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Abstract
The Lovász ϑ function of a graph, a fundamental tool in combinatorial optimiza-
tion and approximation algorithms, is computed by solving a SDP. In this paper
we establish that the Lovász ϑ function is equivalent to a kernel learning problem
related to one class SVM. This interesting connection opens up many opportuni-
ties bridging graph theoretic algorithms and machine learning. We show that there
exist graphs, which we call SVM − ϑ graphs, on which the Lovász ϑ function
can be approximated well by a one-class SVM. This leads to novel use of SVM
techniques for solving algorithmic problems in large graphs e.g. identifying a
planted clique of size Θ(

√
n) in a random graph G(n, 1

2 ). A classic approach for
this problem involves computing the ϑ function, however it is not scalable due
to SDP computation. We show that the random graph with a planted clique is an
example of SVM − ϑ graph. As a consequence a SVM based approach easily
identifies the clique in large graphs and is competitive with the state-of-the-art.
We introduce the notion of common orthogonal labelling and show that it can be
computed by solving a Multiple Kernel learning problem. It is further shown that
such a labelling is extremely useful in identifying a large common dense subgraph
in multiple graphs, which is known to be a computationally difficult problem. The
proposed algorithm achieves an order of magnitude scalability compared to state
of the art methods.

1 Introduction
The Lovász ϑ function [19] plays a fundamental role in modern combinatorial optimization and
in various approximation algorithms on graphs, indeed Goemans was led to say It seems all
roads lead to ϑ [10]. The function is an instance of semidefinite programming(SDP) and
hence computing it is an extremely demanding task even for moderately sized graphs. In this paper
we establish that the ϑ function is equivalent to solving a kernel learning problem in the one-class
SVM setting. This surprising connection opens up many opportunities which can benefit both graph
theory and machine learning. In this paper we exploit this novel connection to show an interesting
application of the SVM setup for identfying large dense subgraphs. More specifically we make the
following contributions.

∗Relevant code and datasets can be found on http://www.cse.chalmers.se/˜
jethava/svm-theta.html
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1.1 Contributions:

1.We give a new SDP characterization of Lovász ϑ function,

min
K∈K(G)

ω(K) = ϑ(G)

where ω(K) is computed by solving an one-class SVM. The matrix K is a kernel matrix, associated
with any orthogonal labelling of G. This is discussed in Section 2.

2. Using an easy to compute orthogonal labelling we show that there exist graphs, which we call
SVM − ϑ graphs, on which Lovász ϑ function can be well approximated by solving an one-class
SVM. This is discussed in Section 3.

3. The problem of finding a large common dense subgraph in multiple graphs arises in a variety
of domains including Biology, Internet, Social Sciences [18]. Existing state-of-the-art methods
[14] are enumerative in nature and has complexity exponential in the size of the subgraph. We
introduce the notion of common orthogonal labelling which can be used to develop a formulation
which is close in spirit to a Multiple Kernel Learning based formulation. Our results on the well
known DIMACS benchmark dataset show that it can identify large common dense subgraphs in
wide variety of settings, beyond the realm of state-of-the-art methods. This is discussed in Section
4.

4. Lastly, in Section 5, we show that the famous planted clique problem, can be easily solved for
large graphs by solving an one-class SVM. Many problems of interest in the area of machine learning
can be reduced to the problem of detecting planted clique, e.g detecting correlations [1, section 4.6],
correlation clustering [21] etc. The planted clique problem consists of identifying a large clique in
a random graph. There is an elegant approach for identifying the planted clique by computing the
Lovász ϑ function [8], however it is not practical for large graphs as it requires solving an SDP.
We show that the graph associated with the planted clique problem is a SVM − ϑ graph, paving
the way for identifying the clique by solving an one-class SVM. Apart from the method based on
computing the ϑ function, there are other methods for planted clique identification, which do not
require solving an SDP [2, 7, 24]. Our result is also competitive with the state-of-the-art non-SDP
based approaches [24].

Notation We denote the Euclidean norm by ‖ · ‖ and the infinity norm by ‖ · ‖∞. Let Sd−1 =
{u ∈ Rd| ‖u‖ = 1} denote a d dimensional sphere. Let Sn denote the set of n×n square symmetric
matrices and S+

n denote n × n square symmetric positive semidefinite matrices. For any A ∈ Sn
we denote the eigenvalues λ1(A) ≥ . . . ≥ λn(A). diag(r) will denote a diagonal matrix with
diagonal entries defined by components of r. We denote the one-class SVM objective function by

ω(K) = max
αi≥0,i=1,...,n

(
2

n∑
i=1

αi −
n∑
i=1

αiαjKij

)
︸ ︷︷ ︸

f(α;K)

(1)

where K ∈ S+
n . Let G = (V,E) be a graph on vertices V = {1, . . . , n} and edge set E. Let

A ∈ Sn denote the adjacency matrix of G where Aij = 1 if edge (i, j) ∈ E, and 0 otherwise. An
eigenvalue of graph G would mean the eigenvalue of the adjacency matrix of G. Let Ḡ denote the
complement graph of G. The adjacency matrix of Ḡ is Ā = ee>− I−A, where e = [1, 1, . . . , 1]>

is a vector of length n containing all 1’s, and I denotes the identity matrix. LetGS = (S,ES) denote
the subgraph induced by S ⊆ V in graphG; having density γ(GS) is given by γ(GS) = |ES |/

(|S|
2

)
.

Let Ni(G) = {j ∈ V : (i, j) ∈ E} denote the set of neighbours of vertex i in graph G, and degree
of node i to be di(G) = |Ni(G)|. An independent set in G (a clique in Ḡ is a subset of vertices
S ⊆ V for which no (every) pair of vertices has an edge in G (in Ḡ). The notation is standard e.g.
see [3].

2 Lovász ϑ function and Kernel learning

Consider the problem of embedding a graph G = (V,E) on a d dimensional unit sphere Sd−1. The
study of this problem was initiated in [19] which introduced the idea of orthogonal labelling: An
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orthogonal labelling of graphG = (V,E) with |V | = n, is a matrix U = [u1, . . . ,un] ∈ Rd×n such
that u>i uj = 0 whenever (i, j) 6∈ E and ui ∈ Sd−1 ∀ i = 1, . . . , n.

An orthogonal labelling defines an embedding of a graph on a d dimensional unit sphere: for every
vertex i there is a vector ui on the unit sphere and for every (i, j) 6∈ E ui and uj are orthogonal.
Using the notion of orthogonal labellings, [19] defined a function, famously known as Lovász ϑ
function, which upper bounds the size of maximum independent set. More specifically

for any graph G : ALPHA(G) ≤ ϑ(G),

where ALPHA(G) is the size of the largest independent set. Finding large independent sets is
a fundamental problem in algorithm design and analysis and computing ALPHA(G) is a classic
NP-hard problem which is even very hard even to approximate [11]. However, the Lovász function
ϑ(G) gives a tractable upper-bound and since then Lovász ϑ function has been extensively used
in solving a variety of algorithmic problems e.g. [6]. It maybe useful to recall the definition of
Lovász ϑ function. Denote the set of all possible orthogonal labellings of G by Lab(G) = {U =
[u1, . . . ,un]|ui ∈ Sd−1, u>i uj = 0∀(i, j) 6∈ E}.

ϑ(G) = min
U∈Lab(G)

min
c∈Sd−1

max
i

1

(c>ui)2
(2)

There exist several other equivalent definitions of ϑ, for a comprehensive discussion see [16].

However computation of Lovász ϑ function is not practical even for moderately sized graphs as it
requires solving a semidefinite program on a matrix which is of the size of the graph. In the following
theorem, we show that there exist connections between the ϑ function and the SVM formulation.

Theorem 2.1. For a undirected graph G = (V,E), with |V | = n, let K(G) := {K ∈ S+
n | Kii =

1, i ∈ [n],Kij = 0, (i, j) 6∈ E} Then, ϑ(G) = minK∈K(G) ω(K)

Proof. We begin by noting that any K ∈ K(G) is positive semidefinite and hence there exists
U ∈ Rd×n such that K = U>U. Note that Kij = u>i uj where ui is a column of U. Hence by
inspection it is clear that the columns of U defines an orthogonal labelling on G, i.e U ∈ Lab(G).
Using a similar argument we can show that for any U ∈ Lab(G), the matrix K = U>U, is an
element of K(G). The set of valid kernel matrices K(G) is thus equivalent to Lab(G). Note that if
U is a labelling then U = Udiag(ε) is also an orthogonal labelling for any ε> = [ε1, . . . , εn], εi =
±1 i = 1, . . . , n. It thus suffices to consider only those labellings for which c>ui ≥ 0 ∀ i =
1, . . . , n holds. For a fixed c one can write maxi

1
(c>ui)2

= mint t
2 subject to 1

c>ui
≤ t. This is

true because the minimum over t is attained at maxi
1

c>ui
. Setting w = 2tc yields the following

relation minc∈Sd−1 maxi
1

(c>ui)2
= minw∈Rd

‖w‖2
4 with constraints w>ui ≥ 2. This establishes

that for a labelling, U, the optimal c is obtained by solving an one-class SVM. Application of
strong duality immediately leads to the claim minc∈Sd−1 maxi

1
(c>ui)2

= ω(K) where K = U>U

and ω(K) is defined in (1). As there is a correspondence between each element of Lab(G) and K
minimization of ω(K) over K is equivalent to computing the ϑ(G) function.

This is a significant result which establishes connections between two well studied formulations,
namely ϑ function and the SVM formulation. An important consequence of Theorem 2.1 is an
easily computable upperbound on ϑ(G) namely that for any graph G

ALPHA(G) ≤ ϑ(G) ≤ ω(K) ∀K ∈ K(G) (3)

Since solving ω(K) is a convex quadratic program, it is indeed a computationally efficient alternative
to the ϑ function. In fact we will show that there exist families of graphs for which ϑ(G) can be
approximated to within a constant factor by ω(K) for suitable K. Theorem 2.1 is closely related to
the following result proved in [20].

Theorem 2.2. [20] For a graph G = (V,E) with |V | = n let C ∈ Sn matrix with Cij = 0
whenever (i, j) 6∈ E. Then,

ϑ(G) = minC v(G,C)

(
= max

x≥0
2x>e− x>

(
C

−λn(C)
+ I

)
x

)
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Proof. See [20]

See that for any feasible C the matrix I + C
−λn(C) ∈ K(G). Theorem 2.1 is a restatement of

Theorem 2.2, but has the additional advantage that the stated optimization problem can be solved
as an SDP. The optimization problem minCv(G,C) with constraints on C is not an SDP. If we
fix C = A, the adjacency matrix, we obtain a very interesting orthogonal labelling, which we will
refer to as LS labelling, introduced in [20]. Indeed there exists family of graphs, called Q graphs
for which LS labelling yields the interesting result ALPHA(G) = v(G,A), see [20]. Indeed
on a Q graph one does not need to compute a SDP, but can solve an one-class SVM, which has
obvious computational benefits. Inspired by this result, in the remaining part of the paper, we study
this labelling more closely. As a labelling is completely defined by the associated kernel matrix, we
refer to the following kernel as the LS labelling,

K =
A

ρ
+ I where ρ ≥ −λn(A). (4)

3 SVM−ϑ graphs: Graphs where ϑ function can be approximated by SVM

We now introduce a class of graphs on which ϑ function can be well approximated by ω(K) for K
defined by (4). In the spirit of approximation algorithms we define:

Definition 3.1. A graph G is a SVM − ϑ graph if ω(K) ≤ (1 + O(1))ϑ(G) where K is a LS la-
belling.

Such classes of graphs are interesting because on them, one can approximate the Lovász ϑ function
by solving an SVM, instead of an SDP, which in turn can be extremely useful in the design and anal-
ysis of approximation algorithms. We will demosntrate two examples of SVM− ϑ graphs namely
(a.) the Erdös–Renyi random graph G(n, 1/2) and (b.) a planted variation. Here the relaxation
ω(K) could be used in place of ϑ(G), resulting in algorithms with the same quality guarantees but
with faster running time – in particular, this will allow the algorithms to be scaled to large graphs.

The classical Erdös-Renyi random graph G(n, 1/2) has n vertices and each edge (i, j) is present
independently with probability 1/2. We list a few facts aboutG(n, 1/2) that will be used repeatedly.

Fact 3.1. For G(n, 1/2),

• With probability 1−O(1/n), the degree of each vertex is in the range n/2±O(
√
n log n).

• With probability 1− e−nc

for some c > 0, the maximum eigenvalue is n/2± o(n) and the
minimum eigenvalue is in the range [−

√
n,
√
n] [9].

Theorem 3.1. Let ε >
√

2 − 1. For G = G(n, 1/2) , with probability 1 − O(1/n), ω(K) ≤
(1 + ε)ϑ(G) where K is defined in (4) with ρ = 1+ε√

2

√
n.

Proof. We begin by considering the case for ρ = (1 + δ
2 )
√
n. By Fact 3.1 for all choices of δ > 0,

the minimum eigenvalue of 1
ρA + I is, almost surely, greater than 0 which implies that f(α,K)

(see (1)) is strongly concave. For such functions KKT conditions are neccessary and sufficient for
optimality. The KKT conditions for a G(n, 1

2 ) are given by the following equation

αi +
1

ρ

∑
(i,j)∈E

Ai,jαj = 1 + µi, µiαi = 0, µi ≥ 0 (5)

As A is random we begin by analyzing the case for expectation of A. Let E(A) = 1
2 (ee> − I), be

the expectation of A. For the given choice of ρ, the matrix K̃ = E(A)
ρ + I is positive definite. More

importantly f(α, K̃) is again strongly concave and attains maximum at a KKT point. By direct
verification α̂ = β̂e where β̂ = 2ρ

n−1+2ρ satisfies

α+
1

ρ
E(A)α = e. (6)
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Thus α̂ is the KKT point for the problem,

f̄ = max
α≥0

f(α, K̃) =

n∑
i=1

α̂− α̂>
(
E(A)

ρ
+ I

)
α̂ = nβ̂ (7)

with the optimal objective function value f̄ . By choice of ρ = (1 + δ
2 )
√
n we can write β̂ =

2ρ/n+O(1/n). Using the fact about degrees of vertices in G(n, 1/2), we know that

a>i e =
n− 1

2
+ ∆i with |∆i| ≤

√
n log n (8)

where a>i is the ith row of the adjacency matrix A. As a consequence we note that∣∣∣∣∣∣α̂i +
1

ρ

∑
j

Aijα̂j − 1

∣∣∣∣∣∣ =
β̂

ρ
∆i (9)

Recalling the definition of f and using the above equation along with (8) gives

|f(α̂;K)− f̄ | ≤ nβ̂
2

ρ

√
n log n (10)

As noted before the function f(α;K) is strongly concave with∇2
αf(α;K) � − δ

2+δ I for all feasible
α. Recalling a useful result from convex optimization, see Lemma 3.1, we obtain

ω(K)− f(α̂;K) ≤
(

1 +
1

δ

)
‖∇f(α̂;K)‖2 (11)

Observing that∇f(α;K) = 2(e−α− A
ρ α) and using the relation between ‖ ·‖∞ and 2 norm along

with (9) and (8) gives ‖∇f(α̂;K)‖ ≤
√
n‖∇f(α̂;K)‖∞ = 2n β̂ρ

√
log n. Plugging this estimate in

(11) and using equation (10) we obtain ω(K) ≤ f̂ +O(log n) = (2 + δ)
√
n+O(log n) The second

equality follows by plugging in the value of β̂ in (7). It is well known [6] that ϑ(G) =
√

2
√
n for

G(n, 1
2 ) with high probability. One concludes that ω(K) ≤ 2+δ√

2
ϑ(G) + o(

√
n) and the theorem

follows by choice of δ.

Discussion: Theorem 3.1 establishes that instead of SDP one can solve an SVM to evaluate
ϑ function on G(n, 1/2). Although it is well known that ALPHA(G(n, 1/2)) = 2 log n whp,
there is no known polynomial time algorithm for computing the maximum independent set. [6]
gives an approximation algorithm that finds an independent set in G(n, p) which runs in expected
polynomial time, via a computation of ϑ(G(n, p)),which also applies to p = 1/2. The ϑ function
also serves as a guarantee of the approximation which other algorithms a simple Greedy algorithm
cannot give. Theorem 3.1 allows us to obtain similar guarantees but without the computational over-
head of solving an SDP. Apart from finding independent sets computing ϑ(G(n, p)) is also used as
a subroutine in colorability [6], and here again one can use the SVM based approach to approximate
the ϑ function.

Similar arguments show also that other families of graphs such as the 11 families of pseudo–random
graphs described in [17] are SVM− ϑ graphs.
Lemma 3.1. [4] A function g : C ⊂ Rd → R is said to be strongly concave over S if there
exists t > 0 such that ∇2g(x) � −tI ∀ x ∈ C. For such functions one can show that if p∗ =
maxx∈C g(x) <∞ then

∀x ∈ C p∗ − g(x) ≤ 1

2t
‖∇g(x)‖2

4 Dense common subgraph detection

The problem of finding a large dense subgraph in multiple graphs has many applications [23, 22,
18]. We introduce the notion of common orthogonal labelling, and show that it is indeed possible
to recover dense regions in large graphs by solving a MKL problem. This constitutes significant
progress with respect to state of the art enumerative methods [14].
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Problem definition Let G = {G(1), . . . , G(M)} be a set of simple, undirected graphs G(m) =
(V,E(m)) defined on vertex set V = {1, . . . , n}. Find a common subgraph which is dense in all the
graphs.
Most algorithms which attempts the problem of finding a dense region are enumerative in nature and
hence do not scale well to finding large cliques. [14], first studied a related problem of finding all
possible common subgraphs for a given choice of parameters {γ(1), . . . , γ(M)} which is atleast γi
dense inG(i). In the worst case, the algorithm performs depth first search over space of

(
n
nT

)
possible

cliques of size nT . This has Θ(
(
n
nT

)
) space and time complexity, which makes it impractical for

moderately large nT . For example, finding quasicliques of size 60 requires 8 hours (see Section 6).
In the remainder of this section, we focus on finding a large common sparse subgraph in a given
collection of graphs; with the observation that this is equivalent to finding a large common dense
subgraph in the set of complement graphs. To this end we introduce the following definition

Definition 4.1. Given simple unweighted graphs, G(m) = (V,E(m)) m = 1, . . . ,M on a common
vertex set V with |V | = n, the common orthogonal labelling on all the labellings is given by
ui ∈ Sd−1 such that u>i uj = 0 if (i, j) /∈ E(m) ∀m = 1, . . . ,M}.1

Following the arguments of Section 2 it is immediate that size of the largest common independent
set is upper bounded by minK∈L ω(K) where L = {K ∈ S+

n : Kii = 1 ∀i ∈ [n],Kij =

0 whenever (i, j) /∈ E(m) ∀m = 1, . . . ,M}. We wish to exploit this fact in identifying large
common sparse regions in general graphs. Unfortunately this problem is a SDP and will not scale
well to large graphs. Taking cue from MKL literature we pose a restricted version of the problem
namely

min
K=

∑M
m=1 δmK(m) , δm≥0

∑M
m=1 δm=1

ω(K) (12)

where K(m) is an orthogonal labelling of G(m). Direct verification shows that any feasible K is
also a common orthogonal labelling. Using the fact that ∀x ∈ RM minpm≥0,

∑M
m=1 pm=1 p

>x =

minm xm = max{t|xm ≥ t ∀ m = 1, . . . ,M} one can recast the optimization problem in (12) as
follows

max
t∈R,αi≥0

t s.t. f(α;K(m)) ≥ t ∀ m = 1, . . . ,M (13)

where K(m) is the LS labelling for G(m),∀m = 1, . . . ,M . The above optimization can be readily
solved by state of the art MKL solvers. This result allows us to build a parameter free common
sparse subgraph (CSS) algorithm shown in Figure 1 having following advantages: it provides a
theoretical bound on subgraph density (Claim 4.1 below); and, it requires no parameters from the
user beyond the set of graphs G(1), . . . , G(M).
Let α∗ be the optimal solution in (13); and SV = {i : α∗i > 0} and S1 = {i : α∗i = 1} with

cardinalities nsv = |SV | and n1 = |S1| respectively. Let ᾱ(m)
min,S = mini∈S

∑
j∈Ni(G

(m)
S

)
α∗j

di(G
(m)
S )

denote

the average of the support vector coefficients in the neighbourhood Ni(G
(m)
S ) of vertex i in induced

subgraph G(m)
S having degree di(G

(m)
S ) = |Ni(G(m)

S )|. We define

T (m) =

{
i ∈ SV : di(G

(m)
SV ) <

(1− c)ρ(m)

ᾱ
(m)
min,SV

}
where c = min

i∈SV
α∗i (14)

α∗ = Use MKL solvers to solve eqn. (13)
T = ∩mT (m) {eqn. (14)}
Return T

Figure 1: Algorithm for finding common sparse
subgraph: T = CSS(G(1), . . . , G(M))

Claim 4.1. Let T ⊆ V be computed as in Al-
gorithm 1. The subgraph G(m)

T induced by T ,
in graph G(m), has density at most γ(m) where
γ(m) = (1−c)ρ(m)

ᾱmin,SV (nT−1)

Proof. (Sketch) At optimality, t =
∑n
i=1 α

∗
i .

This allows us to write 0 ≤
∑
i∈S α

∗
i (2 − α∗i −

∑
j 6=iK

(m)
ij α∗j ) − t as 0 ≤

∑
i∈T (1 − c −

di(G
(m)
T )

ρ(m) ᾱ
(m)
min,SV ) Dividing by

(
nT

2

)
completes the proof.

1This is equivalent to defining an orthogonal labelling on the Union graph of G(1), . . . , G(M)
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5 Finding Planted Cliques in G(n, 1/2) graphs

Finding large cliques or independent sets is a computationally difficult problem even in random
graphs. While it is known that the size of the largest clique or independent set inG(n, 1/2) is 2 log n
with high probability, there is no known efficient algorithm to find a clique of size significantly larger
than log n - even a cryptographic application was suggested based on this (see the discussion and
references in the introduction of [8]).

Hidden planted clique A random graph G(n, 1/2) is chosen first and then a clique of size k is
introduced in the first 1, . . . , k vertices. The problem is to identify the clique.
[8] showed that if k = Ω(

√
n), then the hidden clique can be discovered in polynomial time by com-

puting the Lovász ϑ function. There are other approaches [2, 7, 24] which do not require computing
the ϑ function.
We consider the (equivalent) complement model G(n, 1/2, k) where a independent set is planted on
the set of k vertices. We show that in the regime k = Ω(

√
n), Ḡ(n, 1/2, k) is a SVM − ϑ graph.

We will further demonstrate that as a consequence one can identify the hidden independent set with
high probability by solving an SVM. The following is the main result of the section.
Theorem 5.1. For G = Ḡ(n, 1/2, k) and k = 2t

√
n for large enough constant t ≥ 1 with K as in

(4) and ρ =
√
n+ k/2,

ω(K) = 2(t+ 1)
√
n+O(log n) =

(
1 +

1

t
+ o(1)

)
ϑ(G)

with probability at least 1−O(1/n).

Proof. The proof is analogous to that of Theorem 3.1. Note that |λn(G)| ≤
√
n + k/2. First we

consider the expected case where all vertices outside the planted part S are adjacent to k/2 vertices
in S and (n − k)/2 vertices outside S. and all verties in the planted part have degree (n − k)/2.
We check that αi = 2(t + 1)/

√
n for i 6∈ S and αi = 2(t + 1)2/

√
n for i ∈ S satisfy KKT

conditions with an error of O(1/
√
n). Now apply Chernoff bounds to conclude that with high

probability, all vertices in S have degree (n− k)/2±
√

(n− k) log(n− k) and those outside S are
adjacent to k/2±

√
k log k vertices in S and to (n− k)/2±

√
(n− k) log(n− k) vertices ouside

S. Now we check that the same solution satisfies KKT conditions of Ḡ(n, 1/2, k) with an error of

ε = O

(√
logn
n

)
. Using the same arguments as in the proof of Theorem 3.1, we conclude that

ω(K) ≤ 2(t+ 1)
√
n+O(log n). Since ϑ(G) = 2t

√
n for this case [8], the result follows.

The above theorem suggests that the planted independent set can be recovered by taking the top k
values in the optimal solution. In the experimental section we will discuss the performance of this
recovery algorithm. The runtime of this algorithm is one call to SVM solver, which is considerably
cheaper than the SDP option. Indeed the algorithm due to [8], requires computation of ϑ function.
The current best known algorithm for ϑ computation has an O(n5 log n)[5], run time complexity. In
contrast the proposed approach needs to solve an SVM and hence scales well to large graphs. Our
approach is competitive with the state of the art [24] as it gives the same high probability guarantees
and have the same running time, O(n2). Here we have assumed that we are working with a SVM
solver which has a time complexity of O(n2) [13].

6 Experimental evaluation

Comparison with exhaustive approach [14] We generate synthetic m = 3 random graphs over
n vertices with average density δ = 0.2, and having single (common) quasi-clique of size k = 2

√
n

with density γ = 0.95 in all the three graphs. This is similar to the synthetic graphs generated
in the original paper [see 14, Section 6.1.2]. We note that both our MKL-based approach and
exhaustive search in [14] recovers the quasi-clique. However, the time requirements are drastically
different. All experiments were conducted on a computer with 16 GB RAM and Intel X3470 quad-
core processor running at 2.93 GHz. Three values of k namely k = 50, 60 and k = 100 were used.
It is interesting to note that CROCHET [14] took 2 hours and 9 hours for k = 50 and k = 60 sized
cliques and failed to find a clique of size of 100. The corresponding numbers for MKL are 47.5,54.8
and 137.6 seconds respectively.
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Common dense subgraph detection We evaluate our algorithm for finding large dense regions on
the DIMACS Challenge graphs 2 [15], which is a comprehensive benchmark for testing of clique
finding and related algorithms. For the families of dense graphs (brock, san, sanr), we focus on
finding large dense region in the complement of the original graphs.

We run Algorithm 1 using SimpleMkl3 to find large common dense subgraph. In order to evalu-
ate the performance of our algorithm, we compute ā = maxm a

(m) and a = minm a
(m) where

a(m) = γ(G
(m)
T )/γ(G(m)) is relative density of induced subgraph (compared to original graph den-

sity); and nT /N is relative size of induced subgraph compared to original graph size. We want
a high value of nT /N ; while a should not be lower than 1. Table 1 shows evaluation of Algo-
rithm 1 on DIMACS dataset. We note that our algorithm finds a large subgraph (large nT /N )
with higher density compared to original graph in all of DIMACS graph classes making it suit-
able for finding large dense regions in multiple graphs. In all cases the size of the subgraph, nT
was more than 100. The MKL experiments reported in Table 1 took less than 1 minute (for each
graph family); while the algorithm in [14] aborts after several hours due to memory constraints.

Graph family N M nT

N ā a
c-fat200 200 3 0.50 2.12 0.99
c-fat500 500 4 0.31 3.57 1.01

brock200‡ 200 4 0.41 1.36 0.99
brock400‡ 400 4 0.50 1.15 1.05
brock800‡ 800 4 0.50 1.08 1.01

p hat300 300 3 0.53 1.53 1.15
p hat500 500 3 0.48 1.55 1.17
p hat700 700 3 0.45 1.58 1.18

p hat1000 1000 3 0.43 1.60 1.19
p hat1500 1500 3 0.38 1.63 1.20

san200‡ 200 5 0.50 1.51 1.08
san400‡ 400 3 0.42 1.19 1.02

sanr200‡ 200 2 0.39 1.86 1.04
sanr400‡ 400 2 0.43 1.20 1.02

Table 1: Common dense subgraph recovery on multi-
ple graphs in DIMACS dataset. Here ā and a denote
the maximum and minimum relative density of the
induced subgraph (relative to density of the original
graph) and nT /N is the relative size of the induced
subgraph compared to original graph size.

Planted clique recovery We generate 100
random graphs based on planted clique
model G(n, 1/2, k) where n = 30000 and
hidden clique size k = 2t

√
n for each choice

of t. We evaluate the recovery algorithm
discussed in Section 4.2. The SVM prob-
lem is solved using Libsvm4. For t ≥ 2 we
find perfect recovery of the clique on all the
graphs, which is agreement with Theorem
5.1.

It is worth noting that the approach takes 10
minutes to recover the clique in this graph of
30000 vertices which is far beyond the scope
of SDP based procedures.

7 Conclusion

In this paper we have established that the
Lovász ϑ function, well studied in graph the-
ory can be linked to the one-class SVM for-
mulation. This link allows us to design scal-
able algorithms for computationally difficult
problems. In particular we have demon-
strated that finding a common dense region
in multiple graphs can be solved by a MKL problem, while finding a large planted clique can be
solved by an one class SVM.
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