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Abstract

There is no generally accepted way to define wavelets on permutations. We ad-
dress this issue by introducing the notion of coset based multiresolution analysis
(CMRA) on the symmetric group, find the corresponding wavelet functions, and
describe a fast wavelet transform for sparse signals. We discuss potential applica-
tions in ranking, sparse approximation, and multi-object tracking.

1 Introduction

A variety of problems in machine learning, from ranking to multi-object tracking, involve inference
over permutations. Invariably, the bottleneck in such problems is that the number of permutations
grows with n!, ruling out the possibility of representing generic functions or distributions over per-
mutations explicitly, as soon as n exceeds about ten or twelve.

Recently, a number of authors have advocated approximations based on a type of generalized Fourier
transform [1][2][3][4][5][6]. On the group Sn of permutations of n objects, this takes the form

f̂(λ) =
∑
σ∈Sn

f(σ) ρλ(σ), (1)

where λ plays the role of frequency, while the ρλ matrix valued functions, called irreducible repre-
sentations, are similar to the e−i2πkx/N factors in ordinary Fourier analysis. It is possible to show
that, just as in classical Fourier analysis, the f̂(λ) Fourier matrices correspond to components of f at
different levels of smoothness with respect to the underlying permutation topology [2][7]. Ordering
the λ’s from smooth to rough as λ1 2 λ2 2 . . ., one is thus lead to “band-limited” approximations
of f via the nested sequence of spaces

Vµ = { f ∈RSn | f̂(λ) = 0 for all λ�µ } .

While this framework is attractive mathematically, it suffers from the same disease as classical
Fourier approximations, namely its inability to handle discontinuities with grace. In applications
such as multi-object tracking this is a particularly serious issue, because each observation of the
form “object i is at track j” introduces a new discontinuity into the assignment distribution, and the
resulting Gibbs phenonomenon makes it difficult to ensure even that f(σ) remains positive.

The time-honored solution is to use wavelets. However, in the absence of a natural dilation operator,
defining wavelets on a discrete space is not trivial. Recently, Gavish et al. defined an analog of Haar
wavelets on trees [8], while Coifman and Maggioni [9] and Hammond et al. [10] managed to define
wavelets on general graphs. In this paper we attempt to do the same on the much more structured
domain of permutations by introducing an altogether new notion of multiresolution analysis, which
we call coset-based multiresolution (CMRA).
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Figure 1: Multiresolution

2 Multiresolution analysis and the multiscale structure of Sn

The notion of multiresolution analysis on the real line was first formalized by Mallat [11]: a nested
sequence of function spaces

. . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . .

is said to constitute a multiresolution analysis (MRA) for L2(R) if it satisfies the following axioms:

MRA1.
⋂

k Vk = {0},
MRA2.

⋃
k Vk = L2(R),

MRA3. for any f ∈ Vk and any m∈Z, the function f ′(x) = f(x−m 2−k) is also in Vk,
MRA4. for any f ∈ Vk, the function f ′(x) = f(2x), is in Vk+1.

Setting Vk+1 = Vk⊕Wk and starting with, say, V`, the process of moving up the chain of spaces can
be thought of as splitting V` into a smoother part V`−1 (called the scaling space) and a rougher part
W`−1 (called the wavelet space), and then repeating this process recursively for V`−1, V`−2, and so
on (Figure 1).

To get an actual wavelet transform, one needs to define appropriate bases for the {Vi} and {Wi}
spaces. In the simplest case, a single function φ, called the scaling function, is sufficient to
generate an orthonormal basis for V0, and a single function ψ, called the mother wavelet gen-
erates an orthonormal basis for W0. In this case, defining φk,m(x) = 2k/2 φ(2k x −m), and
ψk,m(x) = 2k/2 ψ(2k x−m), we find that {φk,m}m∈Z and {ψk,m}m∈Z will be orthonormal bases
for Vk and Wk, respectively. Moreover, {ψk,m}k,m∈Z is an orthonormal basis for the whole of
L2(R). By the wavelet transform of f we mean its expansion in this basis.

The difficulty in defining multiresolution analysis on discrete spaces is that there is no natural analog
of dilation, as required by Mallat’s fourth axiom. However, in the specific case of the symmetric
group, we do at least have a natural multiscale structure on our domain. Our goal in this paper is to
find an analog of Mallat’s axioms that can take advantage of this structure.

2.1 Two decompositions of RSn

A permutation of n objects is a bijective mapping {1, 2, . . . , n} → {1, 2, . . . , n}. With respect to the
natural notion of multiplication (σ2σ1)(i) = σ2(σ1(i)), the n! different permutations of {1, . . . , n}
form a group, called the symmetric group of degree n, which we denote Sn.

Our MRA on Sn is born of the tension between two different ways of carving up RSn into orthogonal
sums of subspaces: one corresponding to subdivision in “time”, the other in “frequency”. The first of
these is easier to describe, since it is based on recursively partitioning Sn according to the hierarchy
of sets

Si1 = { σ ∈ Sn | σ(n) = i1 } i1 ∈ {1, . . . , n}
Si1,i2 = { σ ∈ Sn | σ(n) = i1, σ(n−1) = i2 } i1 6= i2, i1, i2 ∈ {1, . . . , n} ,

and so on, down to sets of the form Si1...in−1 , which only have a single element. Intuitively, this tree
of nested sets captures the way in which we zoom in on a particular permutation σ by first fixing
σ(n), then σ(n−1), etc. (see Figure 2 in Appendix B in the Supplement). From the algebraic point
of view, Si1,...,ik

is a so-called (left) Sn−k–coset

µi1,...,ik
Sn−k := { µi1...ik

τ | τ ∈ Sn−k } , (2)
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where µi1...ik
is a permutation mapping n 7→ i1, . . . , n−k+1 7→ ik. This emphasizes that in some

sense each Si1,...,ik
is just a “copy” of Sn−k inside Sn. The first important system of subspaces of

RSn for our purposes are the window spaces
Si1...ik

= { f | supp(f) ⊆ Si1...ik
} 0≤ k ≤ n−1, {i1, . . . , ik} ⊆ {1, . . . , n} .

Clearly, for any given k, RSn =
⊕

i1,...,ik
Si1...ik

.

The second system of spaces is related to the behavior of functions under translation. In fact, there
are two distinct ways in which a given f ∈RSn can be translated by some τ ∈ Sn: left–translation,
f 7→ Tτf , where (Tτf)(σ) = f(τ−1σ), and right–translation f 7→ TR

τ f , where (TR
τ f)(σ) =

f(στ−1). For now we focus on the former.

We say that a space V ⊆ RSn is a left Sn–module if it is invariant to left-translation in the sense
that for any f ∈ V and τ ∈ Sn, Tτf ∈ V . A fundamental result in representation theory tells us
that if V is reducible in the sense that it has a proper subset V1 that is fixed by left-translation, then
V = V1⊕V2, where V1 and V2 are both (left Sn–)modules. In particular, RSn is a (left Sn–)invariant
space, therefore

RSn =
⊕
t∈Tn

Mt (3)

for some set {Mt} of irreducible modules. This is our second important system of spaces.

To understand the interplay between modules and window spaces, observe that each coset
µi1...ik

Sn−k has an internal notion of left–translation

(T i1...ik
τ f)(σ) = f(µi1...ik

τ−1µ−1
i1...ik

σ), τ ∈ Sn−k, (4)

which fixes Si1...ik
. Therefore, Si1...ik

must be decomposable into a sum of irreducible Sn−k–
modules,

Si1...ik
=

⊕
t∈Tn−k

M i1...ik
t . (5)

Furthermore, the modules of different window spaces can be defined in such a way that M i′1,...,i′k
t =

µi′1,...,i′k
µ−1

i1...ik
M i1...ik

t . (Note that each M i1...ik
t is an Sn−k–module in the sense of being invariant

to the internal translation action (4), and this action depends on i1 . . . ik.) Now, for any fixed t,
the space U =

⊕
i1,...,ik

M i1...ik
t , is fully Sn–invariant, and therefore we must also have U =⊕

α∈AMα, where the Mα are now irreducible Sn–modules. Whenever a relationship of this type
holds between two sets of irreducible Sn– resp. Sn−k–modules, we say that the {Mα} modules are
induced by {M i1...ik

t }.
The situation is complicated by the fact that decompositions like (3) and (5) are not unique. In par-
ticular, there is no guarantee that the {Mα} induced modules will be amongst the modules featured
in (3). However, there is a unique, so-called adapted system of modules, for which this issue does
not arise. Specifically, if, as is usually done, we let the indexing set Tm be the set of Standard
Young Tableaux (SYT) of size m (see Appendix A in the supplementary materials for the exact
definition), such as

t =
1 3 5 6 7
2 4
8

∈ T8,
.

then the adapted modules at different levels of the coset tree are connected via⊕
i1...ik

M i1...ik
t =

⊕
t′∈t↑n

Mt′ ∀ t∈Tn−k, (6)

where t ↑n:= { t′ ∈Tn | t′ ↓n−k= t } and t′↓n−k is the tableau that we get by removing the boxes
containing n−k+1, . . . , n from t′. We also extend these relationships to sets in the obvious way:
µ ↓n−k:= { t′↓n−k | t′ ∈µ } and ν ↑n:=

⋃
t∈ν t ↑n. We will give an explicit description of the

adapted modules in Section 4. For now abstract relationships of the type (6) will suffice.

3 Coset based multiresolution analysis on Sn

Our guiding principle in defining an analog of Mallat’s axioms for permutations is that the resulting
multiresolution analysis should reflect the multiscale structure of the tree of cosets. At the same time,
we also want the {Vk} spaces to be invariant to translation. Letting P be the projection operator
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(Pi1...ik
f)(σ) :=

{
f(σ) if σ ∈µi1...ik

Sn−k,

0 otherwise,
(7)

we propose the following definition.

Definition 1 We say that a sequence of spaces V0 ⊆ V1 ⊆ . . .⊆ Vn−1 = RSn forms a left-invariant
coset based multiresolution analysis (L-CMRA) for Sn if

L1. for any f ∈ Vk and any τ ∈ Sn, we have Tτf ∈ Vk,
L2. if f ∈ Vk, then Pi1...ik+1f ∈ Vk+1, for any i1, . . . , ik+1, and
L3. if g ∈ Vk+1, then for any i1, . . . , ik+1 there is an f ∈ Vk such that Pi1...ik+1f = g.

Given any left-translation invariant space Vk, the unique Vk+1 that satisfies axioms L1–L3 is
Vk+1 :=

⊕
i1...ik+1Pi1...ik+1Vk. Applying this formula recursively, we find that

Vk =
⊕

i1...ik

Pi1...ik
V0, (8)

so V0 determines the entire sequence of spaces V0, V1, . . . , Vn−1. In contrast to most classical
MRAs, however, this relationship is not bidirectional: Vk does not determine V0, . . . , Vk−1.

To gain a better understanding of L-CMRA, we exploit that (by axiom L1) each Vk is Sn–invariant,
and is therefore a sum of irreducible Sn–modules. By the following proposition, if V0 is a sum of
adapted modules, then V1, . . . , Vn−1 are easy to describe.

Proposition 1 If {Mt}t∈Tn are the adapted left Sn–modules of RSn, and V0 =
⊕

t∈ν0Mt for some
ν0⊆Tn, then

Vk =
⊕
t∈ νk

Mt, Wk =
⊕

t∈ νk+1\νk

Mt, where νk = ν0↓n−k↑n, (9)

for any k ∈ {0, 1, . . . , n−1}.

Proof. By (6) Pi1...ik
[
⊕

t′∈t↑nMt′ ] = M i1...ik
t . Therefore, for any t′ ∈ (t↑n∩ ν0) there must be

some f ∈Mt′ ⊆ V0 such that for some i1 . . . ik, Pi1...ik
f ∈M i1...ik

t (and Pi1...ik
f is non-zero). By

Lemmas 1 and 2 in Appendix D, this implies that M i1...ik
t ⊆ Vk for all i1 . . . ik. On the other hand,

from (6) it is also clear that if t′ 6∈ν0, then M i1...ik
t ∩Vk = {0}. Therefore,

Vk =
⊕

t∈ν0↓n−k

⊕
i1...ik

M i1...ik
t =

⊕
t′′∈ν0↓n−k↑n

Mt′′ .

The expression for Wk follows from the general formula Vk+1 = Vk ⊕Wk. �

Example 1 The simplest case of L-CMRA is when ν0 = { 1 2 · · · n }. In this case, setting
m = n− k, we find that ν0 ↓m= { 1 2 · · · m}, and νk = ν0 ↓m↑n is the set of all Young tableaux
whose first row starts with the numbers 1, 2, . . . ,m.

It so happens that M i1...ik
1 2 · · m is just the trivial invariant subspace of constant functions on

µi1...ik
Sn−k. Therefore, this instance of L-CMRA is an exact analog of Haar wavelets: Vk will

consist of all functions that are constant on each left Sn−k–coset. Some more interesting examples
of adapted L-CMRAs are described in Appendix C. y

When V0 cannot be written as a direct sum of adapted modules, the analysis becomes significantly
more complicated. Due to space limitations, we leave the discussion of this case to the Appendix.

3.1 Bi-invariant multiresolution analysis

The left-invariant multiresolution of Definition 1 is appropriate for problems like ranking, where we
have a natural permutation invariance with respect to relabeling the objects to be ranked, but not the
ranks themselves. In contrast, in problems like multi-object tracking, we want our V0 ⊂ . . .⊂ Vn−1

hierarchy to be invariant on both the left and the right. This leads to the following definition.
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Definition 2 We say that a sequence of spaces V0 ⊆ V1 ⊆ . . . ⊆ Vn−1 = RSn forms a bi-invariant
coset based multiresolution analysis (Bi-CMRA) for Sn if
Bi1. for any f ∈ Vk and any τ ∈ Sn, we have Tτf ∈ Vk and TR

τ f ∈ Vk

Bi2. if f ∈ Vk−1, then Pi1...ik
f ∈ Vk, for any i1, . . . , ik; and

Bi3. Vk is the smallest subspace of RSn satisfying Bi1 and Bi2.

Note that the third axiom had to be modified somewhat compared to Definition 1, but essentially it
serves the same purpose as L3.

A subspace U that is invariant to both left- and right-translation (i.e., for any f ∈U and any σ, τ ∈ Sn

both Tσf ∈ U and TR
τ f ∈ U ) is called a two-sided module. The main reason that Bi-CMRA is

easier to describe than L-CMRA is that the irreducible two-sided modules in RSn , called isotypic
subspaces, are unique. In particular, the isotypics turn out to be

Uλ =
⊕

t∈Tn : λ(t)=λ

Mt λ∈Λn,

where λ(t) is the vector (λ1, . . . , λp) in which λi is the number of boxes in row i of t. For t to be a
valid SYT, we must have λ1 ≥ λ2 ≥ . . .≥ λp ≥ 1, and

∑p
i=1 λi = n. We use Λn to denote the set

of all such p–tuples, called integer partitions of n.

Bi-CMRA is a much more constrained framework than L-CMRA because (by axiom Bi1) each Vk

space must be of the form Vk =
⊕

λ∈νk
Uλ. It should come as no surprise that the way that ν0

determines ν1, . . . , νn−1 is related to restriction and extension relationships between partitions. We
write λ′≤λ if λ′i≤λi for all i (assuming λ is padded with zeros to make it the same length as λ),
and for m ≤ n, we define λ↓m:= { λ′ ∈Λm | λ′≤ λ }, and λ′↑n:= { λ∈Λn | λ≥ λ′ }. Again,
these operators are extended to sets of partitions by µ↓m:=

⋃
λ∈µλ↓m and ν ↑n:=

⋃
λ∈νλ↑n. (See

Figure 3 in Appendix B.)

Proposition 2 Given a set of partitions ν0⊆Λn, the corresponding Bi-CMRA comprises the spaces

Vk =
⊕

λ∈ νk

Uλ, Wk =
⊕

λ∈ νk+1\νk

Uλ, where νk = ν0 ↓n−k↑n . (10)

Moreover, any system of spaces satisfying Definition 2 is of this form for some ν0⊆Λn.

Example 2 The simplest case of Bi-CMRA corresponds to taking ν0 = {(n)}. In this case
ν0 ↓n−k= {(n − k)}, and νk = { λ∈Λn | λ1≥n−k }. In Section 6 we discuss that Vk =⊕

λ∈νk
Uλ has a clear interpretation as the subspace of RSn determined by up to k’th order in-

teractions between elements of the set {1, . . . , n}. y

4 Wavelets

As mentioned in Section 2, to go from multiresolution analysis to orthogonal wavelets, one needs
to define appropriate bases for the spaces V0,W0,W1, . . .Wn−2. This can be done via the close
connection between irreducible modules and the {ρλ} irreducible representations (irreps), that we
encountered in the context of the Fourier transform (1). As explained in Appendix A, each integer
partition λ ∈ Λn has a corresponding irrep ρλ : Sn→ Rdλ×dλ ; the rows and columns of the ρλ(σ)
matrices are labeled by the set Tλ of standard Young tableaux of shape λ; and if the ρλ are defined
according to Young’s Orthogonal Representation (YOR), then for any t ∈ Tn and t′ ∈ Tλ(t), the
functions ϕt′(σ) = [ρλ(t)(σ)]t′,t form a basis for the adapted module Mt. Thus, the orthonormal
system of functions

φt,t′(σ) =
√
dλ/n! [ρλ(σ)]t′,t t∈ ν0 λ= λ(t) t′ ∈Tλ (11)

ψk
t,t′(σ) =

√
dλ/n! [ρλ(σ)]t′,t t∈ νk+1\νk λ= λ(t) t′ ∈Tλ, (12)

seems to be a natural choice of scaling resp. wavelet functions for the L-CMRA of Proposition 1.
Similarly, we can take

φt,t′(σ) =
√
dλ/n! [ρλ(σ)]t′,t λ∈ ν0 t, t′ ∈Tλ (13)

ψk
t,t′(σ) =

√
dλ/n! [ρλ(σ)]t′,t λ∈ νk+1\νk t, t′ ∈Tλ, (14)
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as a basis for the Bi-CMRA of Proposition 2. Comparing with (1), we find that if we use these bases
to compute the wavelet transform of a function, then the wavelet coefficients will just be rescaled
versions of specific columns of the Fourier transform. From the computational point of view, this
is encouraging, because there are well-known and practical fast Fourier transforms (FFTs) available
for Sn [12][13]. On the other hand, it is also somewhat of a letdown, since it suggests that all that
we have gained so far is a way to reinterpret parts of the Fourier transform as wavelet coefficients.

An even more serious concern is that the ψk
t,t′ functions are not at all localized in the spatial do-

main, largely contradicting the very idea of wavelets. A solution to this dilemma emerges when we
consider that since

νk+1 \ νk = (ν0 ↓n−k−1↑n) \ (ν0 ↓n−k↑n) =
(
(ν0 ↓n−k−1↑n−k) \ (ν0 ↓n−k)

)
↑n,

each of the Wk wavelet spaces of Proposition 1 can be rewritten as

Wk =
⊕

i1...ik

⊕
t∈ωk

M i1...ik
t ωk = (ν0 ↓n−k−1↑n−k) \ (ν0 ↓n−k), (15)

and similarly, the wavelet spaces of Proposition 2 can be rewritten as

Wk =
⊕

i1...ik

⊕
λ∈ωk

U i1...ik

λ ωk = (ν0 ↓n−k−1↑n−k) \ (ν0 ↓n−k), (16)

where U i1...ik

λ are now the “local isotypics” U i1...ik

λ :=
⊕

t∈Tλ
M i1...ik

t . An orthonormal basis for
the M i1...ik spaces is provided by the local Fourier basis functions

ψi1...ik

t,t′ (σ) :=
{ √

dλ(t)/(n−k)! [ρλ(t)(µ−1
i1...ik

σ)]t′,t σ ∈ µi1...ik
Sn−k

0 otherwise,
(17)

which are localized both in “frequency” and in “space”. This basis also affirms the multiscale nature
of our wavelet spaces, since projecting onto the wavelet functions ψi1...ik

t1,t′1
of a specific shape, say,

λ1 = (n−k−2, 2) captures very similar information about functions in Si1...ik
as projecting onto

the analogous ψ
j′1...j′

k′
t2,t′2

for functions in Sj1,...,jk′ if t2 and t′2 are of shape λ2 = (n−k′−2, 2).

Taking (17) as our wavelet functions, we define the L-CMRA wavelet transform of a function
f : Sn → R as the collection of column vectors

w∗f (t) := (〈f, φt,t′〉)>t′∈λ(t) t∈ ν0 (18)

wf (t; i1, . . . , ik) := (〈f, ψi1...ik

t,t′ 〉)>t′∈λ(t) t∈ωk {i1, . . . , ik}⊂ {1, . . . , n} , (19)

where 0≤ k ≤ n−2, and ωk is as in (15). Similarly, we define the Bi-CMRA wavelet transform
of f as the collection of matrices

w∗f (λ) := (〈f, φt,t′〉)t,t′∈λ λ∈ ν0 (20)

wf (λ; i1, . . . , ik) := (〈f, ψi1...ik

t,t′ 〉)t,t′∈λ λ∈ωk {i1, . . . , ik}⊂ {1, . . . , n} , (21)

where 0≤ k≤n−2, and ωk is as in (16).

4.1 Overcomplete wavelet bases

While the wavelet spaces W0, . . . ,Wk−1 of Bi-CMRA are left- and right-invariant, the wavelets
(17) still carry the mark of the coset tree, which is not a right-invariant object, since it branches in
the specific order n, n−1, n−2, . . .. In contexts where wavelets are used as a means of promoting
sparsity, this will bias us towards sparsity patterns that match the particular cosets featured in the
coset tree. The only way to avoid this phenomenon is to span W0, . . . ,Wk−1 with the overcomplete
system of wavelets

ψi1...ik

j1...jk,t,t′(σ) :=
{ √

dλ(t)/(n−k)! [ρλ(t)(µ−1
i1...ik

σ µj1...jk
)]t′,t σ ∈ µi1...ik

Sn−k µj1...jk

0 otherwise,

where now both {i1, . . . , ik} and {j1, . . . , jk} are allowed to run over all k–element subsets of
{1, . . . , n}. While sacrificing orthogonality, such a basis is extremely well suited for sparse model-
ing in various applications.
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5 Fast wavelet transforms

In the absence of fast wavelet transforms, multiresolution analysis would only be of theoretical
interest. Fortunately, our wavelet transforms naturally lend themselves to efficient recursive compu-
tation along branches of the coset tree. This is especially attractive when dealing with functions that
are sparse, since subtrees that only have zeros at their leaves can be eliminated from the transform
altogether.

1: function FastLCWT(f, ν, (i1 . . . ik)) {
2: if k=n−1 then
3: return(Scalingν(v(f)))
4: end if
5: v ← 0
6: for each ik+1 6∈ {i1 . . . ik} do
7: if Pi1...ik+1f 6= 0 then
8: v ← v + Φik

(FastLCWT(f↓i1...ik+1 , ν ↓n−k−1, (i1 . . . ik+1)))
9: end if

10: end for
11: output Waveletν↓n−k−1↑n−k\ν(v)
12: return Scalingν(v) }

Algorithm 1: A high level description of a recursive algorithm that computes the wavelet transform
(18)–(19). The function is called as FastLCWT(f, ν0, ()). The symbol v stands for the collec-
tion of coefficient vectors {wf (t; i1 . . . ik)}t∈ν↓n−k−1↑n−k . The function Scaling selects the sub-
set of these vectors that are scaling coefficients, whereas Wavelet selects the wavelet coefficients.
f ↓i1...ik

: Sn−k → R is the restriction of f to µi1...ik
Sn−k, i.e., f↓i1...ik

(τ) = f(µi1...ik
τ).

A very high level sketch of the resulting algorithm is given in Algorithm 1, while a more detailed
description in terms of actual coefficient matrices is in Appendix E. Bi-CMRA would lead to a
similar algorithm, which we omit for brevity. A key component of these algorithms is the function
Φik

, which serves to convert the coefficient vectors representing any g ∈ Si1...ik+1 in terms of the
basis {ψi1...ik+1

t,t′ }t,t′ to the coefficient vectors representing the same g in terms of {ψi1...ik

t,t′ }t,t′ .
While in general this can be a complicated and expensive linear transformation, due to the special
properties of Young’s orthogonal representation, in our case it reduces to

wg(t; i1 . . . ik) =
√

dλ′ (n−k)
dλ

ρλ(Jik+1, n− kK)
(
wg(t′; i1 . . . ik+1)↑t

)
, (22)

where t′ = t↓n−k−1; λ = λ(t); λ′= λ(t′); Jik+1, kK is a special permutation, called a contiguous
cycle, that maps k to ik+1; and ↑t is a copy operation that promotes its argument to a dλ–dimensional
vector by [

wg(t′; . . .)↑t
]
t′′

=
{

[wg(t′; . . .)]t′′↓n−k−1 if t′′ ↓n−k−1∈ Tλ′

0 otherwise.

Clausen’s FFT [12] uses essentially the same elementary transformations to compute (1). However,
whereas the FFT runs in O(n3n!) operations, by working with the local wavelet functions (17) as
opposed to (12) and (14), if f is sparse, Algorithm 1 needs only polynomial time.

Proposition 3 Given f : Sn → R such that |supp(f)| ≤ q, and ν0 ⊆ Tn, Algorithm 1 can compute
the L-CMRA wavelet coefficients (18)–(19) in n2Nq scalar operations, where N =

∑
t∈ν1

dλ(t).
The analogous Bi-CMRA transform runs in n2Mq time, where M =

∑
λ∈ν1

d2
λ.

To estimate the N and M constants in this result, note that for partitions with λ1 >> λ2, λ3, . . .,
dλ = O(nn−λ1). For example, d(n−1,1) = n−1, d(n−2,2) = n(n−3)/2, etc.. The inverse wavelet
transforms essentially follow the same computations in reverse and have similar complexity bounds.
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6 Applications

There is a range of applied problems involving permutations that could benefit from the wavelets
defined in this paper. In this section we mention just two potential applications.

6.1 Spectral analysis of ranking data

Given a distribution p over permutations, the matrixMk of k’th order marginals is

[Mk]j1...jk;i1...ik
= p(σ(i1) = j1, . . . , σ(ik) = jk ) =

∑
σ∈Sj1...jk

i1...ik

p(σ),

where Sj1...jk

i1...ik
is the two-sided coset µj1...jk

Sn−kµ
−1
i1...ik

:=
{
µj1...jk

τµ−1
i1...ik

| τ ∈ Sn−k

}
.

Clearly, these matrices satisfy a number of linear equations, and therefore are redundant. However,
it can be shown that for for some appropriate basis transformation matrix Tk,

Mk = T>k

[ ⊕
λ∈Tn : λ1≥n−k

p̂(λ)
]
Tk,

i.e., the Fourier matrices {p̂(λ)}λ : λi=n−k capture exactly the “pure k’th order effects” in the dis-
tribution p. In the spectral analysis of rankings, as advocated, e.g., in [7], there is a lot of emphasis
on projecting data to this space, Margk, but using an FFT this takes around O(n2n!) time. On the
other hand, Margk is exactly the wavelet space Wk−1 of the Bi-CMRA generated by ν0 = {(n)} of
Example 2. Therefore, when p is q–sparse, noting that d(n−1,1) =n−1, by using the methods of the
previous section, we can find its projection to each of these spaces in just O(n4q) time.

6.2 Multi-object tracking

In multi-object tracking, as mentioned in the Introduction, the first few Fourier coefficients
{p̂(λ)}λ∈ξ (w.r.t. the majorizing order on permutations) provide an optimal approximation to the
assignment distribution p between targets and tracks in the face of a random noise process [2][1].
However, observing target i at track j will zero out p everywhere outside the coset µjSn−kµ

−1
i ,

which is difficult for the Fourier approach to handle. In fact, by analogy with (7), denoting the oper-
ator that projects to the space of functions supported on this coset by Pi

j , the new distribution will
just be Pi

jp. Thus, if we set ν0 = ξ, after any single observation, our distribution will lie in V1 of the
corresponding Bi-CMRA.

Unfortunately, after a second observation, p will fall in V2, etc., leading to a combinatorial explo-
sion in the size of the space needed to represent p. However, while each observation makes p less
smooth, it also makes it more concentrated, suggesting that this problem is ideally suited to a sparse
representation in terms of the overcomplete basis functions of Section 4.1. The important departure
from the fast wavelet transforms of Section 5 is that now, to find the optimally sparse representation
of p, we must allow branching to two-sided cosets of the form µj1...jk

Sn−kµi1...ik
, which are no

longer mutually disjoint.

7 Conclusions

Starting from the self-similar structure of the Sn−k coset tree, we developed a framework for wavelet
analysis on the symmetric group. Our framework resembles Mallat’s multiresolution analysis in its
axiomatic foundations, yet is closer to continuous wavelet transforms in its invariance properties. It
also has strong ties to the “separation of variables” technique of non-commutative FFTs [14]. In a
certain special case we recover the analog of Haar wavelets on the coset tree, In general, wavelets
can circumvent the rigidity of the Fourier approach when dealing with functions that are sparse
and/or have discontinuities, and, in contrast to the O(n2n!) complexity of the best FFTs, for sparse
functions and a reasonable choice of ν0, our fast wavelet transform runs in O(np) time for some
small p. Importantly, wavelets also provide a natural basis for sparse approximations, which have
hithero not been explored much in the context of permutations. Finally, much of our framework is
applicable not just to the symmetric group, but to other finite groups, as well.
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