366 B 0.5965 +0.0215
NLK_Semi A 0.7774 4 0.0349 - 0.5584 + 0.0806 [l 0.7648 + 0.0395 HH 0.6132 4 0.0274

07 08 09 1 02 04 06 08 07 08 09 1 0.4 0.6 0.8

Figure 2: Semi-supervised learning performance over thenéthods on 4 data sets. Original
accuracy value for each random split is plotted with dotevBhare also the average accuracies and
the corresponding standard deviations.

5 Conclusions and Discussion

In this paper, we derive a similarity learning model basedamvex optimizations. We demonstrate
that the low rank and positive semidefinite constraints atene in the similarity. Further more,
we develop new sufficient algorithm to obtain global solntwith theoretical guarantees. We also
develop more optimization techniques that are potentigdBful in the related eigenvalues or singu-
lar values constraints optimization. The presented madetiified on extensive experiments, and
the results show that our method enhances the quality ofithtasty matrix significantly, in both
clustering and semi-supervised learning.
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